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Strong Simultaneous Resolution for Surface Singularities 

Henry B. Laufer* 

Let A: 1'" ~ T be (the germ of) a (flat) deformation of the two-dimen
sional isolated hypersurface singularity (V, p). We take T to be reduced. 
In [9], Teissier introduced, for all dimensions, various notions of simultane
ous resolution for A. Namely, let Vt denote A-I(t), the fiber above tin T. 

Definition 1. The map germ n: Jt ~1'" is very weak simultaneous 
resolution of A if for all sufficiently small representatives of A, the germ n 
has a representative, also denoted n, such that 

(0) n is a proper modification map. 
(i) A 0 n: Jt~T is a flat map. 
(ii) nt: Mt~Vt is a resolution of Vt for all t. 
Take V to have dimension two. 
Let d denote the exceptional set in Jt. 
(W) n is a weak simultaneous resolution if additionally the map 

r--./ 

induced by restriction A 0 n: d ~ T is simple, i.e. a locally trivial 
deformation. 

Let g:' denote the singular locus of 1'". Consider n-I(Y) as a non
reduced analytic space (with d as its underlying reduced space). 

(S) n is a strong simultaneous resolution if in addition to (0), (i) and 
r--./ 

(ii), the map induced by restriction A 0 n: n-I(g:')~T is simple. 
(F) n is a flat simultaneous resolution if in addition to (0), (i), and 

r--./ 

(ii), the map induced by restriction A 0 n: n-I(Y)~T is flat. 
In [4] (see also [7]), very weak simultaneous resolution (after base 

change) and weak simultaneous resolution were each shown to be equiva
lent to the constancy as a function of t of suitable numerical invariants of 
the fibers. In this paper; it is shown, Theorem 1, that ,u*(Vt) constant 
implies strong simultaneous resolution for A. It is known, [9], in all 
dimensions, that strong simultaneous resolution implies the Whitney condi
tions and, [8] [2], that the Whitney conditions are equivalent to ,u*(Vt) 
constant. So we complete an affirmative answer in dimension two to 
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Teissier's question [9, 4.1O.1b, p. 115] of whether p*(Vt ) constant is equiva
lent to strong simultaneous resolution. Note that, in dimension two, 
Perron's work [6] and [4] give an affirmative answer ,to [9, 4.10. la, p. 115], 
whether p(Vt) constant is equivalent to weak simultaneous resolution. 

Also given in this paper is an example of a family with a weak simul
taneous resolution which has no flat simultaneous resolution. This ex
ample should be compared to that of Brian~on-Speder [1], where p(3)(Vt): = 
p(Vt) is constant, p(2)(Vt) is not constant, but there is a flat simultaneous 
resolution. 

Theorem 1. Let A: r -+ T, with T reduced, be a (flat) family of iso
lated hypersurface two-dimensional singularities. Suppose that p*(Vt ) is 
constant as a function of t. Then A has a strong simultaneous resolution. 

We start with an outline of the proof. A complete proof is given 
after the outline. 

By [4], A has a weak simultaneous resolution. So this theorem is 
about the pull-back, for each t, of the maximal ideal mt of the singularity 
Pt in Vt. This pull-back will be controlled via the following theorems of 
Neumann [5]. Fix t, so that we may omit the subscript. Take p: = Pe to 
be the origin O. Let K, a 3-manifold, be the usual intersection of V with a 
small sphere about O. Let 1': M -+ V be the minimal resolution of (V, 0) 
with normal crossings in the exceptional set A. Then [5, Theorem 2], the 
topology of K uniquely determines the weighted dual graph,T of A. Let 
(x, y, z) be coordinates for the ambient space for V such that H: ={z=O} is 
a generic (with respect to V) hyperplane. Let B be the boundary of a 
tubular neighborhood of H n K in K. H n K is of course a link, so B is 
the union of real two-dimensional tori. The map 

p(x, y, z)=zllzl 

specifies the meridians on the tori of B. Then, by a variant of Neumann 
[5, Theorem, Appendix Sec. 2 and Theorem 8.2], the topological pair (K, p) 
determines the topological nature near A of the divisor (zo 1') of zo 1'. 

Now replace the subscript t's. The p*(Vt ) is constant condition is 
equivalent to the Whitney conditions along all of the Pt. Via Hironaka's 
strict Whitney conditions [3, p. 129, Lemma 5.2], it follows that the topol
ogy of (Kt, Pt) for each Pt is independent of t. Let (mt 0 1't) be the non
reduced locus of the pull-back to Me of the maximal ideal mt. It is shown 
that near At, (zo 1't) and (me 0 1't) difier in a simple manner. Then the 
hypothesis of constant multiplicity implies that (mt 0 1't ) is in fact topologi
cally constant. 

Here is our minor modification of Neumnn's work. 
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Consider a holomorphic function g near a two-dimensional singularity 
(V,p), g(p) =0. On V -p, g should be square-free. Start with the minimal 
resolution tr: M--+Vof(V,p). Let g=gotr be the pull-back of g to M. 
We want to perform (canonically) quadratic transformations on M, as fol
lows, until reaching the minimum configuration which falls into Neumann's 
calculus of graph manifolds with meridians. In Neumann's calculus, the 
only singularities allowed on the exceptional set are ordinary double points. 
But, in contrast with other current definitions of "good resolution", these 
double points may occur within an irreducible component Ai of the excep
tional set A. We consider X ={g=O}, near A. Think of X as reduced. 
Blow up all singular points of X which are not double points. Repeat the 
process until only double point singularities remain. (Since plane curve 
singularities are resolved by successive quadratic transformations, this 
process does terminate.) Let X' denote this new locus for this new g. 
Then X' determines a decorated plumbing graph r as follows. See [5, 
Appendix]. The irreducible components {Ai} of A' are the vertices of r; 
a double point in an Ai is denoted by a loop in r. The other, non
compact, components X; of X', are the decorations. Each such X; is 
denoted by an arrow on r, with tail at the Ai which meets X;. In r, 
we think of each decoration as an edge. Each vertex receives its usual 
(geometric) genus and weight given by the topological self-intersection. 
Then the minimality condition on the construction of r is: All rational 
-1 vertices in r have degree at least 3 (where, again, decorations are edges 
which count towards the degree). The graph manifold with meridians is 
formed, using g, as follows. Construct K, the usual 3-manifold which is 
the link of p, by plumbing using r without the decorations. Delete from 
K an open tubular neighborhood of Kn X', forming the 3-manifold K' 
with boundary B. Then the needed fibration rp: B--+Sl is given by 

rp(z) =g(z)/Ig(z) I. 

Since we have taken g to be square-free on V - p, K' with this meridian 
structure is homeomorphic to the graph manifold with meridian structure 
given by r. 

We now use Neumann's M-calculus to reduce r to M-normal form. 
[5, Theorem, Appendix Sec. 2] guarantees the uniqueness of M-normal 
form. In drawing weighted dual graphs, we follow the convention that 
vertices without a genus lable are understood to have genus 0. Other 
genera are enclosed in square brackets. Then, mimicking [5, Theorem 8.2], 
we have 

Theorem 2. The M-normal form r n of the minimal r from above may 
be obtained as follows: 
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(1) If r is of the form 

~
_2 

-EE;--_e •• k-_l_. .• el e 

-2 

k2l 

where all of the genera are ° and the e are the weights, then rn=r. 
(2) In all other cases, r n is obtained from r by applying the following 

operations to r whenever possible: 

a. 

b. 

b2l, b maximal 

Moreover, r n has the following properties: 
( i ) All edge signs are +. 
(ii) Any genus weights satisfy gi2-l. 

e+1 
• 

o 
• 

[-1] 

~ 
ffgJ-r=.l] 

(iii) Any vertex i with gi = -1 has degree 1; moreover, it has (euler 
number) weight e i 20, and if e i = 0, then the maximal chain ending at i has 
length > 1. 

(iv) r is uniquely determined by r n' 

Proof As in [5, Theorem 8.2], Theorem 2 is an immediate conse
quence of Neumann's work [5]. One remark may still be appropriate: 
Case 1 of Neumann's [5, Theorem 8.2] does not occur in Theorem 2 
because the graph in [5, Theorem 8.2, 1] has no decorations and so cannot 
arise as the decorated graph of the function f That is, after performing 
2a, especially in the case e= -3, the vertex with weight e+ 1 cannot be 
changed by any additional operation and so always is part of a chain. 
[This is needed to prove (iii) and hence to verify condition N4 for normal 
form.] 

Here is the needed analysis of (z 0 rr). The function z of the outline 
becomes the function g of Lemma 3. 
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Lemma 3. Let (V,p) be an isolated two-dimensional singularity. Let 
'lC' be the minimal resolution of (V, p) such that the pullback of the maximal 
ideal m of p is locally principal. Let g be a generic element of m, i.e. such that 
(g 0 'lC')=(m 0 'lC,)+ W; with W; meeting the exceptional set A' transversely. 
Let 'lC be the minimal resolution of (V,p) such that writing (g 0 'lC)=D+ Wg 
with D supported on A has Wg meeting the exceptional set A transversely. 
Let h be a second generic element of m such that g 0 'lC' and h 0 'lC' generate 
m 0 'lC'. For h, asfor g above, we write (h 0 'lC)=D+ W". Consider a point 
q in A n Wg , i.e. a point where go 'lC does not generate m 0 'lC. Let nq be the 
intersection multiplicity near q of Wg and Who Let C denote the irreducible 
component of A which contains q. Let T and T' denote the weighted dual 
graphs for A and A' respectively. Then near q, with the possibly non-zero 
genus of C omitted, T and T' are given by 

c c' nq-! 
A • • • 

, 
• . --. • -c*c -C*C-! -2 -2 -2 -1 

Let c be the coefficient of C in D. Then, repeating the second diagram 
above, near the quadratic transformations, (m 0 'lC') is given by 

c c+l 
• • 

c+2 
• 

-2 

c+nq-I c+nq 
.. .. . 

-2 -I 

The multiplicity of p is given by 

-D*D+,L:nq 

where the sum is over all embedded points q. 

Proof Near q, W" and Wg are submanifolds with contact of order 
nq. So nq successive quadratic transformations are required for their proper 
transforms not to intersect. The last statement of Lemma 3 follows from 
[10, p. 420]. 

Proof of Theorem 1. It suffices to prove Theorem 1 under the restric
tion that T is one-dimensional and smooth: For suppose that the one
dimensional case has been proved and consider the general case. Look at 
the simultaneous minimal resolution. By considering one-dimensional 
subspaces of T, it follows that the order of vanishing of the pull-back of 
the maximal ideal is constant on the irreducible components of the excep
tional sets. Moreover, the embedded points of the pull-back are topolo
gically constant and their location varies holomorphica1ly with t. Then 
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successive simultaneous blow~ups at the embedded points gives the general 
result. 

Let (x, y, z) be ambient coordinates for Vo in V, Po=(O, 0, 0)=0. For 
suitable constants a, b, c, which we may take to be independent of t, let 

,,: H = {(x, y, z, t) I ax+by+cz=O} 

be a family of hyperplanes such that near t =0, the function g=ax+by+cz 
is generic with respect to Vt as in Lemma 3. [The existence of such a " 
may be verified as follows: Consider a weak simultaneous resolution of A. 
Then an open dense set of (a, b, c) give generic g for t =0 and another 
open dense set of (a, b, c) give generic g for t =FO.} Via the projection map 
onto T, V n H is an equisingular family of plane curve singularities. Let 
St,. be the sphere in C 3 about Pt of radius e. Then, by [3, Lemma 5.2], 
there is a d>O and an e>O such that for Itl<d, VtnHt hasPt as its only 
singularity inside St, and Vt n Ht meets St,T transversely for all O<r <e. 
The condition that (Vt-Pt) n Ht is non-singular is equivalent to the condi
tion that Vt - Pt and Ht meet transversely. Also by [3, Lemma 5.2}, we 
may further restrict d and e from above so that Vt meets St,T transversely 
for all O<r <e. Then for alII t I <d and all O<r <e, VI' Ht and St,T meet 
with normal crossings. Then for each fixed t, the graph manifold with 
meridians (Kt,r> Pt,T) is topologically independent of r, O<r<e. Now fix 
r, O<r<e. By [3, Lemma 5.2], (Kt,r> Pt,T) is independent of t for small t. 
Hence for small t, (Kt,r> Pt,T) is independent of both t and r. Let gt (x, y, z) 
=ax+by+cz. By [5, Theorem, Appendix, Sec. 2] and Theorem 2 (iv), 
the decorated plumbing graph r t for the (Kt, Pt) is independent of t. r t 
describes the topology of the exceptional set At as well a s the topology of 
the reduced locus of {gt 0 It"t=O}. 

As in Lemma 3, write 

Then 

(1) 

for every irreducible component At,i of At. Moreover, the intersection 
matrix (At,; * At,j) is negative definite and in particular non-singular. 
Wt,g * At,; is determined by (Kt, Pt). So (1) yields a system of simultaneous 
linear equations in the coefficients of D t which has a unique solution. So 
(Kt, Pt) determines the topology of Dt+ Wt,g' 

Now let {ht} be a second family of generic elements of mt such that 
gt 0 It"t and ht 0 It"t generate mt 0 It"t. Let qt in At be as in Lemma 3, with 
corresponding nq,t. Since nq,t is the order of contact between submanifolds, 
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it is upper semi-continuous as a function of t. The multiplicity of Pt, equal 
to 1 + ,P)(Vt), is independent of t. By Lemma 3, nq,t is independent of t 
for all q. By Lemma 3 again, the tr: provide a strong simultaneous resolu
tion. 

As mentioned in the introduction, by [6] and [4], in dimension two, 
p(Vt ) constant is equivalent to weak simultaneous resolution. Consider, 
however, the following family: 

(2) 

For all t, Vt has an isolated singularity with C* action, and the weights are 
independent of t. p(S)(Vt ) = p(Vt) = 1350 for all t. For all t, p(2)(Vt ) may 
be computed using the hyperplane H ={x=y}. Then p(2)(VO) =54 and for 
1*0, p(2)(Vt ) = 50. For all I, the minimal resolution of Vt has the weighted 
dual graph 

(3) 
-2 
• 

-2 
• 
i 

-3 

• [24] 

For 1 =0 and 1 *0, consider the minimal resolution for which the pullback 
it of the maximal ideal mt is locally principal. Here are the weighted dual 
graphs along with the divisor dt corresponding to the pullback it. 

-2 -4 -1 -2 -4 
t=O • • • • • 

i [24J 
1 2 7 4 1 

3 

(4) 

-2 -2 
1*0 t 

1 1 

3 

The curves marked t by in (4) are the proper transform of the curve 
marked by t in (3). Observe that the coefficient in dt for these curves is 
different for 1 =0 and t *0. In particular, the family (2), which has a 
weak simultaneous resolution, has no flat simultaneous resolution. See 
[9, p. 107]. 
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