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Introduction

The set £(X) of homotopy classes of homotopy equivalences of a
space X to itself forms a group under composition of maps. This group
&(X) has been investigated by several authors (e.g. [2], [7] and [12]).

In the case where X is an S™-bundle over S”, the group &(X) has
been investigated for X=V, , and W, , by Y. Nomura [10] and for X
with 3<<m+1<n<2m—2 by S. Sasao [13], where V, ,=0m)/O(n—2)
and W,,=U(m)/U(n—2) are the real and complex Stiefel manifolds
respectively.

In this note, we study the p-Sylow subgroup of &(X) for an S™-
bundle X over S™ with a mod p H-structure such that i : ST —>X, is
an H-map, where m and » are odd integers, S7, and X, are localizations
of S™ and X at {p} respectively and i, is the localization of the inclusion
i: S"C X at {p}. Our main result is as follows:

Theorem 4.5. Let m and n be odd integers such that 3<m<n—1,

and let S™>X2.5" be an S™bundle over S*. Let p be an odd prime. If
ST, and X, are H-spaces such that iy,: St,—X, is an H-map, then the
group &(X) is a finite group with a unique p-Sylow subgroup S, given by the
semi direct product

§P5ﬂm+n(X;p)>T<ﬂn(Sm;p)’
where aTf=a+io foqoa for a € x, . ..(X; p) and B & x,(S™; p).

In Section 1, we determine the p-Sylow subgroup of &(S™Ue™)
(Proposition 1.3). In Section 2, we define a homomorphism j': &(X)—
&(K) and study the p-Sylow subgroup of Im ;' (Lemma 2.7). In Section
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3, we prepare three lemmas and the above theorem is proved in Section 4.
In the last section, Section 5, we calculate the p-Sylow subgroup of &(X)
of some S™bundles X over S for any odd prime p and determine the
group £(X) as a group extension of a certain group by a 2-group.

Throughout this note, all spaces have base points and all maps and
homotopies preserve base points. For given spaces X and ¥, we denote
by [X, Y] the set of (based) homotopy classes of maps of X to Y and by
the same letter a map f: X— Y and its homotopy class f ¢ [X, Y].

§ 1. The p-Sylow subgroup of &(S™ U e")

Let fern, (S™ 2<m<n—1) be a given element and let K=
S™U ;e denote the mapping cone of f. Let £,;: K=S"Ue"—>(S™Ue")V
S*=KV S" be the coaction defined by shrinking the equator S"~'Xx{1/2}
of e” in S™Ue" to the base point. Then we can define a map

A: 7 (K)—>[K, K] by Ma)=V(1Va)o

where V is the folding map and 1 is the class of the identity map of K.
Let i’: S*CK be the inclusion. Then by composing i%: 7,(S™—r,(K)
with 4, we obtain a homomorphism (cf. [11, Lemmas 1.4 and 1.8])
(1.1 22 7, (S™)—>E(K) by 2(@)=F(1Vi'oa)o¥,.
We put
H=n,(S")/(fxm(S"* ") +T(f)7n 1(S™)).

Here 7(f)() =7 Sf+tm, 7] o Sh(f) for 7 € x,,.,(S™) where ¢, is the class
of the identity map of S™, [¢,,, 7] € 7,,(S™) is the Whitehead product of ¢,
and 5 and A(f) e =,_,(S*™"") is the generalized Hopf invariant of f due to
P. J. Hilton [3]. Then the homomorphism 2, induces a monomorphism:
H—&(K) and we have

(1.2) ([11, Theorem 3.15]) For a two-cell complex S™U ;e" 2<m<
n—1), we have the exact sequence

O——>H,—>&(S™U ;) —>G,—>1,
H,=H if 2f+0, H,=D(H) if 2f=0,
G _{Zz if 2f=a(f), or 2f+0 and a(f)=0,

1 otherwise,

where D(H) is the split extension 0—H—D(H)—Z,—1 with action of
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Z,={1, =1} on H by (—1)-a=—a for e H and a(f)=f+(—1)of=
[ens eul o ACF)-

From n(S* ")=Z, for k=4 and (1.2), we have immediately

Proposition 1.3. Let 3<m<n—1 and let p be an odd prime. In the
case where n m is even, we assume n+2m—1. Then, for the mapping cone
K=8™U ;e" of fem,_,(S™), the group &(K) is a finite group with a unique
p-Sylow subgroup S, given by

S,=47,(S™; p) =7, (S™; D),
where ,(S™; p) denotes the p-primary component of w,(S™).

§2. The p-Sylow subgroup of Im ;'

Let X denote an S™-bundle over S* 2<m<n—1). Then by James-
Whitehead [6], X has a cell structure given by

2.1) X=KU ™",  K=S"U,e"

Since the inclusion j: KC X induces a bijection j,: [K, K]—[K, X], the
homomorphism

2.2) Jj'i E(X)—>E(K)
can be defined by the restriction to £(X) of the composite
j* i
[Xa X]—'—)[Ka X]—:_)[K’ K]’
We define the coaction
52: X=K U em+n___)(KU em+n)\/Sm+n=X\/Sm+n

by shrinking the equator S™*"~'x {1/2} of e™*" to the base point. Since
T n(S™ and r,,,(S™) for 2<m<n—1 are finite, r,,,,(X) is finite by
the exact sequence associated with the S™bundle over S”:

2.3) sntox 2, 5m,

Therefore, by the Blakers-Massey theorem and the exact sequence of the
pair (X, K) we have

2.4 Js: Tman(K)—>7, (X)) is epimorphic.

Hence, similarly to the way that we defined 4 in Section 1, we can define
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a homomorphism (cf. [11, Lemmas 1.4 and 1.8])
(2-5) A ﬂm+n(X) =J*”m+n(K)_—_)éa(X) by 22(05) =V (1 Va)o 4,

where @ € 7,,,,(X), F: X VX —X is the folding map and 1 is the class of
the identity map of X. Also, since the attaching element g ¢ x,,.,_,(K) of
e™ " in X =K e™" is of infinite order, by Barcus-Barratt [2, Theorem
6.1], J. W. Rutter [12, Theorem 3.1*] and (2.4) we have the following
exact sequence:

2.6) 0> 2y o (X)) E(X )L >G> 1,
where G={h € §(K)|hog=eg (e==*1)in x,, ,,_(K)}CEK).

Lemma 2.7. (i) For a €z, (S™), A(a) € &(K) given in (1.1) can be
extended to an element of §(X) if and only if i’ ]e, ¢,,] =0, where i’: S"CK
is the inclusion and ¢, is the class of the identity map of S™.

(il Let m be an odd integer. Then for any odd prime p the subgroup
G of £(K) in the above sequence is a finite group with a unigue p-Sylow
subgroup S,=r,(S™; p) given in Proposition 1.3.

Proof. (i) Let g be the attaching element of e™*" in X =K{Je™*"
given in (2.1). Then we have j,g=[s,i], where j,: ., ,_(K)—
Tpan1(K, S™) and ¢ e 7,(K, S™) is an element such that do=J, the at-
taching element of ¢ in K=S™{Je". So, by [4, Lemma 5.4], we have

biog=k.gxlk, k,],

where 4,: K—K\/S™ is the coaction given in Section 1, k: K—K\/ S
and k,: S"—>K\V S" (r=m, n) are obvious inclusions. Therefore, for
() (x € 7,(S™) given in (1.1), we have

Af)yog=Vo(1\(i"0oa)) ol og
=V o (I (i’ o @) o (kg [k, k. ])
=g=+[i’oa,i’]
=g+ille, ¢,).

Since g is of infinite order and [e, ¢,,] is of finite order, the above equalities
imply that A(a)o g+ —g for any « € 7,(S™) and that A(a¢)og=g if and
only if i [a, ¢,]=0.

(i) If mis an odd integer, then [, ¢,,]=0 for any « € =, (S™; p) and
so by (i) and Proposition 1.3, G has a unique p-Sylow subgroup S,=
7.(S™; p). g.e.d.
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§3. Some lemmas for an H-structure on X,

Let m and n be odd integers such that 3<m<n—1 and S™>X%s"
be an S™-bundle over S™. In this section we assume that p is an odd
prime such that the localized space X, at {p} is an H-space. Then we
have the following lemmas which will be used in the next section.

Lemma 3.1. Let aen,(X;p), Benm,(X;p), T €mp. o(X;p) and & €
7.(S™; p), and let w: X—X/K=S™*" be the collapsing map, where K is the
subcomplex of X given in (2.1). Then we have

(1) (+apedm)+Bw e dm=1+(@w ° dm+Bw e dw)s

(1) (A+tap g +Tmomm=1+(@w 9 +Tm 7w

(i) gy oémodmTTwmoTm=1w o Tw+im o Em ° duw»
where + denotes the multiplication induced from the H-structure on X .

Proof. Since [Y, X(,,] is an algebraic loop for any CW-complex Y
by [5, Theorem 1.1], we can define an obstruction ¢ e [X,, X X, X X5,
X »] for the multiplication to be homotopy associative by

(3.2 (p;+p)+ P =D+ (P + PN+ ¢,

where p,: X, X X,y X X(y—X,, (i=1,2,3) is the i-th projection. We
put L = (X XX X {#}) U (X X {#} X X)) U ({#} X Xy X X ). Using
the Puppe exact sequence associated with the cofibering L—X,, X X, X

’
X (F)LX » N X» A X, We see that there exists an element ¢’ such that
(3.3) =g or, ¢ € Xy AX iy AX iy, X

because in (3.2) we have ((p,+ p,)+ ps)|L=(p,+(p,+ p:))|L. Therefore,
by (3.2) and (3.3),

(+ag 2 9w) + B ° 4o =(Pi+P) +Ps) e (L X &y 0 Gy X Bimy © diw) 0 d
=((p,+ (PPN +¢) e (1 XA 0 Gy X By © i) © d
=1+ (am i+ Buw ° 4 +8 o (LA ABw) e LA\ Ge Ndiw)

o 77,'/ [ d,
where d: X,,—X, X X, X X, is the diagonal map. Since, in the above
equalities, (1/\gu Aqqpy) o od: Xpy—X i, NS ASE, is homotopic to
the constant map for dimensional reasons, we have the equality of (i).

The proof of (ii) is similar to that of (i) and so we omit it.

(i) Let w e [X, XX, X»] be an obstruction for the multiplica-
tion to be homotopy commutative defined by

(3.4 Pi+p.=(+p)+o,



264 M. Mimura and N. Sawashita

where p,: X, X XXy (i=1,2) is the i-th projection. Using the
Puppe exact sequence associated with the cofibering

XV Xpy—>Xy,) ><X(p>—n”—>X<p>/\X(p>,
we see that there exists an element «” such that
(3.5 - w=ao" ", o e[ Xy AN X Xipl
Therefore, by (3.4) and (3.5),

ipobmedmTTwmetm=[+P)o(meobmeodmXTmeorp)eod
=((P4P)+®) o ({0 by o Gy X Ty 0 T(y) o d
=T o +im o &modm)+0" o ((ip o) AT e (@ AT) o’ o d,

where d: X,,—X,, XX, is the diagonal map. Since, in the above
equalities, (¢, Amp)oa” od: Xip—ST, AST™ is homotopic to the con-
stant map for dimensional reasons, we have the equality of (iii). q.e.d.

Lemma 3.6. Let o € n,(S™; p) and A,(«) be an element of £(K) given
in (1.1), and let j: KC X be the inclusion and r: X —-X/K=S™"" be the
collapsing map. Then we have

(.i.) (i) ° @ © 4in) ©Jwy =Ji) © 4@ s

(i) Tp © (1 Fig © g © i) =Tp)-

Proof. (i) Let m: X, X X,,—X, be the multiplication on X,.
Then we have the following homotopy commutative diagram:

IXqm 1 X ipyoap

d m
X(:n)—>X(p) ><Af(p)—>gf(p) X S?p>—_’—>X(p) X X(p)"""’X(p)

Tj(p) J Ja X i Ti(p)xl JoXiw

1X 7y IXipyoap
K py—>K oy XKy ——>K ;) X STy Ky X K

](p)

| 1\/1‘219)00((1))

H ¢ vV
Ky -2 KV St Koy VEKpy—>K,

where z;: K—K/S™=S8" is the collapsing map. Therefore we have the
equality of (i), since 2/(&) =V o (1Vify) 0 ) o L1y
(1)) Consider the following diagram:

J» T(p)
Kopy——>Xpy—>SE"
izlw)(m h :

J @ Yomain
Kipy——>X——>SG",
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where h=14i(, o @y °q,. The left square of this diagram is homotopy

commutative by (i) and so is the right square for some map ¢: S7"—

@ " On the other hand, since « induces the trivial homomorphism in
reduced cohomology group, we have

(1 +i(p) ° &(p) © q(p))* =1: H*(X(p); Z(p))__)H*(X(p); Z(p))9

where Z,, denotes the ring of integers localized at {p}. Hence the above
map ¢ is homotopic to the identity. g.e.d.

Lemma 3.7. Letacn,(S™;p) and ¥ € 7, (X;p), and let w: X—X[K
=S"*" be the collapsing map. If ST, and X, are H-spaces such that
iy Sty—>Xy, is an H-map, then we have

9 o (LT o ) Fig © ¥ © 4i) =9+ 9w © T © Ty

Proof. Using the Puppe exact sequence associated with the cofiber-

ing X, VS0 —Xy, X S};‘,)ﬁX » N\S%,, we see that there exists o, € [X(,, A
Sy Stpl such that gy o (py+p2) o (1 Xi) =g opro (L X i)+ 0w,
where + denotes the multiplication induced from the H-structure on
X or ST, and p, (i=1, 2) is the projection. Furthermore, since i(,,: ST,
—X, is an H-map by the assumption, we see easily that there exists

o, € [(ST, Ueli™HAST,, STyl such that w,=w, o 7,, where w1 X, AST—

X/STINSTE, =(St, Ueti™ AST, is the collapsing map. Consequently
we have

Qi © (D1+Dy) o (1 Xi) =g 0Py o (1 Xigy) +wz0 w07y

Using this equality, by the similar way to the proof of Lemma 3.1, we
have

G o (147 0 T) iy © Ay © i) =Gy © (14T (o 0 T (i)
Furthermore, since 147, o ) = 4:(")(»» Where 4, was defined in (2.5),
G o (14T o) = o Vo (1N 0 £) iy =W o (qV q) e (1N 1) Ly)
=i+ P) e (@ XdpoTwm o Tm) o d

=4+ 9w ° T Tp-

Hence we have the equality of this lemma. q.e.d.

§4. Main result

In this section we study the p-Sylow subgroup of &(X) for an S™-
bundle X over S™ by using an H-structure on X, and the method of
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localization.
The following result due to Lieberman-Smallen will be used to obtain

our main result.

(4.1) (Lieberman-Smallen [7, Theorem 1.3]) Let P and P denote sets
of primes such that P\U P={all primes} and PN\ P=¢. Let Y be a simple
finite CW-complex. Then localization induces the isomorphism

L: 6(Y)={(h, I) e £(Y) X E(Yp) | hy =N}

where hg, and h, are localizations of h and I at the rational numbers Q
respectively.

Let m and n be odd integers such that 3<m<n—1 and X denote an
S™bundle over S” in (2.3). Let p be an odd prime. If S7, and X, are
H-spaces such that i, : S7,—>X|, is an H-map, then we have

Proposition 4.2. The p-Sylow subgroup S,==,(S™;p) of G givenin
(ii) of Lemma 2.7 splits partly the exact sequence (2.6), that is, there exists
a homomorphism

A S, =, (S™; p)—>E(X) such that j'oyp=1.

Proof. In Proposition 1.3 we identify #,(S™; p) with .S, by means of
the homomorphism 4,. We put A=1+4ig, oy ° gy for aem,(S™; p),
where 4 is the multiplication induced from the H-structure on X,,. Then
he &(X,) by Lemma 3.6, and A, =1 since « is of finite order. Therefore,
using the isomorphism L in (4.1), we can define a map

4.3) S E”n(*gm; p)_‘“>®@(X) by 1!’('21(“)):[4_1(1 +i(p> °© ®(p) © G (p)> 1):

where a € 7,(S™; p) and 4,(a) € S,. First we show that +» is an homomor-
phism. For a € ,(S™; p) and 8 e 7, (S™; p),

(I+ig o g 0 ge) o (L+ig) © fuy © 4)
=+l 0 By © Gim) Fi © @y © Gy o L+l © By © 4i)
=(+ig o By o dwm)+Fimoay o gy by Lemma 3.7
=1+ © Bip i o aw) e gy by (i) of Lemma 3.1
=1+4ip o (@+Pw e 9um-

Hence .'\If(ll(a)) o (A(B) =¥ (A(a+p)). Next we show jlop=1. The
naturality of localization gives the following commutative diagram:
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L
& (X)—‘;_—’{(h: W) e 8(X () X E(X ) | iy =}
4.9 ! . JXitp
éa(K)?{(h, 1) € E(K ) X E(K ) | Ay =y},

where both L’s are isomorphisms in (4.1), and j!,, and j},, are defined by
the same way as j' in (2.2). For « € 7,(S™; p) we have
Jte (WM =L o (jip X jim) o Lly(4(a))) by (4.4)
. =L""o (jzp) Xj!(p)) o (1 +i<p) ° ®(p) ° d s 1) by (43)
=L (A(@) > 1) by (i) of Lemma 3.6
=21(C(),
because 2,(a)=1. Hencej'o=1. q.e.d.
Now we consider the p-Sylow subgroup of &(X).

Theorem 4.5. Let m and n be odd integers such that 3<m<mn—1,
and let X denote an S™-bundle over S™ in (2.3). Let p be an odd prime.
If St and X, are H-spaces such that i,,: ST,—X, is an H-map, then
the group &(X) is a finite group with a unique p-Sylow subgroup S, given by
the semi direct product

S =X D) X 7.(S™; P),

where aTB=a-+iofogoa for a & m,, (X;p) and § & z,(S™; p).

Proof. By (2.6), Lemma 2.7 and Proposition 4.2, we have the exact
sequence

(4.6) 024 (X)) X A(S) —>E(X)—> G/ S,—>1,

where S, =x,(S™; p), G is given in (2.6) and G/S, has the order prime to
p.. Let p’ be a prime with (p, p)=1. Then, using the isomorphism L
in (4.1), for 7 e z,,.(X; p") and B & x,(S™; p) we have

4.7 2N TYA(B) =v(4(B) o A7) o Y(A(B)) ™" = 4(7)-

Noticing that 2,() =1+ @, © 7, for « € r,,,(X; p), by Lemmas 3.6 and
3.7 and the similar way to the proof of Lemma 3.1, we have

WP 0 2e) o YA D =((L+i(y o (— By © Ai) F Ay © T i)
+ i © B ° Dy Fin © By © Ay © Xy © Tip) = Aol +10 fo g o).
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Also, obviously we have

(‘!’(21(19)) ° 22(05) ° ‘P(Zl(ﬁ))_l)(p) =1 =(22(a+i ° /9 ofgo a))(p)'
Hence, by (4.1) we have

(4.8)  A(@)TY(A(B) =V (A(B) o Aola) o W(A(B) ' =2l +io° fogoa)

for « € #,,,,(X; p) and B e 7, (S™; p). Next we show that 4, is monomor-
phic on 7, (X;p). Let L be the isomorphism in (4.1). Then L1,(1)=
(474 omy, 1) for v e x, (X5 p). Therefore, we have

Ker '22 ﬂ T +n(X, p);Ker {Tc(ﬂ;): [Szr;)-)&»n’ X(p)]”——)[X(p)z X(p)]}
=Im {(Sg)%): [SKip, Xin]l—>[SG™ Xp}
=0,
where g is the attaching element of e™** in X=K Je™*", because the
middle equality is obtained by the Puppe exact sequence and the next one
is obtained by the fact due to C. A. McGibbon [8, Theorem 1] that Sg has

order at most 2. Hence, by (4.6), (4.7) and (4.8) we have the desired
result. g.e.d.

Let P be a set of odd primes p such that S7;, and X, are H-spaces
and i, : ST,—X, is an H-map, and we put S,=>_, .S, for the p-Sylow
subgroup S, given in Proposition 1.3. Then S is the normal subgroup
of G by Lemma 2.7 and (1.2) (see also e.g. [11, Theorem 2.11]), and the
splitting homomorphism «/» in Proposition 4.2 can be extended to Sp. So
by the same way as in (4.6) we have the exact sequence

04 o () XIS —>ECO)—>G/S,—>1.

By Theorem 4.5 and (4.7), we have immediately
2T XN XS Z (T S) @ 3 Ao cnlX; 1),
T pPEP r€EP

where S, is given in Theorem 4.5. By (1.2) (see also e.g. [11, Theorem
2.11]), we have the exact sequence

0—>H—>G/S,—>Z,® Z,.
Here

H=p,§1 7(S™; P) ® Hy/(fymi(S™ ) +T(f)Tn (ST N H,,



Groups of Self Homotopy Equivalences 269

where P,=PU{2}, H;={x € n,(S™; 2)|iyla, ¢,]=0} and 7(f) is given in
Section 1. Hence we have

Theorem 4.9. Let m and n be odd integers such that 3<m<n—1 and
X denote an S™-bundle over S™ in (2.3). Let P be a set of odd primes p
such that S, and X, are H-spaces and iy,: ST —X, is an H-map.
Then we have the following exact sequences:

0—( 2 8D X 2ol X 1) —>EX)—>GS p,—>1,

0—>H—G/S;—>Z,D Z,.

Here §p and G are given in Theorem 4.5 and (2.6) respectively, S,=
> perm(S™; p) and H is given as above.

§5. Two examples

In this section, we give the following two examples in which the
group &(X) is determined as a group extension of a certain group by a
2-group.

Example 5.1. Let m and n be odd integers such that 3<m<n—1 and
let X=S™XS". Then, for any odd prime p, §(X) is a finite group with a
unique p-Sylow subgroup §p given by the semi direct product

S}E(ﬂmm(S“;p)@nm+n(S";p));< 7.(S™; p),

where (o', &) T\f=(a’'+ Bo a”, &) for (&, @) € T, o(S™; P)Dp . (S™; D)
and B e n,(S™; p). Furthermore, let P be the set of all odd primes. Then
we have the following exact sequence:

0—>(X S) ® A—>&(X)—>G—1.
DEP
Here H=1,..(5"; 2/{tns 10 (S} D7, (S"; 2) and
G={aem,(S™;2)|[tm a]=0} X (2,8 Z),
where aT(e/, &) =¢ caoe” for (¢, ") e Z,DZ,={+x¢,} D{*¢,}.

In fact, since S¥, (k=m, n) is an H-space for any odd prime p by
J.F. Adams [1] and i,: S%,—S%, X S?, is an H-map, the first half of
this example is obtained from Theorem 4.5. Also, by [14, Theorem 2.6]
we have the exact sequence

2 it
0—3{[t T sr (ST} T n(S™ X ST) 25 E(S™ X ST)—>G—>1,
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where G={a ¢ 7,(5™)|[tn, €]=0}X 1,(Z,DZ;). Therefore, by noticing
that [¢,,, 7,,,(S™; p)]=0, the latter half of this example is obtained from
Theorem 4.9 and the above exact sequence.

Let r be an odd prime and let «, be a generator of =,,(S*; r)=2Z,.
Let

Ss { EB(V) 9 ;S2r+1

be the principal S*-bundle over S**! with a characteristic element «,.
Then we have the following

Example 5.2. For any odd prime p, §(B(r)) is a finite group with a
unique p-Sylow subgroup S » given by the semi direct product

Sy =m0 (S D) D1 (% p)  (p#£3 or r=3),
§3§(ﬂ27+4(53; 3)@772r+4(S2T+1; 3));'(”27+1(S3; 3) (”#3)’

where @, (S 3) = Z,, (&, ") T\f= (' + Boa”, &) for (&/,a")¢
Tar (S 3 D 1y (S**; 3) and B € &y, .(S®; 3).  Furthermore, we have the
Sfollowing exact sequences:

0—>( 2 8 B 70y 1i(S% 2) B 1y, o (ST 2)—>E(B(r)—>G—>1,
peEr
0—>7y, (5% )—>G—>Z,—>1,

where P is the set of all odd primes and r,, . (S**';2)=Z,.

In fact, since (S°X --- X S¥ 'XB(t)),)=SU(r+1),, by H. Toda
[15] and B(r)(,, =~ (S* X S* **),, for any prime p=£r, B(r),, is an H-space for
any odd prime p and i,,: S%,—B(r), is an H-map for dimensional
reasons. Therefore we can apply Theorem 4.5 to B(r) for any odd prime
p, and by the same way as in [9, Example 3.3] the homotopy group
7o, 54(B(r)) is calculated and we have the first half of this example. Also,
by [9, Theorem 3.1] we have the exact sequence

2 z
0—> 70y 1 (B(r)—>E(B(r)—1—>G—>1,
where G=£(S*U ,, €**") is given in (1.2). Therefore the latter half of this

example is obtained from Theorem 4.9 and the above exact sequence.
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