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Geometric Approach to the Completely Integrable
Hamiltonian Systems Attached to the Root
Systems with Signature

Michihiko Hashizume

Introduction

Because of their symmetry, completely integrable Hamiltonian
systems are intimately related to the geometry of Lie groups and homo-
geneous spaces. Conversely it is probable to find new completely inte-
grable Hamiltonian systems among the Hamiltonian systems naturally
constructed in connection with Lie groups and homogeneous spaces.
From the view point described above, we shall consider in this article the
Hamiltonian systems attached to certain root systems with signature. In .
more detail, we shall treat the following ones. Throughout the paper we
retain the following notations. Let n be an integer such that n=>2, and
let m be an integer satisfying 1 <m<n. For a notational convenience we
write

Z(n:leKksm, m<j<kSns Z(z)ZZzgjgm, m<ks=n
and
sh (x)=sinh (x), ch (x)=cosh (x)
and moreover for g=(q,, - -+, g,) € R"
9it=9;— 9> §i=9;+ 4

(I) The Hamiltonian system attached to the root system with
signature (4,_,, e,).

This is the Hamiltonian system on the phase space D, .. XR"
with the Hamiltonian H,,_, .., Where
0.1 Dyposye={0=00 . 4) ER"; 4> - >, G >+ >4}

and
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1 L
(02)  Heuyosyew@ PY=— 2. DI+ sh™(@5) — 2 ch7(g;0))-
2 7=1

Here ¢ is a nonzero real constant. This Hamiltonian system describes
the motions of n particles with unit mass interacting each other on a line;
they are devided into two types of particles, say, q,, - - -, ¢, and ¢,..q,

-+, ¢,. The particles of the same type interact pairwise among themselves
with the repulsive potential ¢?sh~%(x), while the particles of the different
type interact pairwise with the attractive potential — ¢ ch=%(x).

(1) . The Hamiltonian systems attached to the root systems with
The phase spaces of the first and the second Hamiltonian systems
are the same and given by
D(Unyem) X R D(Dn &m) >< R”L

(0.3)
={g=(, -, ) eR*;¢,> - >¢,>0,q,., > >qn>0}

The Hamiltonians are given respectively by

1 & A
Hg, .9, p)= 5 ]Z=:1 Pi+ci{2 wh~*(g;0) +sh=%(d,.)

0.4) )
— Sialeh~(g,)+eh (@)} + 2 3] sh-*2g)

and

05  Howwl p)=-§- Z P+ T (sh=*(g,) +sh*(4,)

— 2 w(ch™*(g,) +ch*(d,.))}

where ¢; and ¢, are nonzero real constants.
The phase spaces of the third and the fourth systems are the same
and given by

D(Cn, ) XR"= D(Dn,e’m) X R"
0.6) ={g=(qs -, 9) e R"; ¢.> - - >4y,
qm+1> e >qn3 qm+qn>0}-

The Hamiltonians are given respectively by

1 & 2 20 A
H,, ), P)ZE ]Z=:1 Pi+ {20 (sh () —ch™*(4;))
+ 22 o6h (G ) —ch~*(g,.))}

0.7)
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and
(08) H(Cm s;,,)(‘], p) = H(Dn, s;,,)(qs P) - c%/z ; Ch_z(ij)‘

Here ¢, and ¢, are nonzero real constants. These systems are interpreted
as the Hamiltonian systems describing the motions of 2n particles with
unit mass on a line with the coordinates and momenta satisfying the
restriction

0.9) Guei=—4sp Pusj=—0; (I=Zj=<n).

The systems are consisting of two types of particles and the particles are
divided into 4 groups, thatis, {q;, - - -, @u}s {Tm+1> * = s @ubs {— s -+ *» — i}
and {—¢qp+1> -+ >, — ¢} In the case (C,, &,) and (D, ¢,), the particles
belonging to {q,, - - -, ¢,,} and {—¢q,, - - -, —¢,} are of the same type and
the particles belonging to {g,+1, 5 9n} and {—gun.y, - -+, —g,} are of
the same type, but distinct from the former. On the contrary, in the case
(C,, &) and (D,, &) the particles in {g,, - - -, g} and {—qpns1, - -+, — .}
are of the same type and the particles in {g,,+s, -+, ¢,} and {—gq;, - - -,
—q,} are of the same type, but distinct from the former. The particles
of the same type interact pairwise with the repulsive potential ¢?sh-%(x)
except the pairs lying in the symmetric position arround the origin. While
the particles of the different type interact pairwise with the attractive
potential —cich~%(x) except the pairs lying in the symmetric position
arround the origin. As for the particles in the symmetric position with
respect to the origin, the following two cases occur; the first case, which
corresponds to either (C,, ¢,) or (C,, ¢,), is that they interact each other
with the repulsive potential 2-'c2sh~%(x) if they are of the same type and
with the attractive potential —2-'cich%(x) if they are of distinct type.
The second case, which corresponds to (D, ¢,) and (D,, ¢},) is that they
do not interact.

(III) The Hamiltonian systems attached to the root systems with
signature (B,, ¢,) and (BC,, ¢,,).

The phase spaces of these systems are identical and given by the same
one as in (0.3). The Hamiltonians are given respectively by

Hepn o(@s )= 3% P+ 23 0 (sh"(¢,) +sh~*(d,0))
(0.10) 2 5=

— S(eh g, +eh @)+ (3 shHa)— 3 ch(a))

=1

and
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(0.11) H 56,209 P)=Hz,,0,5(¢: P)+¢3/2 ]?':1 sh™*(2q,).

These systems are interpreted as the Hamiltonian systems of 2n+1 parti-
cles with unit mass on a line satisfying the condition that one particle is
fixed at the origin and the rest 2n particles are constrained just as in (0.9).
They are consisting of two types of particles; the particles in {g;, - - -, qun,
—q, - -+, —q,} and the one at the origin are of the same type and the

particles in {Gns1> ** s Gus —Gm+1> -+ *» —¢,p are of the same type, but
distinct from the former. The law of interaction is essentially the same
as in (ID).

We note that since the potential acting between the particles of
distinct type is attractive and non-singular those particles can go through
each other and may form bounded states. The more detailed behavior
of the particles including the scattering process will appear in [12]. We
further remark that if m=n, then the above systems have only one type
of particles and the terms of attractive potential in the Hamiltonians
disappear. Such systems were already considered in [18] and [20]. There-
fore our Hamiltonian systems include them as special cases. One reason
why we call the above systems the systems attached to root systems with
signature is that the linear forms g—gq;,, 4—4;, g—¢; and g+—2g; on R*
constitute root systems in R™ and the way of grouping the particles cor-
responds to a signature of roots (cf. § 1). Another reasons will be ex-
plained below.

The main tool of our study of the above systems is the reduction
procedure of Hamiltonian systems with symmetry developed in [1], [15]
and [17]. Here we employ the reverse of the reduction procedure, which
was used in [15] for the Calogero system of n particles on a line moving
under the inverse square potential. In fact, we shall show that the above
systems are realized as the reduced Hamiltonian systems, which are
obtained by reducing the Hamiltonian systems of the geodesic flow of
various affine symmetric spaces under the action of certain isometry
groups. Those affine symmetric spaces are constructed from the original
Hamiltonian systems by using the corresponding root systems with sig-
nature (see § 4, § 5, and § 6). The realization of our systems as the
reduced Hamiltonian systems is established in Theorems 4.3, 5.3 and 6.3.
The fact that the Hamiltonian system of the geodesic flow of an affine
symmetric space has sufficiently many involutive integrals of motion (cf.
Proposition 3.5 and Corollary 3.6) implies the complete integrability of
our systems (cf. Corollaries 4.4, 5.4 and 6.4). As a by-product of the
above mentioned realization, the quadrature of the motion of our systems
is reduced to linear algebra and moreover the Lax pairs of our systems
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are naturally obtained and the Hamiltonian flow of our systems are the
isospectral ones. (cf. Corollaries 4.5, 5.5 and 6.5). Summarizing, we state
the main results of this paper.

Theorem. The Hamiltonian systems attached to the root systems with
signature (A, _1,en), (Cn, en)s (Cas €0)s (D, en) and (D, &) are completely
integrable. The Hamiltonian systems attached to the root systems with
signature (B,, ¢,,) and (BC,, ¢,,) are completely integrable under the condition

(co/e)’=Q2ec;—cy)ey.

These systems have functionally independent, involutive integrals of motion,
which are rational functions of py, - - -, P, €Xp (q), - * -5 €xp (¢,)-

The study of certain non-linear partial differential equations such as
the Korteweg-de Vries equation and the discovery of “soliton” solutions
have revived interest in the study of integrable Hamiltonian systems, and
the various integrable systems have been found. In particular among
one-dimensional many-body problems characterized by the Hamiltonian

H=L 35+ 3 Vaw),
2 = 1=j<ksn

J. Moser showed that when V(x)=x"? and sin~*(x), the systems are com-
pletely integrable, which are now called Calogero and Sutherland systems
after the discoverers. After that, it was proved that when ¥V (x)=sinh~%(x)
and p(x) (Weierstrass p-function), the corresponding systems are also
completely integrable (cf. [11] and [21]). Furthermore M. Olshanetsky
and A. Perelomov ([20]) extended the systems of Calogero type described
above in connection with root systems of classical type, and showed their
complete integrability. The systems of Calogero type having two types
of particles were suggested in [9] and studied in [22]. That corresponds
to the system attached to the root system with signature (4,_;, ¢,,) in our
terminology.

We need one more notation. We denote by I, (resp. I_) the set of
indices given by {(j, k); 1< j#=k<m, m< j #=k<n} (resp. {(j, k); 1< j <m,
m<k=nor1=Zk<m, m<j<n}).

§ 1. Hamiltonian dynamical systems attached to the root systems with
signature

Let R be a root system. A singnature of R is a mapping ¢ of R into
{1, —1} satisfying
(i) e(—a)=e(a) fora e R and
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(i) e(a+p)=e(w)e(P) if @, $and a+pe R.

The pair (R, ¢) is called a root system with signature. For such (R, ¢), we
set R,.={w e R; e(@)=1}. Then it is a subroot system of R. Let R* be
a system of positive roots of R. We put R =R, R*, which is a positive
system of R,. We say that two signatures ¢ and ¢’ are equivalent if there
exists an element s of the Weyl group W of R such that ¢/(a) =¢(sa) for
all e R. Now we list up the typical examples of the root systems with
signature in R", which will appear in this paper. Let {e,, - - -, e,} be the
canonical basis of R®. The root system (BC,) in R™ is given by the
following set;

(BC)={£(e,2e.); 1<j<k<n}U{e, +2e,; 1<) <n).
We remark that this root system contains the root systems
)= {(e,—e); 1) <k=n),
B ={x(e;xe); 1<j<k=<n}U{xe; 1<j<n},
(Coy={x(e;%e); 1= j<k=n}U{+2e,; 1<j<n} and
(D) ={x(e;£e);1=j<k=n}.
For each integer m (1 <m=n), we can define the signature ¢,, of (BC,) by

1 (IZj<k<mor mj<k<n),

Em(ej_ek):Em(ej+ek)={_l (A<jsm, m<k<n)

and

=] 1 USIED oot azizn
enle)= =(2e,)= <j<n):
Tl <z, Y ’
The restriction of ¢,, to each one of the subroot systems (4,_,), (B,), (C,)
and (D,) is again a signature, so we denote it by the same letter. We note
that ¢, means the trivial signature. Besides the above signatures, it is
known (cf. [23]) that the root systems (C,) and (D,) have the following
signatures &), (1<m=<n), which are inequivalent to ¢, ; we set

1 (ALj<kEmor m<j<k<n),

sm(ej—ek):{;l (1Zj<m, m<k<n),

—1 (Zj<kLm or m<j<kLn),

Em(€j+ek):{ 1 (léj—g_m, m<k§n)



Integrable Hamiltonian Systems 297

and in addition for (C,) we set
en(2e)=—1 (1=j=n).

One can easily check that any signature of the above root systems is
equivalent to either e, or ¢, for some m (1<m=<n) (cf. [23]).

Now we introduce the notion of the Hamiltonian dynamical system
attached to the root system with signature. Let (R, <) be a root system
with signature in R*. We define the phase space by

(‘Q(R,s) X R", Zi dqi/\dpi),
where the (unlabelled) configuration space 2,z ., is an open subset of R"
given by
Qro=1{qe R*;{a,q)+#0 for all « € R}.

Here, { , > means the canonical inner product of R*. We choose
nonzero real constants ¢, (« € R) so that

(1.1 cl,=c’ forallee Rand se W.

We define the Hamiltonian H ., on £ o X R” by

1
(1.2 Hao@p=2Lp. >+ 3 cishXaq)— > cich™a g).

RF\R

We remark that the Hamiltonian H g ., can be written as
1 1

A3)  Hgo=—LAp,p>++(2 cish™™a,q)— >, cich¥a,q))
2 2 <€R. «€R\R:

and hence it does not depend on the choice of a positive system of roots.
We call this Hamiltonian system the Hamiltonian system attached to the
root system with signature (R, ¢).

Lemma 1.1. Let ¢ and ¢’ be equivalent signatures of the root system
R. Then the Hamiltonian systems attached to (R, ) and (R, ¢) are iso-
morphic.

Proof. Since ¢ and ¢ are equivalent, there exists s € W such that
&(a)=¢(sa) for all @ € R, and hence a—>sa gives rise to a bijective map-
ping of R.. onto R,. If we consider the map of £ ., X R" into R"X R"
given by (g, p)—>(sq, sp), then we obtain immediately that it defines a
symplectic diffecomorphism of 2, ., X R" onto 2z, X R*. Furthermore
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we can deduce from (1.1) and (1.3) that H; .,(sq, sp)=H z,.,(g, p) for all
(g.p) e ‘Q(R,e') X R".

In the remainder of the paper, we restrict ourselves to considering
the above Hamiltonian system on a connected component D ., X R* of
2. o X R*, where D, ., is given by

D o={qe R*;{a,qgy>0for all @ e R]}.

This amount to considering a labelled configuration space. We notice
that all of the Hamiltonian systems given in the introduction are the
special cases of the Hamiltonian systems attached to the root systems with
signature described above. We shall afford one example for a convenience
of the reader. Take (BC,, ¢,). Choose

leste; 1=j<k=ntU{e; 2¢;; 1< j<n}
for its positive system. Then from the definition of ¢,, we can deduce

(BC:={e;xe; 1< j<k=m,m<j<kZn}
Ufe;; ISj<m}U{2e;; 1< <.

Moreover it can be easily seen that c; ., are all equal, so we can put
them ¢j. Similarly ¢}, (resp. c3,,) are all equal, so that we can put them
c; (resp. ¢3/2). Then we can conclude that H,, ., can be written as
(0.11).

§ 2. The structure of affine symmetric spaces

Let G be a connected reductive linear Lie group with Lie algebra g.
We fix a nondegenerate invariant symmetric bilinear form (X, Y > (X, Y e g)
on g, and we identify g with its dual space g* under ( , >. Leto be an
involutive automorphism of G, and let § be a Cartan involution of G
commuting with ¢. Let H be a subgroup of G which lies between the
fixed point group G, and its identity component G;. The homogeneous
space G/H is called an affine symmetric space. Put K=G,. Then Kisa
maximal compact subgroup of G. We denote the involution of g corres-
ponding to ¢ (resp. 8) of G by the same letter ¢ (resp. §). Let g=5-+q
(resp. g=I-+p) be the decomposition of g into +1 and —1 eigenspaces
for ¢ (resp. 8). The restriction of { , > to each one of §), q, f and p is
nondegenerate, and hence we can identify the dual space of each one of
b, g, f and p with itself. We note that the above decompositions of g are
the orthogonal ones with respect to { , ).

Now we recall the several facts about the certain class of affine sym-
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metric spaces (cf. [23]). Those affine symmetric spaces are constructed
by using the signatures of roots, which we shall consider later in the sec-
tions 4, 5 and 6. Let G be as above. We first take a Cartan involution
0 of G, and denote the corresponding Cartan decomposition of g by
g={-+p. Leta be a maximal abelian subspace of . We denote the set
of non-zero roots of g relative to ¢ by R. Then g is decomposed into the
direct sum g=¢"+ > |, g* where ¢° is the centralizer of a in g and each
g* is the root space corresponding to the root « € R. Let ¢ be a signature
of R. Then we can construct an involution ¢ on g commuting with 4 in
the following way; e =¢e(a)fd on g* (¢ € R) and =6 on ¢°. Put

h={Xeg;o(X)=X} and q={Xeg;o(X)=—X}.

Let H° be the analytic subgroup of G with Lie algebra b, and let M be
the centralizer of a in K. Define H=H°M. Then it is a closed subgroup
of G and the homogeneous space G/H is an affine symmetric space. Set

a,={Xea; o(X)>0 for every @ € R}

and denote its closure by d@,. Put 4, =exp(a.) and 4, =exp (d@,). Then
it is known (cf. [23]) that G= KA, H and moreover the map of K/M X 4,
into G/H defined by (kM, X)—kexp (X)H is an analytic diffeomorphism
onto an open dense submanifold of G/H.

§ 3. Hamiltonian systems on the cotangent bundle over G/H

Let G/H be an affine symmetric space where G is a connected real
reductive linear Lie group. We consider certain Hamiltonian dynamical
system on the cotangent bundle over G/H. The notations are the same

as in the previous sections.
We define the action of the product group G X H on G X g by

G.D (8 )+ (x, X)=(gxh™", Ad (h)X)

where (g, h) e GX H and (x, X) e GXq. We denote by M the orbit space
for the H-action in G'Xq, and denote the canonical projection of GXq
onto M by z. Since the H-action is proper and free, it follows that M is
a smooth manifold and r is a submersion. The G-action on G X g induces
the G-action on M by

3.2) gr(x, X)=n(gx, X) (ge G, nlx,X)e M).

If we define a map & of M onto G/H by @(x(x, X))=xH, then it is obvious
that M is a G-homogeneous vector bundle over G/H with projection @.
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Since the dual space q* of q is canonically isomorphic to q as H-modules,
M can be regarded as the cotangent bundle over G/H. For x e G and
X e g, we write X,=(dL,).(X), where L, is the left translation by x € G on
G. Then we know that the tangent space 7,G at x is given by TI,G=
{X,; X eg}. We note that the tangent space T,,,(G X q) is isomorphic
to T,GXq. The differential dr(, 5, of # at (x, X) e GXq is a surjective
linear map of T,z (G X q) onto T, M, whose kernel is

(3'3) Ker dﬂ:(z,X):{(Uz’ _[Us X]) € Tszq; Ue 5}‘

Let © be the canonical 1-form and o= —d6 the symplectic form on
M. Then it can be easily seen that

(34) @ﬂx,X)(d”(r,X)(Zz’ Y)):<X> Z>
for Zeg, Yeqand

wz(z,X)(dﬂ(x,X)(Zm Y): dn(z,X)(Z;’ Y/))
(3.5) =Y, ZY—-(Y,Z"+(X,[Z,Z'])
=Y, ZY—{Z, X]+ Y, Z">

forZ,Z’egand Y, Y’ e q. We observe from (3.4) and (3.5) that & and
o are G-invarjant and hence the G-action on M is symplectic.

Proposition 3.1. (i) The cotangent bundle (M, w) over G/H is a
Hamiltonian G-space whose moment map ¥ of M into g is given by

(3.6) T(a(x, X)=Ad®DX  (a(x, X) € M).

(i) If we restrict the G-action to that of the maximal compact sub-
group K, then (M, ) is a Hamiltonian K-space and the corresponding
moment map @ of M into t is given by

(€N O(z(x, X))= % (Ad (X)X +6(Ad (x)X)).

Proof. (i) For W e g, let W¥ be the infinitesimal generator of the
action corresponding to W. Then by (3.2) we have
(3.3 W ee, 1y =474, (Ad(x" )W), 0).

On the other hand we define a smooth function f;, on M for each We g
by

(3.9) Swla(x, X)) ={Ad(x)X, W).
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Then the differential of £}, is given by

(de)z(x,X)(dﬂ(z,X)(Z .;ca Y/)) = <Ad(X)([Z,, X] + Y,)v W>

(3.10)
=Y, Ad(x-YW)>—[Ad (W, X1, Z'>

for Z’eg, Y e q. Let&,, be the Hamiltonian vector field corresponding
to fip. Then by definition

Wz (z, X)({:fwz dﬂ'(z, X)(Zglp: Y,)) = (de)n (x, X)(dﬂ'(a:, X)(Z;s Y/))

for all Z'eg and Y’ eq. If we write (§;,)cce, 50 =07, 0(Zy Y) with
Z e g, Y € q, then by (3.5) and (3.10) we have

(Y, Zy—(1Z, X1+ Y, Z'y=( ¥’ Ad(x-)W Y —([Ad(x )W, X1, Z7)

forall Z’ e gand Y’ e g. This implies that there exists U € § such that
Z=Ad(x"YW+U and Y=[Ad(x" )W, X]—[Z, X]= —[U, X]. In view
of (3.3), we obtain

(311) (wa)z(z,X):dﬂ(:c,X)((Ad(x_l)W)m 0)'

Comparing this with (3.8), we find §,, =W forall Weg. Let W and
W’ be elements of g. Then the Poisson bracket {fy, fi} is, by definition,
equal to w(¢;,, &;,). Applying (3.11) to (3.5), we can easily deduce that
{fw> fw}=Jwwn This implies that the map W f, gives a Lie algebra
homomorphism of g into C*(M). The G-equivariance of the above map
is clear from the definition. Consequently, (M, »)is a Hamiltonian G-
space. If we recall the moment map for this action is given by the relation

(T (a(x, X)), W= fy(n(x, X)) forall Weg,

we have (3.6) immediately.
(i) For W ef, we set

FilwCx, X)) = <_;_ (Ad (D)X +0(Ad (D) X)), W>.

Since g=f+p and p is the orthogonal complement of {, it follows that
Swlm(x, X))=<(Ad(x)X, W)>. Hence the assertion of (ii) follows from
that of (i).

Now we recall briefly the reduction procedure for Hamiltonian sys-
tems with symmetry (cf. [1], [17]) in our setting. Let C e f and denote by
K, the subgroup of K such that Ad(k)C=C. Let @-(C) be the inverse
image of C in our Hamiltonian K-space (M, w) for the moment map @.
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Since @ is K-equivariant, @~'(C) is invariant under the action of K,. We
denote by M(C) the set of all K,-orbits in @-'(C), and denote by =z, the
canonical projection of @-(C) onto M(C).

Theorem 3.2. (Marsden:Weinstein [17]). Assume that

(3.12) @-YC) is a submanifold of M and

(3.13) M(C) is a smooth manifold and r is a submersion.

Then M(C) has the unique symplectic structure w, satisfying rfw,=i%w
where i, is the natural inclusion of @-'(C) into M. The resulting symplectic
manifold (M(C), w,) is called a reduced phase space.

We consider a Hamiltonian system on the Hamiltonian K-space
(M, v) with a K-invariant Hamiltonian f. Let ¢/ be the Hamiltonian flow
on M corresponding to f. Then it is known (cf. [1]) that O(¢](=(x, X)))
=@(z(x, X)) and hence the flow ¢/ leaves @-'(C) invariant. Since f is
K-invariant, ¢{ commutes with the K-action. Therefore it induces a flow
¥, on M(C) by

(3.14) W0 mo=rgo .

On the other hand it is evident that for each fin the space C~(M)* of all
K-invariant smooth functions on M there exists a unique f° e C=(M(C))
such that

(3.15) fComg=foli,.

Theorem 3.3 (Marsden-Weinstein [17]). Keeping the notations de-
scribed above, we obtain

(i) the flow +, is the Hamiltonian flow on M(C) corresponding to
the Hamiltonian f°, that is, \r,= ¢{°.

(i) If f,ge C>(M)X, then the Poisson bracket {f, g} is again in
C>(M)X and moreover it holds that {f, g}°={f°, g°} where the Poisson
bracket in the right side is the one on M(C).

Hence the map fw f° is a Lie algebra homomorphism of C>(M)* into
C>(M(C)).

For our Hamiltonian K-space (M, w) we can say more. We define
Po(X)eqforpe C=(q) and X e q by

(3.16) (Y,V¢(X)>=dng(Y):_5t_¢(X+tY)H for Y e q.

Let C=(q)” be the space of smooth functions on q invariant under the
adjoint action of H.
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Lemma 34. For oec C™(q)* and X e q,
(3.17) [X, Vo(X)]=0.

Proof. Since ¢ e C=(q)”, it follows that @(Ad(exp(tU))X)=¢(X)
forte R, U ehand X e q. If we notice that Ad(exp((U)X =X+¢[U, X]
4+ O(¢%) for small ¢, we have, by differentiation, {[U, X], Fp(X)>=0 for
all Uel. Since q is the orthogonal complement of §, we conclude
[X, VPo(X)] e q. But since [q, q]ch and X, V(X)) € q, we have [X, Fp(X)]
e qNH=(0).

Let C=(M)® be the space of smooth functions on M invariant under
the action of G. Of course, C*(M)¢*C C>(M)X. For f e C(M)%, we
set

(3.18) fX)=f@le, X)) (X eq)

’i‘hen it is clear that £ ¢ C~(q)” and the map /s f yields a linear isomor-
phism of C=(M)¢ onto C=(g)”.

Proposition 3.5. (i) If f e C(M)% then the Hamiltonian vector
field &, of fis given by

(3.19) (st =07, (F F(X))s, 0)-

(iiy For f, fy€ C*(M)®, the Poisson bracket {f,, f,} vanishes and
hence C=(M)¢ is a commutative Lie subalgebra of C=(M).

Proof. (i) From the G-invariance of f, we find that
df;z(z,X)(dﬂ(w,X)(Z.;) Y,)):<Y/5 Vf_(X)>

forall Z’ e g and Y’ e q. If we write (£))ro, 0y =47, 0(Z,, Y) With Z e g
and Y e q, then from the definition of &, and (3.5) it holds that

Y, Zy—Z, X1+ Y, Z')=Y", T f(X)

forall Z’ e gand Y’ e q. This implies that there exists U e §j such that
Z=Vf(X)+U and Y=[X, Z]. But since f e C=(q)” it follows from
Lemma 3.4 that [X, Ff(X)]=0 and hence Y= —[U, X]. Therefore by
using (3.3) we have

(Sf)ft(.r,X) Zdﬂ'(x,x)((VJT(X)‘l‘ U),, —1U, X)) =d”<z,x>((7f(X))z’ 0).

(i) Let f;, f; € C*(M)® and recall that {/}, f;}}=w(&,,, &;,). Applying
(3.19) to the right side, we can easily obtain
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{5 £o}@(x, XN =X, WX, VLD =X, V(XL VX))
which is equal to zero from Lemma 3.4.

Combining this proposition with Theorem 3.3, we obtain the follow-
ing corollary.

Corollary 3.6. Let (M, w) be the cotangent bundle over an affine
symmetric space G|H, and let (M(C), w,) be a reduced phase space. Then
the subspace of C=(M(C)) consisting of f€ with f e C(M)® becomes a
commutative Lie subalgebra of C=(M(C)).

For the remainder of this paper we consider the Hamiltonian system
on (M, @) with the G-invariant Hamiltonian F which is given by

(320)  F(a(x, X)):F(X):%(X, x> (x(x, X) e M).

Since FF(X)=X and hence (1), n=d7 (X, 0), the Hamiltonian
flow ¢7 is given by

(3.21) o (n(x, X))==n(x exp (1X), X).

Our aim in the remainder sections is to show that for suitable choice of
affine symmetric spaces and C e f the Hamiltonian systems attached to
the root systems with signature are realized as reduced Hamiltonian sys-
tems (M(C), wy, FC). The above corollary plays an essential role in
proving complete integrability of such systems.

§4. The Hamiltonian system attached to the root system with signature
(An—b sm)

We study here the Hamiltonian system in the phase space D,,_, ..
X R™ with the Hamiltonian H,, , .., attached to the root system with
signature (4,_,, ¢,). We shall show that it can be realized as a reduced
Hamiltonian system mentioned in the previous section and prove its com-
plete integrability. We keep the notations in the preceding sections.

Let G=GL(n, C) and hence g=M,(C). We give a nondegenerate
invariant symmetric bilinear form on g by

4.1) (X, Y)=Re(tr(XY)) X,Y eg).

Fix an integer m such that | <m=<n. Define J, ¢ G by

4.2 J,= In 0
() m_[o —ln——m]
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where 1,, (resp. 1, ,,) is the identity matrix of size m (resp. n—m). In the
following we denote the hermitian conjugate of a complex matrix X by X*.
Define the involutive automorphisms ¢ and  on G by

(4.3) o(&)=71(8%) 0, 0(@)=(g")"" (ge0).

Put H=G, and K=G,. Then H=U(m, n—m) and K= U(#n) and hence
G/H is diffeomorphic to the manifold of hermitian matrices of signature
(m,n—m). The involution on g induced by ¢ and @ are given by

4.4 oX)=—J,X*],, 0X)=—X* (Xeg).
Therefore we have
[={Xeg; X*=—X}, p={Xeg; X*=X]},
X
f):{[ng X:];Xik:_XIEMm(C)a X?EMm,n—m(C)a
Xi=—X,¢ M, ,(C)},

X, X
q:{[——szik X:];X{k:XleMm(C)’ XZEMm,n—m(C)s

Xf=X,e Mn_m(C)}.

Put a={D(q)=diag(g,, -- -, 4,); 9=(qys, - - -, ¢,) € R*}. Then ¢ is a max-
imal abelian subalgebra in qp, and moreover it is maximal abelian both
in g and p. The root system R of g with respect to a is of type 4,_, and
the involution ¢ is nothing but the one canonically induced by the signature
e, of R. 'We can take as a Weyl chamber a, the following one;

a,={D(g)ea;qe D}
Here we denote the configuration space D ,,_, .., simply by
D:{q:(qh B qn) € Rna q1> M >qm9 qm+1> e >qn}

Let Z, be the center of K. Then Z,={ul,;ue U(1)}. If weput {'=[f, {],
then it holds that =3z, +I' where 3, is the Lie algebra of Z. Set

T:{diag(ula ) un)a U; € U(l) (léj ..S_n)}

Then it is a maximal torus of K and its Lie algebra is +/ — 1a. We remark
that T is contained in H. Define a column vector e e C" by

e="*1,---,1).
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With a nonzero real constant ¢, we define a matrix C by
4.5) C=+—1c(ee*—1,)

Then it is clear that C ¢ ¥!. The following elementary observation is
useful.

Lemma 4.1. (cf. [15]). Set
K,={ke K; Ad(k)C=C} and K,={keK;ke=e}.

Then K, is a closed subgroup of K, and it holds that K,=K,Z, and
K.NT={1,}.

Proof. ForkeK, put ke=v="v,, ---,v,) e C". Then Ad(k)C=
kCk~'=kCk*=+—1c(vv*—1,). Thus we conclude that k ¢ K, if and
only if v,0,=1 for all i, j, which is equivalent to v,=v for some v e U(1)
(1<i<n). Moreover itis clear that k € K, if and only if v,=1 (1<i <n).
Consequently K,CK; and K,=K,Z,. The assertion K,NT={1,} is
also obvious.

Let M be the cotangent bundle over G/H. Then we have already
seen in Proposition 3.1 that it is a Hamiltonian K-space and the moment
map @ is given by (3.7). In the case at hand since 8(g)=(g*)~' and
6(X)=—J,XJ, for X e q, we can write

(4.6) B((x, X)):%(Ad(x)X—Ad (%)) XT,).

We note that the center Z of K acts trivially on M and hence @ is in fact
a mapping of M into f'. For g € D, define Z(q)=(Z(q);,) by Z(gq);;=0
(1=j=n)and

V—Tesh (g, (Ui k) e L),
V—Tcech (g, (k) el).

Furthermore for (g, p) € DX R", we put

(4.3) Z(q, p)=D(p)+Z(q).

Then we can check Z(q), Z(q, p) € q.

“.n Z( D ={

Proposition 4.2. (i) Let C e 1! given by (4.5). For each n(x, X) e
@-Y(C), there exist k € K, and (q, p) € D X R" uniquely such that

4.9) kr(x, X)=n(exp (D(q)), Z(q; p))-



Integrable Hamiltonian Systems 307

(i) @-Y(C) is a submanifold of M, which is diffeomorphic to K, X D
X R™.

Proof. (i) Let a(x,X)e @(C). Since G=KA,H (cf. [23]), we
can write x=k 'ah with ke K, ae A, and he H. 1If we put Y=Ad(h)X,
then Y e q and kz(x, X)=n=(a, Y). Since @ is K-equivariant it follows
that

@4.10)  O(x(a, Y))=D(kn(x, X))=Ad(K)C =+/— 1 c(vv*—1,)

where we put ke=v="uv,, ---,v,). From (4.6) and the fact thata is a
diagonal matrix, we can deduce that the diagonal entries of @(z(a, Y))
are all zero. Hence by (4.10) we have v, e U(1) (1<i<n). Put t=
diag(v7Y, ---,v;Y). Then teT. Since tv=e, we have tke K,. Put
Z=Ad(?)Y. Then Z e q because TC H. Notice that fa=at. Then we
have thkn(x, X)=nr(ta, Y)=n(a, Z). On the other hand since tk ¢ K,C K,
we obtain that @(n(a, Z))=C. Consequently the above observation
shows that for each n(x, X) € @ (C) there exist k € K,, aec 4, and Z e q
such that kzx(x, X)=n(a, Z) € ®-'(C). Now we write a=exp (D(q)) with
D(g) e @, and Z=(Z,,). Then by (4.6) we have

—;-(Ad(exp(D(q»Z—Ad(exp(—D(q))JmZJm)zc.

Comparing each entry of the matrices in both sides, we have

Sh(qjk)ij: vV — lc ((J’ k) € I+)a Ch(qjk)zjkz vV — 1 c ((], k) € I—)

Hence we conclude that ¢,,==0 for (j, k) € I, which implies ¢ € D and
consequently D(¢) € a,. Furthermore we have Z,, =+ — [ csh~!(g;,) for
(,k) eI, and Z,,=+ —1cch'(g;;) for (j,k)eI.. If we put p,=Z,,
(1<j<n) then p; € R because Z ¢ q and from (4.7) and (4.8) we have
Z=Z(q,p). The uniqueness of k € K, and (g, p) € DX R" is proved as
follows. Assume that there exist k,, k, € K, and (g, p,), (¢., p,) € DX R"
such that

411 z(x, X)=k(exp (D(91), Z(q: Py)=kun(exp (D(q)), Z(qy P2))-

Then k, exp (D(q,))H=k,exp (D(¢.))H in G/H. Notice that the centralizer
of a in K is equal to T and it is known (cf. [23]) that the map of K/T X a.,
into G/H defined by (kT, D(q))—k exp (D(q))H is an injective diffeomor-
phism. Then we conclude ¢,=g¢, and k;'k, € TN K,. But by Lemma 4.1
we have k;=k,. Hence it follows from (4.11) that z(exp (D(qy), Z(q:, Py)
=n(exp (D(q,)), Z(g;, p,)), which implies that there exists # € H such that
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exp (D(g)h~'=exp (D(gy) and Z(qy, p)=Ad(W)Z(g p). Thus h=1,
and Z(q,, p.)=2Z(q:, p,). This clearly yields p,=p,.

(i) For any zn(x, X) e @-'(C), we shall show that the differential
A0, o, 37" Tria, xyM—1 is surjective. Since n(x, X)=kr(exp(D(q)), Z(q, P)),
it suffices to show the surjectivity of d@,,, , where we put for simplicity
a=exp (D(q)) and Z=Z(q, p). The direct computation shows that

d@n(a,z)(d”(a,z)(Wa: Y))

4.12) 1
== Ad@(W, Z]+ Y)+Ad(@ oW, Z]+7Y))

where W e g and Y e q. Define the map ¢ of g into f' by
(4.13) $N) = (Ad@(¥)+Ad@ ().

Note that q=qNf4+qNp and hence each Y & q can be written as Y=
Y+ Y, with Y, e qNfand Y, e qNp. Then we can write

(4.14) ¢(Y)=—21—(Ad(a>+Ad(a-‘))(Y,>+§<Ad<a>—Ad(a-1))(Yp).

From this it follows that ¢ induces an isomorphism of qNf onto itself
and ¢ induces a linear map of qNp into YN I. Since ae 4,, we can
check directly that ¢(q\ p) coincides with the orthogonal complement of
¥ —Tain hN¥. Therefore the image of ¢ is the orthogonal complement
of /—TaNfin f. Now consider the map +» of g into ' defined by

4.15) POV = _%(Ad(a)JrAd(a—l) 0 8) 0 ad(Z)().

We note that
4.16) AP, (4, 2)(d7 0, 5(Wa» Y)) = (W) +$(Y).

Hence we have only to show that +(g) contains ¥ —1aN{. From (4.15)
it suffices to see that the image of ad(Z) contains 4/ —1aN¥. From the
explicit form of Z=Z(q, p) given in (4.8) it can be easily checked by
direct matrix computations. Consequently @-'(C) is a submanifold of M.
Furthermore we can conclude from (i) that @-*(C) is diffeomorphic to
K, XDXR".

Theorem 4.3. Let M(C) be the set of all Kg-orbits in ®-'(C), and
let wo be the canonical projection of @~'(C) onto M(C).
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(i) Define a mapping ¢ of DX R"™ into M(C) by

(4.17) o(¢, p)=m° n(exp(D(q)), Z(q, p))-

Then ¢ is bijective and hence M(C) has a smooth manifold structure under
which ¢ is a diffeomorphism and moreover n; is a submersion. Consequently
M (C) is a reduced phase space with the symplectic structure o, in the sense
of Section 3.

(i) It holds that ¢*w,=32 7., dq,/\dp, and thus ¢ is a symplectic
diffeomorphism.

(iii) Define a G-invariant Hamiltonian F on M by

(4.18) F(r(x, X ))=%<X, X5

and denote the corresponding reduced Hamiltonian by F°. Then we have

(4.19) Fp(g: ) =H sy —s,e(2: D)-

Hence the Hamiltonian system (D 4,_, .. X R", > dg,/\dp,, He,, . cy) IS
isomorphic to the reduced Hamiltonian system (M(C), w,, F°).

Proof. (i) It is clear from Proposition 4.2 that ¢ is a bijection.
So one can define a C=-structure on M(C) under which ¢ is a diffeomor-
phism. Now put

(4.20) &g, p)=(exp(D(9)); Z(¢,p))  ((3,p) € DXR").

Then ¢ is a smooth map of DX R" into G X g, which satisfies
(4'21) ic°7r°¢=7f°¢ and 77-'0077,'0{[):90.

Since (p is a diffeomorphism, m; is clearly a submersion. Hence the
assumptions (3.12) and (3.13) hold. Therefore M(C) is a reduced phase
space with the symplectic structure w,.

(i) Notice that the assertion p*w,=> dg,/\dp, is equivalent to the
assertion

(4.22) (P*0d) (& ), €, 7N =C& 7> =&

for all (g,p) e DXR" and (&,79), (&, 7)€ Ty nDXR*"=R"XR". Here
(&, 7> means the canonical inner product of R*. Since p=7z;07 @ and
nfwg=Iifw, it follows that p*w,= (7 - $)*(ifw). Moreover since 7 o p=
igomo @, we conclude p*w,=(r o @)*w. Hence we have
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(4.23)  (9*0)w, (& 15 (€, )N =0c g0, ([dn(d@(E, 7)), du(dB(E’, 1))
On the other hand we can easily obtain that

(4.24) (d9) 0, &5 D) =(DBexp(pian>» D) +[D(E), V()]

where V(g)=(V(q);,) is given by V(q);;=0 (1<j<n) and

—+ —T1cch(g;)sh™q,) (G, k)el),
—+ —lesh(g;)ch*(q;) ((j,k)el).

We remark V(g) € . Applying (4.24) to (4.23) and using (3.5), we obtain

(0*00) @, (&, ), (&, 7)= (D), D7)+ [DE), V(DI
—{D(E), D) +[D(&), V(9)]) —<Z(g p), [D(), DE])-

But since [D(§), D(§)]=0, {D(), D()y=<&, 7> and (D), D(n))=
(&, >, we have (4.22).

(iii) Since Flomg=Foig o=nyomo@andigonod=mn o @, it follows
that FCop=F%cn oro@d=Foisomo@d=Foro@ and hence

(425) V(q>,~k={

(4.26)  Fe(g, p))=F(z(exp(D(q)), Z(g, p))= %(Z(q, D), Z(q, p))-

It is an easy task to show that ${(Z(q, p), Z(q, p)>=H4,_.,..,(9, P)-
We define G-invariant smooth functions F,, - - -, F, on M by
“4.27) F(z(x, X)) =F,(X)=k"'tr (X*).

Note that they are real valued since X € g and moreover F,=F. The
functions F, (1<k=<n) are homogeneous polynomials on q of degree k,
which are invariant under Ad(H). They are algebraically independent
homogeneous generators of S(q)?. We notice that the restrictions of F,
(1<Lk<n) to a are given by

FD(p)=k"" 3, p}
and hence if we set
o ={D(p) e a; p;#p; A<i#j<n)},

then they are functionally independent on /. Let F¢ (1<k<n) be the
reduced Hamiltonians on M(C) corresponding to F,. Set

(4.28) 14, P=Fi(e(q.p))  (¢,p) e DXR").
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Then it follows that I, =F, o = o  and hence
(4.29) 1(g, p)=Fk~"tr (Z(g, P)) =k tr (D(p)+Z(9))").

This implies that I,=H,,_, ., and I, (1=<k<n) arc rational functions
Ofpla * s Pny €XP (q1)5 + e, €Xp (qn)'

Corollary 4.4. The Hamiltonian system

(D(An_.l,sm) X R", Z dq; \dp., Hp o)

is completely integrable. More precisely the above rational functions I,
-, I, are mutually involutive integrals of motion, which are generically
Sfunctionally independent.

Proof. Since F,, - - -, F, are G-invariant, it follows from Proposition
3.5 that they are in involution and hence from Corollary 3.6 that F?, - - -,
F¢ are in involution. On the other hand, we have shown that ¢ is a
symplectic diffeomorphism, so that I, - - -, J, are in involution. Since
L=H,, ..., they are integrals of motion. Now we shall show the
generically functional independence of I, - - -, I,. Put

It is clear that I, - - -, I, are functionally independent in £. So we have
only to show that £ is a non-empty open subset of DX R". Note that
whenever D(q) tends to infinity in o’ Na, it follows that Z(g) tends to
zero from (4.7) and hence I,(q, p) tends to F,(D(p)) from (4.29). But we
know that F, (1<k=n) are functionally independent on o’. This yields
that £ is non-empty and open.

Define B(q)=(B(g);;) for g € D by

-—«/-——l—c Sh_z(qjk) ((]’ k) € I+),

(4.30) B(q)sz{ v —Tech™(gu) ((, k) el)

and
B(q);;= —:éj B(q),; (1<£j<n).

Then it can be easily seen that B(g) ¢ f, where [, is the Lie algebra of X,.
Define U(q)=(U(q);,) for g € D by

(431 U9 =%(Ad (exp(—D(9))B(g)+o(Ad (exp (— D(9))) B(9)))-
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Then one can easily check that U(g);;=B(q);; { <j=<n) and U(g);,=
V(g);, (1=<j#k<n), where V(q) is already given by (4.25). We remark
that

4.32) Z(g)= % (Ad (exp(—D(9)))B(9) —o(Ad (exp (— D(¢))B(2)))

and hence
(4.33) Ad(exp(—D(g))B(q)=U(9)+Z(9).

Corollary 4.5. Let (q(t), p(t)=¢.q, p) be the trajectory of the
Hamiltonian flow starting from (q, p) € DX R". Define the curve k(t) in
K, by

.34 —jt—ka):k(t)B(q(t», KO0)=1,.

Then we have

exp (D(q)) exp(2tZ(q, p)) exp (D(P)n
=k(t) exp (2D(q(¢)))J mk(t}“ L

Moreover Z(q(t), p(t)) satisfies the following Lax’s isospectral deformation
equation; '

(4.35)

(436 %Z(Q(t),p(t))HU(Q(t)), Z(q(2), p)]=0.

Remark. The left side of (4.35) is a hermitian matrix of signature
(m,n—m). So the relation (4.35) implies that the left side of (4.35) can
be diagonalized by the unitary matrix k(¢) € K, and its eigenvalues are
exp (g«(1)), - + -, €xp (29, (1)), —exp(2qn+1(2)), - - -, —€Xp(29,(2)) Where g(2)
=(q«2), - - -, q.(t)) € D is the trajectory of the motion. Hence the deter-
mination of the trajectory of our Hamiltonian flow is reduced to finding
the eigenvalues of the matrix in the left side of (4.35), which depends only
on the initial value (g, p).

Proof. We have already seen in (3.21) that the flow ¢ on M is
given by ¢f(x(x, X)) =n(xexp (tX), X). Since ¢/ onxy,=mn,0 ¢! (cf. The-
orem 3.3), we have

(4.37) ¢f(we o m(x, X))=m¢ o m(x exp (X), X).

But Theorem 4.3 implies ¢’ o p=gpo¢,. Since p=ngom P, we have
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¢t omgomod(g, p)=mncomo @(q(t), p(1)),
that is,
¢t (@ o nlexp(D(q))s Z(q, p))) = o w(exp (D(g (1)), Z(q(t), p(t))).
Using (4.37), we have

7o o z(exp(D(q)) exp (¢2(g, p)), Z(g, p)) = o n(exp (D(q(1))), Z(q(2), p(t))).
This means that there exist £(¢) € K, and A(¢) € H such that

(4.38) exp (D(q)) exp (tZ(g, p)) =k(t) exp (D(q(t)h(t)~*
and
(4.39) Z(q, p)=Ad(h(1))Z(q(2), p(1)).

Put for simplicity a(f)=exp(D(q(?))), a=a(0)=-exp(D(q)), Z(t)=
Z(q(t), p(t)) and Z=2Z(0)=Z(q, p). Then by (4.38) we have aexp (2tZ)a
=k(t)a(tYe(k()~"). Using the definition of ¢, we can write

(4.40) aexp (UZ) na=k()a(t) T k().

Therefore to prove (4.35) we have only to show that k(¢) satisfies (4.34).
It is clear from (4.38) that k(0)=1,. On the other hand since (t)=
(aexp (tZ)) "k(t)a(t), it follows from (4.39) that

(4.41) Adk())Ad(a()Z(t))=Ad(aexp (tZ))Z=Ad(a)Z.

Set W(t)=Ad@()Z() and W=W(0)=Ad(a)Z. Then we have by
(4.40)

(4.42) exp QtW)a*=k(t)a(t)’o(k(r)™?)
and by (4.41)
(4.43) Ad(O)YW()=W.

Put B(t) =k~ '(¢)k(t), where k(t)=(d/dt)k(t). Then B(t) e f,. Using the
fact ¢(¢)= p(¢), we have’

—jt-k(r)a(t)*a(k(n-l)

=Ad (k(1))2D(p(1))-+ B(t)— Ad (a(t))a(B))k(1)a(t Volk(t)™)
=Ad (k(1))2D(p(1))+ B(t) — Ad (a(2)")o(B(1))) exp (2t W)a’.
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On the other hand we have

-57 exp (21 W)a? =2W exp (2 W )a* = 2Ad(k(t)) W (t) exp 1 W )d’.
Hence we conclude
W(t)=D(p(1))+ % (B(t)—Ad(a(1)*)a(B(2))).
Remembering W (r)=Ad(a(1))Z(t), we obtain
Z(t)=D(p(t))+ —21— (Ad(a(?)~)B(t)—Ad(a(?))o(B(1))).
Since Z(1)=2Z(q(1), p(t)) =D(p(t))+ Z(q(1)), it follows that
Z(g()= —;— (Ad(a()")B(t) —o(Ad (a(t) ") B(1))).

Comparing the entries of the matrices in both sides and using the [fact
B(¢) e §,, we conclude that B(¢)=B(gq(t)) where B(q) is given by (4.30).
Hence k(¢)=k(t)B(q(z)). Since k(0)=1,, k(¢) satisfies (4.34) and conse-
quently we have (4.35). Differentiating both sides in (4.43), we have

4 w(ey+1B(1), W(t)]=0.
dt

Replacing W (¢) by Ad(a(?))Z(t), we obtain
2 Z(O)+ D)+ Ad a()) )B(), Z(@)]=0.
Using (4.8) and (4.33) we can deduce (4.36).
§5. The Hamiltonian systems attached to (C,, &,.), (D,, &n), (C,, &5,) and

(D, €)-

In this section we consider the Hamiltonian systems attached to
the root systems with signature (C,, ,), (D, &n), (Ca, &) and (D, €})
simultaneously. We recall that the configuration spaces of the above
systems are given respectively by

D,=Dpew=Dwmem=19 e R"; > - - >q0>0, gy, > - - >q,>0}

and



Integrable Hamiltonian Systems 315
D-1=D<on,s;n) ZD(nn,s;,,)
={geR";0.> - >qn qnir> "+ >y ms1+9, >0}

Throughout the section we write an element X e M,,(C) as a block form

Xll Xl2
X= where X, X5, Xy and X, € M,(C).
XZI X22

Let G be the closed subgroup of GL(2n, C) defined by
G={g € GL(2n, C); g0g* =0}

where Q is the matrix given by

Thus G is isomorphic to U(n, n). We define a nondegenerate invariant
symmetric bilinear form on the Lie algebra g of G by

(.1) (X, Y):-;— tr(XY) (X, Yeg)

Define the matrix J by

S O I, O
5.2) J= where J,=
0 oJ, 0 -1,

and § is either 1 or —1. We define the involutive automorphisms ¢ and
0 of G by

(.3) o(g)=J(g*)"J and 6O(g)=(g%)"

Put H=G, and K=G,. Then K is a maximal compact subgroup of G
and K=GN U(2n). Hence each k € K is a unitary matrix of the form

k — [k 11 k 12] .
klZ kl]
In the case at hand we have

X, X,
E)= ;Xikz_Jle']m, X;k=_X2
oL, Xod X

and
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X 1 X 2
q= s XF=J X J,, X¥=—X,\.
oI X J, —J, XJ,

Put a={D(g)=diag(qs -+, qn, —qs -+, —qa); 4=(gs * - *» 4,) € R"}.
Then a is a maximal abelian subspace in g p, which is maximal abelian

both in g and p. The root system R of g with respect to a is of type C,.
We remark that it contains the root system of type D, as a subroot system.
The involution ¢ is equal to the one corresponding either to the signature
&, if d=1 or to the signature &, if 6=—1. Put

a,={D(q) € a;q e Dy}.

Then it is a Weyl chamber cither for R, if d=1 or R,, if 6=—1.
Set

T={diag(us, * - *» Up, ty, + -+, U,); ;€ U(D) (17 <)}

Then it is a maximal torus of K, which is contained in H. The center Z,
of Kis {ul,,; ue UQ1)}.

Let ¢, ¢, be real constants such that ¢;#0. We remark that in the
following discussion the case ¢,=0 corresponds to (C,, ¢,) and (C,, &)
and the case ¢,=0 corresponds to (D, &,) and (D,, ¢,). Put

é=(e,e) e C*" where e='(1, ---, ) e C™

Define C e { by

(5 4) sz[CI(ee*—- 1") Cl(ee* - ln)+C21 n]

clee*—1,)+cl, clee*—1,)

Then C e f'=[f, I]. The proof of the following lemma is quite analogous
to Lemma 4.1. So we shall omit it.

Lemma 5.1. (i) For each k e K, there exists v e C™ such that ké
=Xv, v).
(ii) For each k € K, we have
Ad(k)sz[cl(Uv*_I") lwo®— 1“)“21"]

olov*—1)+al, cofov*—1,)
where v is given in (i).

(i) Set K;={k e K; Ad(k)C=C} and K,={k e K; ké=¢é}. Then
K,=Z K, and K, T=(1,,).
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Let M be the cotangent bundle over G/H and @ be the moment map
for the K-action given by (3.7). In the case at hand since §(X)= —JXJ

for X e g, if follows that

(5.5

D(x(x, X))=—;-(Ad ()X —Ad ((x*)-)TXJ).

To describe the structure of @-*(C) we need the following. For g € D,,

we define Z(q) € q by

Z(q) Z{q)
G0 O
where Z,(q9)=(Z\(q);.) and Z,(q)=(Z(q);) are given as follows;
0 (I=j=k=n),
5.7 Z(@)=1v—1e;sh (gy) ((, k) e L),
V—Tech (g (iR el)
and either
V=Te,sh7Qq) (1<j=k=n),
(5.8) Z{D =3V —T1e;sh™(G) (k) e L),
V—Tech (@) (iR el)
if =1 or
V—Te,ch™'(2q) (1<j=k<n),
(5.9) Z(@) =V —1eich™ (@) (iR e L),
V—Te;sh™'(@) (k) el)
if 6=—1. Furthermore we define Z(q, p) € q by
(5.10) Z(g,p=D(p)+Z(g)  ((4,p) € D;XR").

Proposition 5.2.
k € K, and (g, p) € D; X R™ such that

(i) For each n(x, X) e @ (C) there exist unique

kr(x, X)=n(exp (D(q)), Z(¢, P))-
(ii) @-C) ia a submanifold of M, which is diffeomorphic to K, X

D; X R™.

Proof. (i) Letz(x, X)e @-'(C).
x=k'ah (keK,aec d,, he H).

Since G=KA4,H, we can write
Hence kn(x, X)=n(a, Ad(A)X) and
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D(z(a, Ad(W)X))=Ad(k)C. Since a is a diagonal matrix, we can deduce
from (5.5) that the diagonal entries of @(x(a, Ad(#)X)) vanish and so do
the diagonal entries of Ad(k)C. Therefore it follows from Lemma 5.1
(i) that v, e U(1) (1= <n). Set t=diag(vy, - -+, U,y Uy, -+, U,). Then
teT and ¢tk e K,. Hence we have ¢t 'kn(x, X)=n(a, Z) where Z=
Ad(-'WX e q and @(n(a, Z))=C. But as in Proposition 4.2, the last
identity implies that a=exp(D(q)) e A, and Z is of the form Z(g, p).
As the centralizer of a in K is also equal to T in this case, so the proof of
the uniqueness of & e K, and (q, p) € D; X R" is quite similar to that of
Proposition 4.2.

(ii) The differential d®,, ,, where a=exp(D(g))e A, and Z=
Z(q, p) is given by the same formula as in (4.12). Thus the proof of the
assertion (ii) is quite analogous to that of Proposition 4.2. So we shall
omit it.

Theorem 5.3. (i) Let M(C) be the set of Kg-orbits in @~(C) and
let 7, be the canonical projection. Define a map ¢ of D; X R" into M(C)

by
(5.11) oq, p)=n. o z(exp(D(q)), Z(g, p))-

Then ¢ is bijective and hence M(C) has a smooth manifold structure under
which ¢ is a diffeomorphism and r is a submersion. Thus M(C) is a re-
duced phase space with the symplectic structure w.

(i1) It holds that p*w,=2 7, dq,/\dp, and hence ¢ is a symplectic
diffeomorphism.

(iii) Define a G-invariant Hamiltonian F on M by

Flx(x, X)):%(X, X>  (xlx, X) e M)

and denote reduced Hamiltonian on M(C) by F°¢. Then
FCop=Hg, ., If 6=1 and c,#0,
Fop=H,, ., If 6=1 and ¢,=0.
Flop=Hy,.., if 6=—1 and c,+0 and
Flop=Hg, ., if 6=—1 and c,=0.

Proof. (i) It is a direct consequence of Proposition 5.2 that ¢ is
bijective and hence M(C) has a C*-structure under which ¢ is a diffeomor-
phism. If we define a map ¢ of D;XR" into GXq by &g, p)=
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(exp(D(q)), Z(q, p)), then we can check that iperod=nc@ and myom o
=¢. Thus r, is a submersion.

(ii) We have only to show the same formula as in (4.22) for (g, p)
e D; X R* and (§, 1), (§, 7)) e R*X R™. But the proof is quite similar to
that of (ii) in Theorem 4.3. The only difference is the definition of V(g).
In the case at hand one may take ¥(g) ¢ § as

Viq) Vi) ]

(5.12) Vig) =[
where V(q)=(V(q),;,) and V(q)=(V.(q),,) are given respectively by

0 (1=j=k<n),
(5.13) V@) ;=4 —+ — Lci ch(gy,) Sh_z(qjk) ((J,k)el,),
—+ —1e¢ysh(g) ch™(gu) (U, k) e L)

and either

—+ —1¢,ch(2g,) sh™*Q2q) (1=j=k<n),
(5.14) V@)= —+ —leich(§y) sh™(@,) (k) e L),
—v—Tlesh(@u)ch™(@,) (k) el)

if =1 or

—v —1¢sh2g)ch~*Q2q) (1<j=k<n),
(5.15 V@)= —+~ —leish(§y) ch™(G,) (7, k) e L),
—+~ —1leich(§y) sh™(q) (7, k) el)

if §=—1.
(iii) As in Theorem 4.3 we can deduce

Fe(g, p))=2"Z(q, p), Z(q, p)y=4""tr(Z(q, P).
Since Z(q, p)=D(p)+ Z(q), we have
F(p(g, p))=4""tr (D(p))) +4- 11 (Z(q)") + 4~ tr (D(p)Z(q)+ Z(q)D(p))

But since the diagonal part of Z(g) is zero, the last term vanishes. It is
clear that 4-'tr (D(p)*)=2"'>,p%. Since Z(q) is given by (5.6), we have

47'tr (Z(9))=2""tr(Z(q)") — 027 tr (J ZAq))?)-

By direct matrix computations we obtain



320 M. Hashizume

2-1tr(Zy(9)) =1 sh™(q) — 20 h (g 1))
and if =1

2711 (JnZo(q))) = —c1(X 0 Sh™(§ 1) — 2w ch™*(§)) — ¢3/2 ]Zz sh*(2¢,)
and if §=—1
2710 (T Z:(@))) = — XX ch™*(§ 1) — X Sh7(§ ) — €32 ;‘7;1 ch~*(2g).

These formulas clearly yeild (iii).

We define G-invariant smooth functions F,, - - -, F,, on M by
(5.16) F(x(x, X)) =F,(X)=(2k) 'tr (X*).

Since X € q, they are real valued and moreover F;=2F. The functions F,
(1<k<n) are homogeneous polynomials on q of degree 2k, which are
invariant under Ad(H). They are algebraically independent homogeneous
generators of S(q)#. Let a’ be the open subset of a such that

a’={D(p) e a;p,+p;+0 1=i<j<n), p,#0 1=<i<n)}.

Then the restrictions of F, (1=<k=<n) to o’ are known to be functionally
independent (cf. [7]). Let F¢ (1<k<n) be the reduced Hamiltonians on
M(C) corresponding to F,. Put

(5.17) I(a, p)=Fi(e(q,p))  ((g.p) € D;XR*, 1<k=<n).

Then we have
(5.18)  I(g, p)=(2k)'tr(Z(g, p)™) = (2k) ' tr (D(p) -+ Z(9))*).

This yields that 27, is the Hamiltonian of our system and I, (1<k<n)
are rational functions of p,, - - -, p,, exp(qy), - - -, exp(q,). The proof of
the following corollary is similar to that of Corollary 4.4. So we shall
leave it to the reader.

Corollary 5.4. The Hamiltonian systems attached to the root systems
with signature (C,, ), (D, x), (C.,, &) and (D, £,) are completely inte-
grable. The above rational functions I, ---, 1, are mutually involutive
integrals of motion, which are generically functionally independent.

For g e D; we set
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1 "0=[20) sie)

where By(q)=(Bi(q);x) and By (q)=(B,(q);.) are given in the following
manner; we put

—1/_“——161 Sh—z(qjk) (@A kyel,),

(5.20) B(9);x= { W —1c, ch~%(g;) ((j,k)el).

Moreover we put

—V=T1csh™(2q) (1<j=k<n),
(521 B(@)p=3—+—T1e;sh™*(G,) (k) el),
V=Teich™(4,0) ((,k)el)

if §=1 and put

vV =Te,ch™*2g) (1<j=k<n),
(5.22) Bfg);i=y ~=Teich™(d;) (U R)el),
—~—1eish™™(d;) (k) el)

if §=—1. Finally we define
(5.23) B(q);;= —-(HZJ B(@)i;+2.Bd9):)  (I=j=n).

Then one can see that B(q) e f, where {, is the Lie algebra of K,. Define
U(q) € Y for g € D, by

(24 U= % (Ad(exp (—D(9))B(q)+a(Ad (exp (—D(9))B(9)))-

Then we have U(),,=B(q),, (1= =2n) and U(q),u=V(q);x 1<)+
k<2n), where V(gq) is given by (5.12). We remark that the following
relations hold;

(24 Z)= —;— (Ad(exp(—D(9))B(q) —a(Ad(exp(—D(9)))B(9)))

and hence
(5.26) Ad(exp (—D(9))B(9)=U(q)+Z(q).

Corollary 5.5. Let (q(¢), p(1)=¢q, p) be the trajectory of the
Hamiltonian flow starting from (q, p) € D; X R*. Then we have
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(5.27)  exp(D(q)) exp (2tZ(g, p)) exp (D(q))J = k() exp 2D(q(e))Jk(2)~*

where k(t) is a curve in K, given by
d
(5.28) S KO=kOBEW),  KO=1,,.

Moreover Z(q(t), p(t)) satisfies the following Lax’s isospectral deformation
equation;;

(5:29) -'—5[ Z(q(@®), p(t)+1U(q(1)), Z(q(2), p(1))]=0.

Proof. The proof is parallel to that of Corollary 4.5. So we shall
omit it.

§6. The Hamiltonian systems attached to (B,, ¢,,) and (BC,, &,,)

In this section we treat the Hamiltonian systems attached to the root
systems with signature (B, ¢,,) and (BC,, ¢,) simultaneously. We recall
that the configuration spaces D, ., and D g, .., are identical, which we
denote simply by D;

D:{q:(qb R} qn) S Rns Q1> c >qm>0! qm+1> T '>qn>0}'

Throughout the section we write an element X of M,,.,(C) as a block
form

Xoo Xon Xo
X= XIO Xu Xu
Xzo le Xzz

where Xy, € C, X;y, Xoy € M1,(C), Xy, Xy € M,i(C) and Xy, Xy, Xy, X €
M, (C). Let G be the closed subgroup of GL(2n-+1, C) given by

G={ge GL2n+1,C); g0g*=0}

where Q is given by

1 0 07
0=10 0 1,
0 1, O

Thus G is isomorphic to U(n+1, n). Define J by



Integrable Hamiltonian Systems 323

1 0 O : 0
J=10 J, 0|, where J,,= [0m ) ]
0o 0 J, e

We define a nondegenerate invariant symmetric bilinear form on the Lie
algebra g of G by

6.1 (X, Y>=—;- {r(XY).

We introduce involutive automorphisms ¢ and 8 of G by
c0(@)=J(g*)"J and 6(g)=(g*)"

Then the corresponding involutions on g are given by
o(X)=—JX*J and 6(X)=—X*.

We set H=G, and K=G,. Then we have

(X, —X§ —X3E

f= Xxo X Xlz ;A—fooz“‘Xoo, X{k1=_'X119 XE=“X12 s
_Xlo X Xy

0 X —X¥%

p= X X1 Xl Xi=X, X=—Xyys
| — X —X, —Xy

[ X, X%, —X5
h= X X X1
| — T, X JnXidn  JnXdn

1‘700'; -‘Xoo, Xlﬂi= _JmXIIJm> Xlﬂ;: —Xlz >

0 XEd — X
q= Xy X X, | Xi=1,XJ,, Xi=—Xy-
_Jleo _JmeJm _JlelJm

Put
a={D(q)=d1ag(0, Gy s s — 41 " > _qn)7 q=(‘11a D) qn) € Rn}
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Then a is a maximal abelian subalgebra of gMp, which is maximal
abelian both in g and p. The root system R of g with respect to a is of
type BC,, which contains the root system of type B, as a subroot system.
The involution ¢ is easily seen to be the same as the one corresponding to
the signature ¢,. Seta,={D(¢) € a;q € D}. Then itis a Weyl chamber
for R,,. Since K=GN UQ2n+1), each ke K is a unitary matrix of the
form

kOO kOI k01
(6.2) k=lko ky ksl
klo k12 kll

Puf T={diaguy, s, -+, Up, Uy, - - -, U,); u; € U (0L j<n)} and Z,=
{ul,,.;ue U(1)}. Then T is a maximal torus of K contained in H and
Z, is the center of K.

Let ¢, ¢, ¢, be real constants such that ¢, and ¢, are nonzero. In

the remainder of the section, we assume that these constants satisfy the
following relation;

6.3) (cofe ) =Q2c;—c)ecy.
Put e=(1, - - -, 1) e C™ and define & ¢ C***! by
é="c,/cy, e, e).
Furthermore we define C e M,,, (C) by
0 ce* c.e®

(6.4) C=+—1lce clee*—1,) clee*—1,)+c,1,

ce clee*—1,)+cl, clee*—1,)
Then we have C ¢ !=[f, {].

Lemma 6.1. Assume (6.3). Then we obtain that

(i) for every k e K, there exist v,e C and v e C™ such that ké=
“(vy, U, V).

(ii) For each k ¢ K, we have

el o —(eo/e)?) erwp® CUv*
Ad(K)C=+v —T1}cow ci(ov*—1,) c(lvv*—1,)+cl,
€100 o(ov*—1,)+cl, c(vvt—1,)

where vy and v are given in (i).
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(i) If we set Ko={k ¢ K; Ad(k)C=C} and K,=l{k e K; ké=¢},
then we have K,=Z K, and K, T=(1,,.,).

Proof. (i) Each k ¢ K can be written in the form (6.2). Hence if
we put

6.5 vo=(co/c)koy+2kpe and v= (eof edbero+ (heyy -+ ki)e

then we have ké="(v,, v,v).

(ii) Put Ad(k)C=+—1C’ and denote its block expression by
C'=(Cl)ozr sz First we shall show Cl=c,(|v,f—(c,/c)?). By direct
matrix computation, we have

Cho=ci2c7 c(kookore + ke ki) +dkpee*kd — 2¢ 7 (2, — e)kyki.
On the other hand by (6.5) we have
(v [P =2c1 "cylkookore + koe* ki) + dkyee™ ki - (co/cr)? [k .
Hence we can write
Clo= (Vo[ —(cofer)* | Koo' —2¢7 (201 — e)kks).
Since & is a unitary mattix and hence |k, [+ 2k, k=1, it follows that
Coo=c:( 0" — e 2y — ) —((cofer)’ — e} (2, — ¢)) | oo )

Using (6.3), we have C{y=c,(|v,[[—(c,/c))?). Similarly by direct calcula-
tion, we have C{,=Ch=(C})*=(Cj)* and

Clo=cokoo(kss + kip)e-+2ck ek 4 2¢,(ky + k) ee® — 1)k
+ eyl + )k
By (6.5) this can be written as
Cly= 00 —c5 'ctkpk o — (2e,— )k +kkE.
Since kykio+ (ku+k)kE =0, we have
Clo=c00—c:((co/c)— T Qe — ) kopk 1o

Again by using (6.3), we have Cjy=c,T,v. The cases for Ci;, C1,, C4, and
C}, are treated quite analogously. So we shall omit the proof.

(iii) From (i) it follows that k € K, if and only if a) |v,['=(c,/c.)’,
b) cUv=ce and ¢) vv*=ee*. From these we can easily deduce that
k € K, if and only if ké =ué for some u € U(1). This yields the assertion.
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Let M be the cotangent bundle over G/H and @ the moment map for
the K-action given by (3.7). We consider the reduced phase space M(C)
where C is given by (6.4). For g e D, we define Z(q) e q by

0 Z(q)*J,, —Zq)*
(6.6) Z=| Z(q) Z(q) Z(q)

where

67 Zdg)=v—Tcih (g, - -, sh™(@,), ch™"(Gnsr), - - -, ch™(g,)

and Z,(q) and Z,(q) are given respectively by the same formulas (5.7) and
(5.8). Moreover we define Z(q, p) € q by

(6.8) Z(q, p)=D(p)+Z(q).

Proposition 6.2. Under the assumption (6.3), we have

(i) for each n(x, X) e @~'(C) there exist unique k € K, and (q, p) €
D X R™ such that kr(x, X)=r(exp(D(q)), Z(q, p)).

(i) @-YC) is a submanifold of M diffeomorphic to K, X DX R™.

Proof. let z(x, X)e @-%(C). Since G=KA,H, we can write
x=k'ah (keK aeA,he H). Then kr(x,X)=nr(a, Ad(®)X) and
O(r(a, Ad(WX))=Ad(k)C. Since a is a diagonal matrix, we can easily
obtain that the diagonal part of @(z(a, Ad(A)X)) vanishes and so does the
diagonal part of Ad(k)C. Thus we conclude from Lemma 6.1 (ii) that
[ f=(cyfc)* and v, ¢ U(1) (1Zi<n). Put t=diag(cylev, vy -+ -, Uy Uy,
-+-,0,). ThenteTand? ke K, Sincet‘a=at-'and TCH, if we
put Z=Ad(¢ 'h)X, then ¢ kn(x, X)=n(a, Z) and P(x(a, Z))=C. Now
we put a=exp(D(q)) with D(g) € @,. Then the last identity implies that
D(g) e a, and Z is of the form Z(q, p). The uniqueness of k ¢ K, and
(¢, p) € DX R™ and the assertion (ii) are proved in the same manner as in
Proposition 4.2.

Theorem 6.3. Keeping the assumption (6.3), we denote by M(C) the
set of Kg-orbits in &(C) and by =, the canonical projection of ®~'(C)
onto M(C). Define a map ¢ of DX R" into M(C) by

(6.9 o(g, p) = o n(exp(D(q)), Z(g, p))-

Then ¢ is a bijection and hence M(C) has a smooth manifold structure under
which ¢ is a diffeomorphism and n is a submersion. Thus M(C) is a
reduced phase space with the symplectic structure v,.
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(ii) It holds that p*wy=> 7., dg,\dp; and hence ¢ is a symplectic
diffeomorphism.
(iii) Define a G-invariant Hamiltonian F on M by

Fa(x, X)) = (X, X

and denote the reduced Hamiltonian on M(C) by F°. Then we have

FC°QD:H(Bn,sm) if ¢,=0
and
FCoop=Hpopem If 70

Proof. (i) From Proposition 6.2, it is clear that ¢ is bijective, so
that we can define a C=-structure on M(C) under which ¢ is a diffeomor-
phism. If we define a smooth map @ of DX R" into GXq by ¢(q, p)=
(exp(D(q)), Z(g, p)), then it holds that p=ny om0 and izeomo@=mo .
Hence r is a submersion and M(C) is a reduced phase space.

(ii) We define V' (q) e §j by

0 =V = V@)
(6.10) Vig)=| Viq) Vi) Vi)
where Vi(@)="(V(@)s, - - -, V(9),) with

—«~ —1¢ch(g) sh™(g) (I1=j=<m),
—« —Tcysh(g)ch™(g) (m+1=j=n)

and Vi(g) (resp. Vy(g)) is the same as in (5.13) (resp. (5.14)). Then the
differential d¢ is again given by the same formula as (4.24). Hence the
proof of (ii) is parallel to that of Theorem 4.3.

(iii) In the same manner as in Theorem 4.3, we have

6.11) V)= {

Fe((q, p))=2"Z(q, p), Z(q, p)y=4""tr (Z(g, P)")

From (6.6) and the fact that the diagonal part of Z(g) is equal to zero, it
follows that 4-'tr(Z(q, p)*)=4""tr (D(p)")-+4-'tr(Z(q)). Since Z(q) is
given by (6.6), we obtain

4711 (Z(q)) =tr (Z( ) * T Z @) + 27t (Z(9)) — tr (JnZL(9))))-

The first term is equal to
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(35 sh4a)— 37 ehg)).
Jj=1 F=m+1
The second term is computed as in Theorem 5.3 (iii). The result is
A wh™(g, ) +-sh%(d;.)
— 2 @b (g, ) +ch™(§;.)) +c3/2 Zl sh=*(2g,).
=
From these we can deduce (iii).
We define G-invariant smooth functions F,, - - -, F, on M by
6.12) Fi(z(x, X))=F (X)=Qk) 'tr (X*).

Then they have the same properties described in Section 5. Moreover if
we define 7,(q, p)=F7(¢(q, P)) (9, p) € DX R*, 1<k=<n), then

(6.13) I(g, P)=Qk)"'tr(Z(q, pY*) (1=k=n).

They are clearly rational functions of p,, - - -, p., exp(q.), - - -, exp(q,)-
Hence the following corollary is valid.

Corollary 6.4. The Hamiltonian systems attached to the root systems
with signature (B,, ¢,) and (BC,, ¢,) are completely integrable under the
assumption (6.3). The above rational functions I, ---,I, are mutually
involutive integrals of motion, which are generically functionally independent.

For g e D we set

Buw(g) —Byg)* —Byg)*
(6.14) B(q)=|Byq) B(q) Byq)
B(q) BJq) Bl(q)
where
615 Bulg)=2/=Te(3sh"a)~ 37 eh(g))

and B,(q)="(B{q),:, - - -, B(q),) such that

—V—Tashg) (1=j=m),

(6.16) By(9); ={ V—=Tec,ch¥g) (m+1=<j<n)

and By(q);, (1=<j+#k=<n) are given by (5.20) and B,(q),,(1</, k<n) are
given by (5.21) and finally
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B(@)y=—2/=Ta 3 shg)— 35 ch(g))

j=1

- 1;7 Bl(Q)u~Zil By(q),;-

for 1<j<n. Then we can check B(q)ef, Furthermore we define
U(@) e Y (ge D) by

617 U@)= -;— (Ad(exp(—D(¢))B(q)+o(Ad(exp (— D(@))B(9)))-

Then it holds that U(q),;=B(q);; (0=j<2n) and U(g),;=V{(q);x
(0 j+£k<2n) where V(q) is given by (6.10). Moreover we have

6.18)  Z(g)= —;— (Ad (exp (—D(¢))B(q) —a(Ad (exp (— D(g))B(9)))

and hence

(6.19) Ad(exp(—D(g))B(q)=U(g)+Z(9)-

Corollary 6.5.  Under the assumption (6.3), let (q(t), p(1))=¢/q, p)
be the trajectory of the Hamiltonian flow starting from (q,p) € DXR".
Then we have

(6.20)  exp (D(q)) exp (2tZ(q, p)) exp (D(9))J =k(t) exp (2D(q(1))Jk(2) ™!

where k(t) is a curve in K, given by
©.21) (O = kOB, KO)= Ly

Moreover Z(q(t), p(t)) satisfies the following Lax’s isospectral deformation
equation;

(6.22) vddt—Z(q(t), p)+LUg(), Z(g(1), p(t))]=0.
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