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Introduction 

In the present paper, we shall give a new explicit formula on the /-adic 
expansion (mod n-1) of certain Gauss sums (see Theorem 1 in Section 1). 

Let p be any prime number and let m> 1 be a natural number which 
is not divisible by p. Let (m be a primitive m-th root of unity in the field 
of complex numbers C. Let Q be the field of rational numbers and let Z 
be the ring of rational integers. Fix a prime ideal j) of Q([;m) lying above p 
and put Nj)=q, where Nj) is the absolute norm of j). Note that m!(q-1). 
Let Fq be the finite field of q elements. Let 

Xv(x mod l:J)= (; )m 

be the m-th power residue symbol in Q((m), i.e., 

Xv(x mod l:J)=x<HJ/m (mod j)) 

for x e Z[(m]. XP induces a homomorphism of the multiplicative group 
Fi of Fq to ex of order m and Xµ(O)=O. Here we identify Fq and Z[(m]/l:J. 
Let T be the trace of Fq to FP and put 

for x e Fq. Then t is a homomorphism of the additive group Fq to the 
multiplicative group ex .. 

Definition. For each a e Z, put 
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This is called the Gauss sum. We write g(X:) or g(a) for gm(P, a) if there is 
no confusion. Clearly g(a) E Q((mp). 

The purpose of the present paper is to give a partial answer to the 
following question: 

(*) To give an explicit formula on the n--adic expansion of g(X:) when 
m is a power of a prime number /, taking a suitable prime element n- of 
Qz([;m)• 

Namely, we shall give an explicit formula on the n--adic expansion of 
g(x:) (mod n-1). 

As its applications, we shall obtain the following (I)-(IV): 
(I) generalization of Iwasawa' s congruences [8] and !hara' s congruences 

[5] on Jacobi sums. 
Iwasawa ([8], Theorem 1) gives the congruence for Jacobi sums to de­

termine the conductor of Jacobi sum Hecke characters in Q(f;1), and Ihara 
([5], Corollary to Theorem 7) gives a generalization of Iwasawa's formula 
to the /-power case, by using his "universal" power series for Jacobi sums. 
In Theorem 2 in Section 2, we shall give a generalization of Iwasawa's 
congruence and Ihara's congruence, by using Theorem 1 in Section 1 and 
a well known relation between Jacobi sums and Gauss sums (see also 
Lemma 4 in Section 2). In Section 2, we shall also give another proof of 
Theorem 1 using Uehara's method of computation on Jacobi sums (see 
the proof of Lemma 1 in [11]). In Section 5, we shall give another proof 
of Theorem 1 when n= l, by using Iwasawa's formula on power residue 
symbol for cyclotomic units ([9], Lemma 1). After the Kyoto conference 
in Oct. 1985, Anderson [1] obtained another proof of our Theorems 1 
and 2 (see Section 2, Note). Thus we have four different proofs of our 
Theorems 1 and 2, and we note that our original proof of Theorems 1 
and 2 is the most elementary one. 

Our first motivation of our problem was to give an algebraic proof 
of the nonvanishing of certain character sums. As is stated in (II) below, 
Iwasawa [9] gives an algebraic proof of I;t-:1 ao(a) ="i=O for an odd Dirichlet 
character o of conductor I under a certain condition. In June 1984, we 
obtained another algebraic proof of I;t-:1 ao(a) ="i=O in the same case as 
Iwasawa's, using the /-adic expansion of Gauss sums (slightly weaker, but 
essentially the same as the formula in Theorem 1 in Section 1). Our 
method of proof of Theorem 1 can be regarded as a generalization of the 
proof of Iwasawa's congruence [8], Theorem 1. 

On the other hand, there is a series of interesting works Ihara [5], 
Coleman [2], Ihara-Kaneko-Yukinari [6] and Anderson [l] on the universal 
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power series for Jacobi sums and Gauss sums, which are closely related to 
our problem of the l-adic expansion of Gauss sums. Although the present 
work was done independently, the mutual relationship became clear gradu­
ally, and at last Coleman and Anderson [1] obtained another proof of our 
Theorems 1 and 2 as is stated as above (see Note at the end of Section 2). 

(II) algebraic proof of the nonvanishing of the character sum 
"J:/f,'=1 bo(b) in certain cases, where o is a primitive odd Dirichlet character 
of conductor m. 

Put M(o)= "f:.'!,'=1 bo(b). The only proof of M(o)~0 in the general 
case follows from the fact that the value L(l, o) of Dirichlet L function 
L(s, o) at s= 1 is non-zero, and algebraic proofs are known only in the 
following three cases (i)-(iii): 

( i) m=fn (! is a prime number and n> 1) and o is faithful, i.e., 
Kero={l} (see Hasse [4], pp. 90-94 and Ullom [12]). 

(ii) m=fn (l is a prime number and n> 1) and the order of o is 2t 
with t > 1 (see Hasse [4], pp. 90-94, Ullom [12] and Metsankyla [10]). 

(iii) m=l (!>5 is a prime number) and e.,6-1 i Q(C::1)1 (Iwasawa [9]) 
(For e.,.-1, see Section 1). 

An algebraic proof in the case (iii) follows directly from a highly in­
teresting explicit formula of Iwasawa on the /-th power residue symbol 
for cyclotomic units ([9], Lemma 1). 

In Section 3, we shall give an elementary algebraic proof of M(o)~0 
in the case (iii) as an application of Theorem 1. In fact, we shall give an 
algebraic proof of M(o) ~O in the following case (iii)' which generalizes 
(iii). 

(iii)' m=fn (1>5 is a prime number and n>l) and e.,01, i Q(C::1)1 
(see Section 3.3). 

We shall also show that the above cases (i) and (ii) can be proved 
algebraically by using Gauss sums. Namely, we can deal with all known 
cases uniformly by using Gauss sums to some extent. 

(III) Another proof of a necessary and sufficient condition for e~ e 
Q(C::1)1 due to Iwasawa [9]. 

Iwasawa's proof is essentially based on Artin-Hasse's explicit formula 
on the norm residue symbol in local class field theory, and Uehara [11] 
gives another proof of this result of Iwasawa by using Jacobi sums. In 
Section 4, we shall give another proof of this result of Iwasawa by using 
Theorem 1 and Stickelberger's theorem. 

(IV) Another elementary proof of Iwasawa' s formula on the I-th power 
residue symbol for cyclotomic units in Q(C::1) (Iwasawa [9]). 

Iwasawa [9], Lemma 1 gives a highly interesting explicit formula on 
the /-th power residue symbol for cyclotomic units in Q(C:1), by using 
Artin-Hasse's explicit formula on the norm residue symbol in local class 
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field theory. 
In Section 5, we shall give an elementary proof of lwasawa's formula 

by using Theorem 1. Conversely, we can prove Theorem 1 when n= 1, 
by using Iwasawa's formula. The link between Iwasawa's formula and 
our Theorem 1 is essentially Stickelberger's theorem (see Lemma 12 in 
Section 5). 
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1984, and to Prof. Y. Ihara for his interesting lectures at Tokyo Metropo­
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§ 1. Congruence for Gauss sums 

In this section, let m = l n be a power of any prime number / with n > 
1. Let Zi be the ring of /-adic integers. Let Q be the algebraic closure 
of Q in C and' let Qi be a fixed algebraic closure of the field of /-adic 
numbers Qi. Fix a primitive /i-th root of unity f;i1 such that r;fH1=f;i, 
for i>l. 

By a fixed imbedding QC:Qi, we consider Q as a subfield of Qi. Let 
1r: E Qi(f;i,.) be such that 

where LogX= I:;t:J(-1Y- 1(X-ll/i e Z 1[X]. Then 1r: is a prime element 
of Q1(r;i,.) and we have 

where 

For any ideal a of Q(f;i,.) which is prime to land for any x e Q(f;1,.) 

which is prime to a, let (x/a) 1• be the /•-th power residue symbol in Q(f;1,.) 

and let [x, a]i, e Z//' be such that 

( X ) _ r[x,•]1• - -~zs 
a i• 

(l~s<n). 
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Then we have 

[x, a]1=[x, a]z, 

for 1 <s<n. Put 

where 1-J is as in the introduction. 

(mod/), 

if (x, ,1-J)= 1, 

otherwise, 
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Then ,W> induces a surjective homomorphism of the multiplicative 
group F; to the additive group Z/f•. For simplicity, put .i1=.i1~=.i1~1>. 

Now we shall state the definition of cyclotomic units in Q(C1). We 
identify the Galois group G=Gal (Q(f;1)/Q) and Ff =(Z//)X by the corres­
pondence ab++bmod!Z with be Z, where aif; 1)=f;f. Hence we have 
rp(ab)=rp(b) and rp(b) e Z[f;1_ 1]CZ 1 for be F1 and <p e G (G is the character 
group of G). For each <p e G, put 

where Zz[GJis the group ring of Gover Z 1• Let we G be the Teichmiiller 
character, i.e., the character satisfying 

(mod/Z 1) 

ford e z. If !>5 and if rp=w- 2t with 1 <i<(/-3)/2, then there exists 

with md e Z satisfying 

l-1 

I: md=O and W==-e~ 
d=l 

Definition. If I> 5, then put 

(mod /Z 1[G]). 

for 1 <i<(/-3)/2. We call e~ the cyclotomic unit in Q([;i). 

Under the above notation and assumptions, we have the following 
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Theorem 1. Let I be any prime number and assume that m=l" with 
n > 1. Then for each a e Z, we have 

(Z-3)/2 (a11:)2i +1 -1 
g( X°')=Exp(a(a11:)+ '°' f3 ---+-q -(a11:) 1- 1) 

~ I f;;;'l Zi (2i + 1) ! 2/ 
(mod 11:1), 

where a 1= - I:xeF:,:i(x),fr(x) and f3zt= -[e 21, +J]z with 1 <i~(/-3/2). Here 
we omit the term .I:1~13>12 if !<3, and omit the term ((q- l)/2l)(a11:)z-i if 
1=2. 

Remark. (1) We define the product xy (mod 11:1) of x e F1(,p) ('p= 
i;p mod IZ 1[t;p]) and ye 11:Z1[t;p1"] as the product xy mod 11:Z, where x e Z 1[t;p] 
is such that xmodl=x. It is well defined, since ordn (l)=(/-1)/"-1, 
where ord% is the normalized additive valuation of Qz([;1.,). 

(2) In the definition of ai, we write ,fr(x) for ,fr(x) mod l Z 1[[;P] for 
simplicity. 

For the proof of the above theorem, we need the following Lemmas 1, 
2 and 3. 

Lemma 1. For O~j<l -1, we have 

{
-I 

I; }.(b)1= 0 
bEF:-{1) l _q-

i 

where }.(b)0 = 1. 

Proof Ifj=O, then 

if j=O, 

ifl<j~l-2, 

if j=l-1, 

I; }.(b)1=(q -1)-1 = -1, 
bEFi-\1) 

since q-1 =O (mod/). Now assume that 1 ~j<l-1. Since}. is a sur­
jective homomorphism of F'i onto F1, this induces the isomorphism 

Hence }. takes a constant value on each class of F'i /(F'i) 1• Let R be a 
complete representative system of F'i /(F'i) 1• Then 
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q- I 1-1 
=--I:;m1, 

I m=1 

93 

where I (Fn 1 I is the number of elements in (F;)1. Let f 1 be the homomor­
phism of Ft to Ff defined by flx)=x 1• Then/ 1= 1 or not according as 
j=l-I or I sj<l-2, so we have 

I:; m1= I:; Jim)= 
1-1 { 0 

m=1 meF: -1 

if 1 <js/-2, 

if j=l-1. 

Thus we have the assertion. 

Then 

Lemma 2. Assume l'?::.5. For O<i<l-2, put 

Proof Since 

if i=O or if i(I sisl-4) is odd, 

ifi=l-2. 

/3o = I:; 1.(b ), 
bEFg 

so /30=0 by Lemma 1. Now assume that i is odd and 1 <is/-2. Then 

f3t= I:; 1.(b)i1.(I-b) 

Hence 

beF: 

= I:; ).(b-1)t1.(I-b-1). 
beF: 

- - I: ).(bY(-1.(b)+).(b- I)) 
beF:-11) 

since i is: odd. Hence 

/3t= I: ).(b)'+I_ I: ).(b)i).((-I)(I-b)) 

= I:; ).(b)t+1_/3o 
beF:-{1} 
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since 2((-1)(1-b))=2(1-b). Hence 

.Bi=_!_ I: 2(b)i+1, 

2 bEFa-{1} 

so we have the assertion by Lemma 1. 

Lemma 3. Assume l?;, 5. Then for l < i ;;;_ (!- 3)/2, we have 

.B2i= -2(e: 2i mod j)). 

In particular, .B2i = 0 if and only if 1::2i mod j) E (FiY. 

Proof Since 2 induces the isomorphism Fi /(Fi) 1 ::::;F1, 2 takes a con­
stant value on each class of Fi/(FiY- Let R ( :;i 1) be a complete re­
presentative system of Fi/(FiY- Then 

.B2i = I: 2(b )2 i 2(1- b) 
bEFa 

= I: I: 2(bc)2i2(1-bc) 
bER cE(FaJ' 

= I: 2(b)2i I: 2(1-bc) 
bER 

= I: 2(b)2i2( IT (I-be)). 
bER-{1} 

Put h=(q-1)/l. Then h~O (modp). Since (Fi) 1 is the group of h-th 
roots of unity in FP (an algebraic closure of Fp), we have 

IT (I-be)= l-bk. 
cE(F;)l 

So, 

Let ft be the exact power of l dividing (q-1), and let '1/ E Fi be an element 
of order ft with 2('1))= 1. If we take the set {l, '1/, l, . · ·, i- 1} as R, then 

If we put ~='1Jk, then 

(1) 
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Let x E Z[( 1n] be such that x mod +J = 1J· By the definition of Xp, 

Xp(x mod +J)=X(q-l)/ln 

On the other hand, by the definition of ;.;n>, 

(mod J:l). 

Xp(xmodl,l)=(;f'<~l. 

Taking the '[n· 1-th power of the both members, we have 

Xp(x mod l,J)ln-i=(;<~l =( 1, 

so 

(2) 

In the definition of e2i, 

Hence 

( 1 modp=g.-. 

ma= -w2i(d) 

=-d2i 

(mod/Z 1) 

(mod/Z). 

mod (Q(( 1)X)Z, 

so 

by (2). Hence we have 

by (I). 

Now we prove Theorem 1. 

Proof of Theorem I. By the definition of ;.~nl, 

g(X~)= - I; X~(x)t(x) 
xeF: 

= - I; (Exp n:)'f''<xJat(x) 
xeF: 

(mod n:1). 

95 
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Since (Exp nY= 1 (mod ,r1) and l(x)=.:t;nl(x) (mod/), we have 

g(X:)= - ~ (Exp (l(x)a,r)}t(x) 

since ~xEFe t(x)=O. Put 

ai = - ~ l(x)it(x) 
xeF: 

for O~i '?-.l-1 (since l(x) 0= 1, we have a 0 = 1). Then 

(1) (mod ,r1). 

Assume that l '?-.i~l-3. By the definition of ai, we have 

aia1=( ~ l(b)if(b))( ~ l(c)t(c)) 
bEFq cEFq 

= ~ l(b)il(d-b)f(d). 
b,dEFq 

In the summation ~b,dEFe• we divide the case d=O and d~O. Then 

since l(-b)=l(b). Hence by Lemma 1, 

since 2~i+ 1 ~l-2. Put 

Ad= ~ l(b)il(d-b) 

with d e F;. Then 

(2) 

bEFq 

(Xi(XI = ~ Adf(d). 
dEF~ 

Next, we compute Aa, By replacing b by db, 

Ad= ~ l(db)il(d-db), 
bEF; 
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so 

Aa= ~ (t (~)J..(d)HJ..(W)(J..(d)+J..(1-b)), 
bEFt-{1] J-O ] 

since J..(db)=J..(d)+J..(b). Hence 

Aa= -J..(d)i+t+ ± (~)J..(d)i-J/31 
j=l .1 

by Lemma 1 and since /30 = 0 by Lemma 2. Hence by (2), we have 

(3) for 0'.5:_i"SJ-3. 

If i=l-2, then in the same way as above, we have 

(4) 

Thus by (3) and (4), we have 

(5) 

where 

Now assume that 

(6) 

where 

for i=l-2. 

for O~i~l-2, 

if i=O, 

if 1 ~,i~/-3, 

if i=l-2. 

Put F(X)=Expf(X). Then 

F'(X):::::F(X)f'(X) (modx 1- 1). 

By differentiating the both members i times (O~i~/-2), we have 

97 
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p<t +t>(X) = ±:. ( ~)p<t -J>(X)fU + t>(X) 
j=O j 

(mod X). 

Put X=O. Then by (6) we have 

(7) 

for O<i<l-2. In particular, a 1=A 1, so 11=7 0• Hence by (5) and (7), 
we have 

(8) 

for O<j::{,l-2. Conversely, (8) implies (6). If we put X=a'I': in (6), then 
we have the assertion. 

§ 2. Congruence for Jacobi sums 

As an application of Theorem 1, we shall obtain a new congruence 
for Jacobi sums (see Theorem 2 below), which generalizes Iwasawa's con­
gruence ([8], Theorem 1 and its remark) and Ihara's congruence ([5], 
Corollary to Theorem 7). 

Conversely, we shall give another proof of Theorem 1 by using 
Uehara's method of computation on Jacobi sums (see the proof of Lemma 
1 in [1 l]). 

Definition. For any integer r>l and any a=(a 1, • ··,a,) e Z/m 
X ... XZ/m (direct product of r copies of Z/m), put 

J (11)--J(xa, • • • xa.) at'- p, ,p 

=(-1)'+ 1 I: x:•(x 1)x:•(x2)···X:•(x,). 
xi+··•+Xr=-1 
Xi,•••,Xr6Fq 

For any ideal a of Q(,m) which is prime to m, put 

Ja(a)= IT Ja(q)'\ 
q 

where a= IT q q•q is the prime ideal decomposition of a. The sum Ja(a) is 
called a Jacobi sum. 

As is well-known, the Jacobi sum is expressed in terms of Gauss sums, 
as is stated in the following 
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Lemma 4. If a=(a 1, • • ·, a,)5;:(0, 0, · · ·, 0) (mod m), then 

Ja{j:J)=Nj:J-1g(a1)g(a2)· · -g{a,)g(-ta} 

For the proof, see Weil [14] and Deligne [3]. 

99 

By using Theorem 1 and Lemma 4, we have directly the following 

Theorem 2. Let the notation and assumptions be as in Theorem 1 and 
let a=(ai, ···;a,) e Z/tnx · · · XZ/tn (the direct product of r copies of 
Z/l") be such that a5;:(0, · · ·, 0) (mod tn). Furthermore, let a be any ideal 
of Q(C-1 .. ) which is prime to l. Then 

Ja(a)=Na- 1 -Exp E Ea}t+i f32t(a)-~--{
(!-3)/2(. r ) 2i +I 

i=I j=O (2z+ 1)! 

+ N a-1 (± a}-1),rz-1} (mod ;r'), 
2/ j=O 

where a0= - E 1=1 aJ and [32tCa)= -[ew a],. Here we omit the last term if 
1=2. 

Proof Since Na (resp. [e2t, a]z) is multiplicative (resp. additive) with 
respect to a and since 

Na-I _ _!___!_ log Na 
21 2 l 

(mod/), 

we may assume a=j:), where log is the l-adic log. Then by Theorem 1 and 
Lemma 4 we have directly the assertion. 

Another proof of Theorem 1. Assume l >3. Put G=Gal (Q(C-1,.)/Q). 
Let H be the unique subgroup of G of order (/-1). For each 'Z" e H, by 
the definition of J(X~, x;) and l(x) we have 

J(X~, x;)= - E Xix)C'iJr)l(l-x) 
x6Fq 
x.:\=0,1 

since Cf,.= 1 (mod ;r1). Hence 

where 

J(X~, x;)=- E Xix) Exp(l(l-x)w(r-);r) 
xeFq 
X.:\=0,1 

!-1 

=1+ E ch.1('Z");r)' 
j=l 
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(1) c1 = - I; Xp(x)l(l -x) 
:cEFq 
x::\=0,1 

and ci (2<i-:::;.l-1) is an element of Z1[, 1,.] independent of 1:. Hence 

(2) (mod;r 1) 

with d1=c 1 and some d1 e Z1[, 1,.] (2<j-:::;,,/- l) independent of 1:. For each 
1 <i~/-1, put o1 =oi and 

By making eJ1 operate on both members of (2), we have 

(3) 

Hence 

(4) 

since 

1-1 

eJ, LogJ(X~, x;)=E oh)le 6,(d1;rl) 
j=l 

(mod ;r1). 

(5) 
if j= 1, 

otherwise. 

Since ,m=(J)(a);r (mod ;r1) for u e H, we have 

ea,it'J=_l_ ( I; (J)(q)J-i);rJ 
/-1 •EH 

so 

(6) 

for 1 <j<l-1. Since 

(mod ;r1) 

(mod;r 1) 

(mod ;r1), 

if j=i, 

otherwise, 

(mod ;r1), 

by ( 6) we have 

(7) 
it'i 

e (d;r)=-/3 
61 1 - i-\i-1)! 

(mod ;r1), 
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where f3 j is as in Lemma 2. By ( 4) and (7), we have 

(8) 
i 

~ w- 1(-r)ea, LogJ(X~, x;)=/3;-1 . 1r 
<EH (1-l)! 

On the other hand, by Lemma 4 we have 

(9) 

Since we can write 

with some A 1 e Z 1[Cp], by making -r e H operate on both members we have 

(mod1r 1) 

for any -re H. Here we identify G(Q(Cznp)/Q(CP)) and G by restriction. 
Since g(X;) (mod 1r1) depends only on c (mod/) as is seen in the beginning 
of the proof of Theorem 1, we have 

(10) (
1- 1 (c1r)J) g(X~)=Exp ~ A1-. -
J=! J! 

for any c e Z 1• By (9) and (10) we have 

where Ti-r)= 1 +w(-r)1 +(-1) 1(1 +w(-r))1• Hence 

(11) 
l-1 j 

LogJ(X~, x;)= -Log N'p+ ~ A/i-r) ~ 
j=I J! 

By making e6, operate on both members of (11) and using (6), we have 

Since 
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by (5) we have 

i 

~ w- 1(-r)e61 LogJ(Xp,x;)=(-I)i- 1lt . 11: 
•€H (z-1)! 

(13) (mod 11:1) 

for 2<i<l- I. By (8) and (13) we have 

(mod/) 

for 2<i-S:.l- I. Hence by Lemmas 2 and 3 we have 

{
-[ei-1' l:J]1 (mod/) 

At= 0 (mod/) 

(q-1)/2/ (mod/) 

if i (3<i<l-2) is odd, 

if i (2<i-S:.l-3) is even, 

ifi=l-1. 

We have l 1=a 1 as in the beginning of the proof of Theorem I. Hence 
by (IO) we have the assertion. 

Note. Ihara [5] created the theory of "universal" power series for 
Jacobi sums, and he gave his intensive lecture about his interesting theory 
at Tokyo Metropolitan University in Dec. 1984. Meanwhile, we under­
stood that the problem of the determination of the coefficients of Ihara's 
power series Fp(u, v) is closely related to our problem of the /-adic expan­
sion of Gauss sums. We denote by Q1 the maximum abelian /-extension 
of the cyclotomic field Q(µ1oo) (µ1oo is the group of all /-th power roots of 
unity in C) unramified outside /, and by f2f' the maximum unramified 
sub-extension of Q1/Q(µioo), and put 

92= Gal (Qi/lJ't') Cg1 = Gal (Q1/Q(µ 100)) cg 0= Gal (Qi/Q). 

!hara ([5], Theorem 10 and its Corollary) determined the coefficients of 
Fp(u, v) for p e 92, and he conjectured that the same formula holds for p e 
91• We also understood that if Ihara's conjecture can be generalized for 
p e 90 and if it can be proved, then we might be able to give another proof 
of our Theorems 1 and 2 by using this and Theorem 7 of Ihara [5]. But, 
at that time, Ihara's conjecture was proved only for p e 92, so there was 
some gap between his formula and our Theorem 2. This is a reason why 
a weaker result for the congruence for Jacobi sums (Ihara [5], Corollary 
to Theorem 7) was obtained. Meanwhile, during the Kyoto conference 
in Oct. 1985, by using Iwasawa's theory, Coleman [2] obtained a proof of 
Ihara's conjecture for p e 91, and later a more general formula for p e 90• 
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Thus it became possible for Coleman and Anderson [l] to 'give another 
proof of our Theorems 1 and 2. So, as is stated in the introduction, we 
have four different proofs of our Theorems 1 and 2, and we note that our 
original proof of Theorems 1 and 2 is the most elementary one. We also 
note that after the Kyoto conference Ihara-Kaneko-Yukinari [6] obtained 
another proof of Ihara's conjecture for p E g1 in a different method from 
Coleman [2]. 

§ 3. Algebraic proof of the nonvanishing of certain character sums in certain 
cases 

Let m> 1 be any integer. We identitfy G=G(Q(t::m)IQ) and (Z/mY 
by ab ++b mod m, where ab e G is such that (~ = o!;,.. Let G be the charac­
ter group of G. The function <p on Z with values in C is called the Diri­
chlet character defined modulo m if it satisfies the following (i), (ii) and 
(iii) : 

( i) <fi(bc)=<fi(b)<fi(c) for any b, c E Z. 
(ii) <fi(b)=<fi(c) ifb===.c(modm). 
(iii) <fi(b)=O if and only if(b, m)¾l. 

We identify <p e G and the Dirichlet character defined modulo m by 

if (b, m)= 1, 

otherwise. 

<p ( E G) is called even (resp. odd) if <fi(a _1) = <fi(-1)= 1 (resp. -1). <p is 
even (resp. odd) if and only if Ki> is real (resp. imaginary), where Ki> is the 
fixed field of Ker <pin Q(t::m) by Galois theory. 

Let o E G be any odd character and let g be the order of o. Then 
G/Kero~Im a=<t::g> (cyclic group generated by (g). Let s0 be a repre­
sentative element of a generator of G/Ker o and we fix s0• 

Definition. Put 

aa=( I: a) n (1-sff P') E Z(G], 
11EKerO P' 

where the product is taken over all prime numbers p' such that p' jg. 

The following lemma 5 due to Ullom [12] is our starting point. 

Lemma 5. Put 
m 

~= I: aa,;:-1 E Z[G]. 
a=l 

(a,m)=l 

Let a e G be any odd Dirichlet character defined modulo m and let a0 E Z[G] 
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be as above. Put 

m 

M(o)= ,E ao(a). 
a=l 

Then the following (i) and (ii) are equivalent. 
(i) M(o)=O. 
(ii) ~a0=0 in Z[G]. 

Using Lemma 5 and Stickelberger's theorem we can prove the follow­
ing key lemma. 

Lemma 6. Let g(Xp) be the Gauss sum defined in the introduction. 
Then for any odd character o e G, the following (i) and (ii) are equivalent. 

(i) M(o)=O. 
(ii) g(X:Yo= ±C'~ with some i e Z, for any (resp. some) prime ideal 

p of Q(C'm) (resp. which is completely decomposed with respect to Q(C'm)/Q) 
such that (p, m)= 1 and for any (some) a e Z such that (a, m)= 1. Here we 
identify G(Q(C'mp)/Q(C'P)) and G by restriction, where pis a prime number such 
that p E p. 

Proof Since g(Xp)"a=g(X:), we may assume a= -1. By Stickelber­
ger's theorem, we have 

(1) 

where (g(X;-1)m) is a principal ideal generated by g(X;-1r and ~ is as in 
Lemma 5. Note that g(X;-1)m e Q(C'm) as is well-known. Put A=g(X;- 1r. 
By Lemma 5, M(o)=O if and only if ~a 0 =0, i.e., p•«a= 1 for some p which 
is completely decomposed in Q(C'm)/Q. Hence, by making a 0 operate on 
the both members of (1), we see that (i) is equivalent to that (A)«a= 1, i.e., 
A«a is a unit of Q(C'm). Hence (ii) implies (i). Now assume (i), and put 
e=A«a. Then e is a unit of Q(C'm), and we have jej2= 1, since 

Hence e is a root of unity in Q(C'm), i.e., g(X;-1)«a is a root of unity in 
Q(C'mp). Hence we can write 

(2) g(X;-1)«a= ±C'~P 

with some i E Z, where C'mp=C'mC'p-Since g(X;-1r E Q(C'm), by (2) we have 
(±C'~p)m E Q(C'm), so ctm E Q(C'm)• Since (m,p)=l, we have i:=O (modp). 
Hence we have (i). 

Lemma 7. Let l be any prime number and let a 1 be as in Theorem 1. 
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Let r- e Gal (Fi(~P)/F1) be the I-th power isomorphism of F1(~p), where ~P= 
l:;P mod l Z 1[/:;p]. Then we have 

ai: = a1 + l(l). 
In particular, we have a1 $ Fi if l(l) ~O. 

Proof Since 

ai: = - I; l(x),Jr(lx) 
xeF: 

= - I; l(l -'y),Jr(y), 
yeF: 

we have 

ai: = a 1 + l(l). 
The last statement follows from this. 

Lemma 8. Let l be any prime number and put m=ln with n> 1. Let 
l~ be as in Section I. Then there exist infinitely many prime ideals +J of 
degree I in Q(l:;m) not lying above l such that lp(l)=,'=O. 

Proof We have lp(l) ~O if and only if l mod +J $ (F{Y, so +J is un­
ramified and not decomposed in Q(l:;m)CZ .JT)/Q(l:;m). By Cebotarev's den­
sity theorem, there exist infinitely many such j:J (Wojcik [17] gives a purely 
algebraic proof of Cebotarev's density theorem in the special case which 
covers our case). 

Lemma 9. Let l be any odd prime number and let n be any natural 
number. Let 1r be a prime element of Qi(l:;1,.) as in Section I and let o be a 
primitive Dirichlet character of conductor zn. Put 

a~=( I; a) IT (I-sf P') e Z[G], 
aEKer d P'lg 

P'*L 

where the notation is as in the beginning of Section 3 and· the product is 
taken over all prime numbers p' such that p'\g and p' ~!. Let H be the 
unique subgroup of G of order (l- I) and let w0 be the restriction of w to H. 
Here we consider the Teichmuller character w as a character of G in the 
natural way. Then we have 

(modn-1) for l<j<l, 

where 
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llo)=( I: w1(a)) D (1-w 1(sf'P')) e Zz. 
aEKerO P'lg 

p',;,I 

Here we have lio):3,=0 (mod/Z 1) if and only ifKero=Kerwt. 

Proof Since 

(1) (mod rr1) 

for a e Z, a:3,=0 (mod/), we have 

a~rrJ=l;(o)rr1 (modrr 1). 

Since o is primitive, we have Kero CH. If wtlKera=\=1, then 

I: wJ(a)=O, 
"EKer O 

so lio)=O. If Ker wi;;2Ker o, then there exists a prime number p' divid­
ing (Ker wt: Kero), so (H: Kero). Hence p'lg, p'=\=l and sf'P' e Ker wt. 
Thus 1-w 1(sf'P')=0, so lio)=O. If Kerwt=Kero, then wt induces the 
natural isomorphism H/Ker o~ <r.g,), where g' =g/tn- 1:3,=0 (mod/). Since 
the order of sf'P' mod Ker o is p' and since p' =\= l, we see that sf'P' e H and 
that w1(sff P') is a primitive p'-th root of unity. Hence 

(mod/Z 1). 

For the proof of Lemma 11, we need the following well known lemma 
(e.g. Weil [16], Chap. XIII, § 8, Lemma 9). 

Lemma 10. Let I be any prime number and let K be afield of character­
istic different from I. For n> 1, let r.1 .. be a primitive [n-th root of unity 
and put Kn=K(r.in). If 1=2, assume r.4 EK. Then KX n (K~Y'=(KX)L" 
for all n>l. 

Lemma 11. Let I be any prime number and let o, a~ be as in Lemma 
9. Assume that n>2 or n::2::3 according as 1>3 or 1=2. Furthermore, 
assume M(o)=O, where M(o) is as in Lemma 5. Then we can write 

with some z E Q(r.1,._,p) and some i E Z. In particular, 

(modrr') 

with some i E Z. 
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Proof. By assumption and Lemma 6, we have 

with some i e Z. Since g(X~)= 1 (mod tr) and since (~=-·= -1, we can 
write 

with some i e Z, so 

(1) 

Since a 6=a~(l-sff 1), by (1) we have 

By using Lemma 10 for K=Q(Cin-,p), we can write 

(g(X~)aa)'" = zin 

with some z e Q(( 1,._,p), so 

(2) 

with some i e Z. Since Qi(( 1,.P)/Qi((1,._,P) is a fully ramified cyclic exten­
sion of degree /, (2) implies the last assertion. 

§ 3.1. The case where m=l" and Ker c)={l} 

In this section, we assume that m = l" and Ker o = { 1} where l is any 
prime number and n>l. 

An algebraic proof of M(o)~O in the case where m=l" and Kero={l}. 
Since Kero={l}, we have G~(Z/m)x~Jmo, so (Z/m)X is a cyclic 

group. Hence, if 1=2, then we haven= 1, so M(o)= 1. Hence we may 
assume !>3. By Lemma 8, there exists a prime ideal t-, of degree I in 
Q(Cm) such that )-p(l) ~O. Then by Lemma 7, we have a 1 $ F1• By 
Lemma 6 for n = I and Lemma 11 for n > I, we have 

(1) (modtr 1) 

with some i e Z. On the other hand, by Theorem I and Lemma 9, we 
have 

(2) (mod tr2). 

Since Kero=Kerw 0={1}, by Lemma 9 we have 
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(3) (mod/Z 1). 

By (1) and (2), we have 

a12M)=i 

so by (3), we have a 1 E F1• This is a contradiction. 

§ 3.2. The case where m = tn and the order of /J is 2i with t > 1 

In this section, let l be any prime number and put m=fn with n> I. 
Let o be a primitive odd Dirichlet character of conductor l n and of order 
2' with t~l. 

An algebraic proof of M(o) ::>,,:O in the above case. 
First assume l > 3. Then n = I. Let K0 be the fixed field by Kero 

in Q((1). Since o(-1) = -1 and the order of o is 2', we see that s~'-, is 
equal to a_ 1 on K0, so we have 

(1) 

Suppose M(o)=O. Then by Lemma 6, 

g(Xv)a;= ±Cl 

with some i E z. Since g(Xv)= 1 (mod ir), we have 

g(Xv)ao=(l, 

so 

(2) 

Hence by (1) we see that NQc,,Jix.(g(XvY) is real. Since g(Xv)g(Xv)=q, this 
implies 

where s=[Q(( 1): K 0]~0 (mod2). Hence we see that ,.,lq E Q((1). By 
Cebotarev's density theorem, there exist infinitely many prime numbers p 
which are completely decomposed in Q(( 1)/Q, i.e., P=l (mod/) (In this 
case, an elementary proof is known. See Washington [13], Corollary 2.11). 
Then q=p. Since pis fully ramified in Q(,.,lp)/Q and since p is unrami­
fied in Q(( 1)/Q, this is a contradiction. Hence M(o) ::>,,:0. Now assume 
1=2. If n=2, then it is clear that M(o)::>,,:O. Hence we may assume n'2::. 
3. Since the conductor of o is 2n, we have 

Kero= {l, aa -1}, 
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where a=ar-• is a generator of G(Q(Czn)/Q(Czn-1)). Assume M(o)=O. 
Then by Lemma 11 we have 

(3) 

with some z E Q(( 2n-1p) and some i E Z, where a~= 1 +aa _1• Since rr"a= 
arr (mod rr2) for a E Z, a3;=0 (mod 2), by Theorem 1 we have 

(4) 

Since Qz((2np)/Qz((2n-1p) is a fully ramified quadratic extension, by (3) and 
(4) we have 

(5) 

This implies that g(XP)aa is invariant by a and aa _ 1, hence by a_ 1, so 

(6) 

Since g(Xp)1+•- 1 = ±q, this implies 

so 

with some j E z. Since (fn = - Czn, we have 

so 

(7) 

Since 

(mod rr2) 

by Theorem 1, we have 

(8) 
g(Xp)C/n=-(1 +a 1rr)(l +rr)i 

=- 1 +(a 1 +j)rr 

Since Qz((2nv)/Qz((2n-,P) is a fully ramified quadratic extension, by (7) and 
(8) we have 

(mod n-). 
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so a, e F2• By Lemmas 7 and 8, this is a contradiction. Thus M(o):'>;::O. 

§ 3.3. The case where m=ln (n~l) and s.,,1 1 rt Q(C'zY with a prime number 
1~5 

Leto be a primitive odd Dirichlet character of conductor m=ln (n~ 
I) with a prime number 1?_5. We can decompose o uniquely into the 
product: 

where o1 is a character of the first kind and 02 is a character of the second 
kind (see Iwasawa [7], Section 6, p. 66). 

Assume the following condition 
(*) o,='t=m and e.,,,1 rt Q((z) 1• 

Iwasawa [9] gives an algebraic proof of M(o) :'>;::O under the above con­
dition(*) when n= I, by using Artin-Hasse's explicit formula on the norm 
residue symbol in local class field theory. 

In the following, we shall give an elementary algebraic proof of M(o) :'>;:: 
0 under the above condition ( *) for any n ~ I by using Theorem 1. Here, 
"elementary" means that we do not use class field theory. 

Algebraic proof of M( o) ='t= 0 under the above condition (*)for any n ~ 1. 
In the case where Kero= {I}, we have already given an algebraic 

proof of M(o)¾O in Section 3.1. Hence we may assume that Ker o:'>;::{1 }. 
Suppose M(o)=O. Then by Lemmas 6 and 11, we have 

(1) 

with some i e z. On the other hand, by Lemma 9 we have 

(2) 

since Ker o ='t= { 1}. By (1) and (2) we have 

(3) 

On the other hand, by Theorem 1 and Lemma 9, 

(4) ( 
i4i+l ) 

g(X~ta=Exp Li /32j • A2;+/o) 
j (21+1)! 

where the sum is taken over all j (I <j~(/-3)/2) such that Ker m21 +1 = 
Ker o1• Since o1 is odd and o1 :'>;::m, we can write 01 = m21 +1 with some i 
(1 ~i~(l- 3)/2). Then by Lemma 9, 
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(5) (mod lZz). 

By Cebotarev's density theorem, there exist infinitely many ,p such that 

(6) (mod!). 

Note that Wojcik [17] gives a purely algebraic proof of Cebotarev's density 
theorem in the special case which covers our case. By (4), (5) and (6), we 
have 

g(Xµ)a a 3;= 1 

This contradicts (3). Hence M(o)::'s;=O. 

§ 4. A necessary and sufficient condition for s,;, E Q(C'z)z due to lwasawa 

Let !~ 5 be a prime number and let I be the multiplicative group of 
all ideals in Q((z) which are prime to !. Let P be the subgroup of all 
principal ideals in I and let I' be the subgroup of I containing P such that 
I'/P is the Sylow /-subgroup of 1/P. Let P' be the subgroup of all prin­
cipal ideals (a) in P such that a= I (mod 11} +1), and put Y =I'/ P'. Put 
G=G(Q((z)/Q). Then Ybecomes a G-module which is an abelian /-group. 
Let Y0 be the a-component of Y. i.e., Y0 =e 0 Yfor o E G. 

Under the above notation and assumptions, Iwasawa proves the 
following 

Theorem 3 (Iwasawa [9], Lemma 3). Let <j> be an even character of G 
such that <j>::'s;=I, and put o=(J)<j>-1• Then c,;, E Q((z)Z if and only if fmC•>Y.=0, 
where 1mc0>+1 is the exact power of l dividing M(a- 1) and M(o- 1) is as in 
Lemma 5. 

By using Theorem 1 and Stickelberger's theorem we give another 
proof of the above theorem. 

Another proof of Theorem 3. By Stickelberger's theorem we have 

(1) 

for any prime ideal ,p EI, where ~= .6t-;;~ aa-;,1 E Z[G]. Let e0 E Z[G] be 
such that e.= e0 (mod [N Zi[G]) for a sufficiently large N. Put h' = [I: I']. 
Then h'3;=0 (mod!). Since e0~- M(o- 1)e0 (mod fN), we have 

(2) (mod fN) 

with some d~ I, (d, l)= I. Since ,ph' EI', we have 
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(3) 

with some a e Q(,;;1) such that a= 1 (mod trM) for a sufficiently large M, by 
using the fact that each principal ideal in P is generated by an element a 
in Q(f;,1) such that a= 1 (mod tr) as is stated in Iwasawa [9], p. 118. By 
making h'e. operate on both members of (1) and using (2) and (3), we 
have 

with some a e Q(f;,1) such that a= 1 (mod trM) for a sufficiently large M, so 

(4) 

For be Z, (b, p) = 1, let 1:b e G(Q(f;,1p))/Q(f;,1)) be such that r;,;•=r;,;. Since 

g(X; 1)'>=Xp(b)g(X; 1) 

and since o¾w, we have 

(5) 

(g(X; 1)' 0)<>=g(X; 1Y0, i.e., 

g(X; 1)'• E Q({;,z), 

Let tr0 be a prime element of Q1(r;,1) such that tr~-1= -/ and r;,1===Exp tr0 

(modtrD. Then tr;=w(a)tr 0 for a e G, and tr=tro (modtr 1). Since 

ifj=2i+l, 

otherwise, 

where o=w2i+ 1 with 1 s;;,i<(l-3)/2, by Theorem 1 we have 

(6) (mod tr~). 

Since e0tr~=O, by making e6 operate on both members of (6) we have 

2i +I 
g(x-l)l•= 1- r.i _tr_o __ 

p - /-'Zi (2i + 1) ! 
(7) 

Since Yis a finite abelian /-group and d$.O (mod/), by (4), (5) and (7) we 
see that Cl (j:>h')'•1"''0' = 1 in Y0 if and only if f3zt ===O (mod/), where Cl (j:>h') 
e Y is the class containing j:),.,. Since f32t =O (mod/) if and only if j:) is 

decomposed in Q(f;,1) (\l--;;;J/Q(r;,1), we see by Cebotarev's density theorem 
that e2t e Q(f;,1) 1 if and only if f32t = 0 (mod/) for all j:) E J (In this case, 
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Cebotarev's density theorem is proved purely algebraically by Wojcik 
[I 7]). Hence s:2i e Q(C1)! if and only if Cl (j:)''')•.1mm = I for all +' e I. This 
gives the assertion. 

§ 5. Relation between Iwasawa's formula on power residue symbols for the 
cyclotomic units and the congruence for Gauss sums 

lwasawa gives a highly interesting explicit formula on the /-th power 
residue symbol for cyclotomic units in Q(C1), by using Artin-Hasse's ex­
plicit formula on the norm residue symbol in local class field theory 
(Iwasawa [9], Lemma I; see also Theorem 4 below). In this section, we 
shall give an elementary proof of Iwasawa's formula by using Theorem I 
for n= I. 

Conversely, we shall give another proof of Theorem I (for n= I) by 
using Iwasawa's formula. 

Definition. For any ideal a of Q(Cm) which is prime to m, put 

G(a)= IT g(X;-1)69, 
p 

where a= IT v p'v is the prime ideal decomposition of a. 

The link between Iwasawa's formula and the congruence for Gauss 
sums stated in Theorem I is the following Lemma 12 which is proved by 
using Stickelberger's theorem. 

Lemma 12. Let n> I be any natural number and let l be any odd 
prime number. Let a be any ideal of Q(C1n) which is prime to l and let a e 
Q(Cin) be such that a1'=(a) with t>O. Leto be any Dirichlet character de­
fined modulo l n and put 

z< 
M(o)= I; ao(a), 

a=l 

where I' is the conductor of o. Put 

!" 

e = I; aa; 1 e Z(G], 
a=l 

(a,!)=l 

where G= G(Q(Czn)/Q). Then 

1 log G(a)=--e log a 
1n+t 

and 
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1 -e8 log G(a)=--M(o- 1)(e8 log a), [i+t 

where log is the l-adic log. 

Proof By Stickelberger's theorem, 

so 

(1) (G(aY")=a•. 

Note that G(a)"' e Q(( 1,.). Since 

by making (1 +a_ 1) operate on the both members of (1) we have 

(2) 

as numbers. On the other hand, by taking the / 1-th power of the both 
members of (I) we have 

as ideals, so 

as ideals. Hence 

(3) G(a)l"+'=ea• 

with some unit e in Q(( 1,.). By making (I +a _1) operate on both members 
of (3), we have 

(4) (G(a)Z"+')'+•-,-e'+•-,(N (=))Z" - Q(l;,n)/Q u. • 

Since Q(( 1,.) is totally imaginary, by taking Na(l;,nJ/Q of the equality at'= 
(a) we have 

(5) 

By (2), (4) and (5) we have e1+•- 1 = 1, so e is a root of unity in Q(( 1,.). 

Since log e=O, by taking log of both members of (3) we have 

(6) ["+t log G(a)=~ log a. 
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Note that 

(7) e.(~ log a)= (e,l) log a, 

since~ e Z[G]. Since 

and 
zn 
I; aa-1(a)=tn-iM(a- 1) 

a=l 

by elementary computation, by making e0 operate on both members of (6) 
and using (7), we have 

tn+tea log G(a) = tn-i M(a- 1)ea log a, 

so we have the assertion. 

Remark. We can get a similar formula for Jacobi sums as the formula 
in Lemma 12, by using Lemmas 4 and 12. 

Now assume l > 5. For any odd Dirichlet character o defined modulo 
l such that o=/=-m, let cs be the cyclotomic unit of Q(( 1) defined in Section 
1, where a=mo-1• For any ideal a of Q(C1) which is prime to/, let 

[cs, a]= [cs, a]z 

be as in Section 1. Then Iwasawa ([9], Lemma 1) gives an explicit formula 
of [cs, a] as follows. 

Theorem 4 (Iwasawa). Let the notation and assumptions be as above. 
Suppose that a1'=(a) with a E Q(( 1) andt>O. Then 

(mod lZ 1), 

where M(o- 1) is as in Lemma 5 and u0 e Q1 is such that 

1 !-1 

ea(Ioga)=uariJ with ro=-- I; o(a)- 1(f. 
/-1 a=I 

Remark. Iwasawa [9] assumes that a= 1 (mod n), but this assump­
tion can be omitted, by using the equalities (a1- 1) 1'=a 1- 1 and loga' 1- 1 = 
(l-l)loga. 
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Lemma 13. Let a be any ideal of Q(T;1) which is prime to l and let t. 

be a prime element of Qz(T;1) as in Section 1. Write 

G( a)= Exp I; ,1 r~--(
!-1 J) 
j = 1 J! 

with ,11 E Z 1[f;p] U= 1, · · ·, /-1). Let a e Q(T;1) be such that a1'=(a) with 
t>O. Put o=w 1 with 2<j~l-2. Let u. E Qz be such that eilloga=uora, 
where T8 is as in Theorem 4, and let M(o- 1) be as in Lemma 5. Then 

(mod/Z 1). 

In particular, we have ,11=0 (mod/Z 1) ifj is even. 

Proof Lemma 12 is essential for our proof. Since 

for a:3;=0 (mod /), we have 

(1) 

(mod t. 1) 

if j=i, 

otherwise, 

for O<i~l-1. Since r.=e 0 ([; 1) by definition and T;1=Exp t. (mod t. 1), we 
have 

(2) 

By (1) we have 

G(a)'.=Exp (,11 ;{) 

Taking log of the both members, we have 

(3) (mod t. 1+1). 

On the other hand, by Lemma 12 we have 

(4) e8 log G(a)=- 1-M(o- 1)u0r0• 
/t+l 

By (2), (3) and ( 4), we have 
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21c:::-1-M(o- 1)u0 
ft+I 

(mod/Z 1), 

117 

since 21 E ZiKp] and M(o- 1) E Z 1• Since M(o- 1)=0 if j is even, the last 
assertion follows from this. 

Another proof of Theorem 4. Write o=w2i+ 1 with l~i~(l-3)/2. By 
Lemma 13, 

(I) (mod !Z 1). 

On the other hand, by using Theorem I for a= -1 we have 

(2) (mod/Z 1). 

By (1) and (2) we have the assertion. 

Another proof of Theorem 1 when n= 1. We may assume a= -1. 
Write g(X; 1) as in Lemma 13 for et=!). By Lemma 13, 21=0 (mod IZ 1) if 
j is even. By Theorem 4 and Lemma 13, we have 

(mod/) 

Since 

l-3 
for l~i~- 2-. 

g(X;')= - I:; r;,;:i<x>t(x) 
xEF~ 

by definition and since r;,1 =I+ ir (mod ir2), we have 

Since g(X; 1) 1 +•- 1 = ±q and since g(X;')= 1 (mod ir), we have 

(1) 

Since 

for l;;;:j~/-1, by (1) we have 

Exp ( Ai-1 iri-1)=q'f2 
(/-1)! 

if j=l-1, 

otherwise, 
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so 

(modn-1), 

since(/-1)!=-l (mod/)andn- 1- 1=-/(modn- 1). Hence 

[ 1 ] 
[2] 

[ 3] 

[4] 

[5] 

[ 6] 

[ 7] 

[ 8] 
[9] 
[10] 

[11] 

[12] 

[13] 

[14] 

[15] 

[16] 
[17] 

l =q-1 
1-1- 21 (mod/). 
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