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Applications of Laplacian and Hessian
Comparison Theorems

Atsushi Kasue™

§ 0. Introduction

Rauch [41] proved a fundamental theorem on the lengths of Jacobi
fields, called the Rauch comparison theorem. After him, Berger [4],
Warner [48] and Heintze and Karcher [27] etc. had extended the Rauch
comparison theorem. Especially, Heintze and Karcher showed a very
general comparison theorem for the length and volume distortion of the
normal exponential map of a submanifold. The proof of their compari-
son theorem in turn tells us some useful informations about the “local”
behaviour of the Laplacian and Hessian of the distance function to a
submanifold (cf. Greene and Wu [25] in the case when a submanifold is a
point). On the other hand, Wu [49] has proved that, in certain situations,
the Laplacian and the Hessian of a distance function in an appropriate
weak sense can be “globally” estimated from above (cf. also Calabi [10],
Cheeger and Gromoll [13, 14], Yau [51]). Moreover, making use of the
method by Wu, we have shown in [32] general comparison theorems on
the Laplacian and the Hessian of a distance function. The purpose of
the present paper is to give several applications of our comparison the-
orems,

0.1. We shall first describe our Laplacian and Hessian comparison
theorems. Let M be a Riemannian manifold with (possibly empty) bound-
ary aM. We write M, for the interior of M (M=M, if oIM=¢). Let X
be a smooth vector field on M. We consider the second order elliptic
operator Ly=4-+X acting on functions, where 4 denotes the Laplace
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where B,(x) is the metric ball with radius r around x(r is sufficiently small),
G,(y, z) denotes the Green function of Ly with respect to the Dirichlet
problem on B,(x) (cf. e.g., [31]) and »(§) is the outer unit normal vector
field on the metric sphere 9B,(x). In the case when X =0, we write So(x)
for S,p(x). We remark that if ¢ is smooth near x, Syo(x)=Ly¢(x). Let
N be a closed subset of M. We write py(x) for the distance between a
point xe M and N. For a point x € M\N, a geodesic ¢: [0, a]—M is
called a distance minimizing geodesic from N to x if py(o(t))=" for t € [0, a],
g(a)=x and o(t)C M, for ¢ € (0, a].

Theorem 0.1 (cf. [32: Theorem (2.28) and Lemma (2.5)]). Let N be
a closed subset of a Riemannian manifold M of dimension m and x a point
of M\N. Suppose there exists a distance minimizing geodesic g: [0, a]>M
from N to x. Let Z(t) (resp. (t)) be a continuous function on {0, d]
such that the Ricci curvature in direction &(t) is bounded from below by
(m—1)Z(t) (resp. {X, o(t)><n(t)). Then for any nonincreasing C*-func-
tion + on [0, a], we have

0.1) Sx(¥r o p )X Z {4+ (m—1) log £5) +¥"n}(a),

where £, is the solution of the classical Jacobi equation:

0.2) [EO+ROfA)=0  with f,(0)=0 and f;(0)=1.

Moreover when N is a point and ¢ can be extended to a distance minimizing
geodesic §: [0, Gl—M (a<<a) from N through x, the equality holds in (0.1)
if and only if the sectional curvature of any plane tangent to () is equal to
Z(t) and (X, 5(t)>=n(t) (¢ € [0, al).

When N is a smooth hypersurface of M, we have a better estimate
than (0.1) (cf. [32: Lemma (2.27)]). That is:

Theorem 0.2 (cf. [ibid. : Theorem (2.28) and Lemma (2.8)]). Let N
be a closed hypersurface of a Riemannian manifold M of dimension m and
x a point of M\N. Suppose there exists a distance minimizing geodesic
a:[0, al—>M from N to x. Let & and ) be as in Theorem 0.1. ; let A be a
real number such that the trace of S, is bounded from above by (m—1)4,
where S,q, denotes the second fundamental form of N with respect to 5(0)
Gi.e., (S, Vs, Up=<{V,6(0), UY). Then for any nonincreasing C*-function
4 on [0, al, we have

(0.3) Sx(¥r o o)) Z{¥” + ' ((m—1) log ha, Y +'9}(a),

where h, ((t) is the solution of the classical Jacobi equation:
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0.4 B )+ R, (t)=0 with h, (0)=1 and h, (0)=A.

Moreover when ¢ can be extended to a distance minimizing geodesic &: [0, &)
—M from N through x, the equality holds in (0.3) if and only if the sectional
curvature of any plane tangent to 5(t) is equal to J(t), N is umbilic at ¢(0)
(.e., (SoV, UD=AV, U)) and {X, 5(t)>=1(t) (¢ € [0, a]).

In [32], we have actually proved the above theorems for the Laplacian
4, using the second variational formula of arc lengths and the method
developed by Wu [49].  However it is easily seen that the same arguments
as in [32] are applicable to the proofs of Theorems 0.1 and 0.2. In fact,
we shall apply Theorems 0.1 and 0.2 of the above forms to the study of
some function theoretic properties concerning the operator Ly on a com-
plete noncompact Riemannian manifold (cf. Section 5).

We remark here that the Hessian F*(yro py) in an appropriate weak
sense can be estimated from below in terms of the sectional curvature
along ¢ and the second fundamental form of N if N is a submanifold (cf.
[32: Theorem (3.31)]). But this fact will not be used in this paper.

As for a lower estimate of the Laplacian of a distance function, we
have the following

Theorem 0.3 (cf. [ibid.: Lemma (2.11) and Theorem (2.49)]). Let N
be a closed submanifold of a Riemannian manifold M of dimension m and x
a point of M,\N. Suppose there exists a distance minimizing geodesic
0:[0, al=M from N through x=a(a’)(a’ <a), (so that py is smooth near x).
Let A" be a continuous function on [0, a’] such that the sectional curvature
of any tangent plane containing (t) is bounded from above by X °(t)
(t €0, a’]); in the case when dim N >0, let I" be a real number such that
all the eigenvalues of the second fundamental form S,y of N is bounded
from below by I'. Let h,  (resp.f,) be the solution of equation (0.4)
defined by A" and I' (resp. the solution of equation (0.2) defined by ).
Suppose h, p is positive on [0,a’). Then the Hessian Vpy of py has an
estimate:

o)V, V)Z(log hy, rY (@I VP —<La(@), V¥
for any V e M,, and in addition, if V & d(expy)sw{({]),
ox)(V, V)Z(og £) (@A VIF—<e(@), V)*},

where I denotes the vertical subspace in the tangent space at ¢(0) of the
normal bundle v(N) for N. (We take d(expy)so(I)=M, if dim N=0.)
In particular,

Apy(x) = {n(log k., rY +(m—n—1)(log f,) }a).
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0.2. Now we shall assume M is a complete noncompact Riemannian
manifold of dimension m with (possibly empty) boundary dM. For a
geodesic ray 7: [0, co)—M (we assume 7(¢) € M, for t >0 if 9M is not
empty), we define a function B,: M—R by

B(x): =lim {dis (7(£), x)—1}.

This function B, is called the Busemann function associated with a ray 7.
(cf. e.g., [19: p. 56]). Let Bi:=t—dis (7(z), *). Then|Bi(x)|=|dis ((z), x)
—dis (7(0), 7(£))| < dis (¥(0), x), by the triangle inequality, so that the family
{Bf} is uniformly bounded on compact subsets of M. Moreover if s<t,
then

Bi(x)— Bi(x)=dis (7(s), x)—dis (7(¢), x)+t—s
=dis (7(s), x) —dis (7(¢), x)+-dis ((?), 7(s))
=0,

again by the triangle inequality. Thus the family {B}} is also nonincreas-
ing and hence the convergence of lim, .. B! to B, is uniform on compact
sets. In particular, the Busemann function B, is continuous. We note
that when ¢ is fixed, the level sets {BI=constant} are precisely the metric
spheres about the point 7(¢). Since B! | B, as 11 + oo, we may thus
think intuitively of the level sets of B, itself as the “metric sphere about
the point 7(c0)” and we may think of B, as “the distance from 7(o0)”.
This is the intuitive meaning of the Busemann function. Note also that
B(r(t))=—t for all 1 =0.
Now we shall state a result on SB,:

Theorem 0.4 (cf. [33: Lemmas (1.12) and (1.13)]). Let M be a
complete noncompact Riemannian manifold of dimension m. Suppose the
Ricci curvature of M is bounded from below by some nonpositive constant
(m—1)R. Then the Busemann function B, associated with any geodesic ray
T if OM is empty (resp. a distance minimizing geodesic ray T from oM if aM
is not empty) satisfies

S(—B)z—(m—1W—R

on M (resp. #,: ={x € M: B(x)<0}).

Theorem 0.4 implies that if A has nonnegative Ricci curvature and
dM is empty, the Busemann function B, associated with any ray 7 is
superharmonic on M. (cf. the paragraph 0.5 below). This was proved
by Cheeger and Gromoll [13] (cf. also [49]). (When we consider the
operator L, in Theorem 0.4, we see also that Sy(—B)=(m—1)¥ —R—4



Laplacian and Hessian Comparison Theorems 337

on M or J#, if the length | X|| of X<A4. But this estimate will not be
used in this paper.)

We shall now describe the contents of each section. In the follow-
ing, let M be a connected complete Riemannian manifold of dimension m
with (possibly empty) boundary oM.

0.3. As we mentioned after Theorem 0.4, Cheeger and Gromoll
proved in {13] that if M is empty and the Ricci curvature of M is non-
negative, then the Busemann function associated with any ray is super-
harmonic on M. From this result, they showed that M as above is iso-
metric to the direct product N X R* (k=0), where N contains no lines and
R* has its standard flat metric. They also showed in [14] that if M is a
convex subset with boundary dM in a Riemannian manifold of nonnegative
sectional curvature, the distance function to dM is concave on M. Later,
making use of this result, Burago and Zalgaller obtained in [9] a theorem
on such a manifold M saying that (1) the number of components of d M
is not greater than 2, (2) if there are exactly two components I", and I,
of M, M is isometric to the direct product [0, @] X I';, and (3) if OM is
connected and compact, but M is noncompact, M is isometric to the direct
product [0, co) X M.

In Section 1, using Theorem 0.1, Theorem 0.2 and Theorem 0.4, we
shall prove, roughly speaking, a generalization of the above result by
Burago and Zalgaller from the view point of Ricci curvature. More pre-
cisely, we shall show that, in the case when M has nonnegative Ricci
curvature and M is a smooth hypersurface whose mean curvature with
respect to the inner normal is nonpositive, (1) if M is disconnected and
it has a compact component I°, M is isometric to the direct product [0, a]
x I', and (2) if M is connected and compact, but M is noncompact, M
is isometric to the direct product [0, o0) XM (cf. Theorem 1.2 (1) and
Theorem 1.4 (2)). Moreover we shall prove an analogue of Cheng’s
maximum diameter theorem (cf. [16] or Theorem 4.2 in Section 4).

The results of this section have been proved in the author’s previous

paper [33].

0.4. We assume M is a connected compact Riemannian manifold of
dimension m with smooth boundary dM and consider the following eigen-
value problem:

do-+2p=0 on M,
=0 on oM.

We write 2,(M) for the first eigenvalue of the above equation. Let R and
A be two real numbers such that the Ricci curvature of M is bounded
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from below by (m—1)R and the trace of S, is bounded from above by
(m—1)4, where S, denotes the second fundamental form of oM with
respect to the unit inner normal vector field v on aM. We call such a
manifold M a Riemannian manifold of class (R, A) for the sake of brevity
(cf. Section 1). Recently, Li and Yau [36] have given, among other
things, computable lower bounds for 2,(M) in terms of R, 4 and the in-
radius £, of M (i.e., £, =sup {dis (x, 9M): x e M}). In particular, their
estimate (cf. [ibid. : Theorem 11]) is optimum in the case when R=0 and
A=0. More precisely, they have proved that if M is of class (0, 0), 2,(M)
is greater than or equal to #’/4.7,;; the equality is attained for a flat
cylinder. Their method is based on a gradient estimate of the first eigen-
function. Moreover, Gallot [23] has also showed another computable
lower bound for 2,(M), estimating the Cheeger’s isoperimetric constant in
terms of R, 4 and .#,. On the other hand, before the works mentioned
above, Reilly [42] showed that if R>0 and 4=0, then A,(M) is not less
than mR and the equality holds if and only if M is isometric to the closed
hemisphere of the standard sphere of constant curvature R.

In Section 2, we shall show that for a Riemannian manifold M of
class (R, 4), (M) has a lower bound depending on R, 4 and .#,, and
the equality holds if and only if M is isometric to a model space of class
(R, 4) (cf. Theorem 2.1). - We remark that our estimate coincides with
the above one due to Li and Yau when R= /=0, and our result contains
the above theorem by Reilly as the special case: R>0 and 4=0.

The results of this section have been proved in the author’s previous
paper [34].

0.5. We assume M is a connected compact Riemannian manifold of
dimension m with smooth boundary dM and consider a Poisson equation:

du+Q0=0 on M,
u=0 on oM,

where Q is a smooth function on M. We write U, for the solution of the
above equation. When M is a (simply connected) domain of Euclidean

plane R* and Q=2, U, and its integral ZJ U, are, respectively, called the

M
warping function of M and the torsional rigidity of M, and it is a classical

problem to obtain geometric bounds for U,, FU, and 2 J U, etc. (cf. e.g.,
M
(2], [39D.
In Section 3, we shall show that if M is of class (R, 4), U, is bounded
from above by a continuous function of the form: F(m, R, 4, £, Q%) o p,
where p = dis(x, 0M), Q*(t) =max {Q(x): x e M, p(x) =t} (0 <t < Sy)
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and F(m, R, 4, ., Q*)(t) is a continuous function on [0, .#,,] determined
by m, R, 4, £, and Q¥, and moreover the equality holds for some x € M,
if and only if M is a model of class (R, A) (cf. Theorem 3.1). Moreover
in the case when Q=1, we shall prove that if the Ricci curvature of M is
greater than or equal to (m—1)R, U, is bounded from below by a con-
tinuous function of the form: G(R)o p, where G(R)(?) is a continuous
function determined by R (cf. Theorem 3.2).

0.6. In Section 4, we shall show a volume estimate for a domain in
a certain Riemannian manifold (cf. Proposition 4.1) and as its application,
we shall prove the following

Theorem (Theorem 4.1). Let m be a positive integer and let K e
(1, ) and vy € (0, w,) be given constants, where w,, denotes the volume of
the unit sphere S™(1) in Euclidean space of dimension m+1. Then there
exists for any number Ve (¥, ,) a constant d(m, K, ¥"y; V) e (0, n),
depending on m, K, ¥, and V, such that for a complete m-dimensional
Riemannian manifold M whose boundary is empty and which satisfies

the Ricci curvature Z=(m—1)
(0.5) - {|the sectional curvature| <K
the volume Vol ,,(M)=7",,

if the diameter d(M)=d(m, K, ¥",; V), then Vol,, (M)=V.

We remark here that if the diameter of a complete, m-dimensional
Riemannian manifold M whose Ricci curvature >(m—1) is equal to =,
M is isometric to S™(1). This is a theorem due to Cheng [16], who used
his comparison theorem on the first eigenvalue of a metric ball to prove
this theorem. In the course of the proof for our theorem as above, we
shall give another proof of the Cheng’s maximum diameter theorem (cf.
Theorem 4.2). Moreover combining our theorem and a sphere theorem
due to Shiohama [45], we see that if the diameter of a complete m-dimen-
sional Riemannian manifold M which satisfies (0.5) is sufficiently close to
7, M is homeomorphic to S™(1) (cf. Corollary 4.2).

0.7. We assume M is a complete noncompact Riemannian manifold
of dimension m without boundary. Let X be a smooth vector field on
M and Q(30) a nonnegative smooth function on M. A C*function ¢
on an open subset U of M is called Ly-harmonicif Lyp=0o0n U. A lower
semi-continuous function ¢ on U is called L-superharmonic if for any
relatively compact domain ¥ in U and every Lx-harmonic function ¢ on
V with ¢=¢ on 9V, we have ¢=¢ on V. When —¢ is Ly-superharmonic,
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we say ¢ is Ly-subharmonic. (When X =0, we simply call ¢ (super-, sub-)
harmonic if ¢ is (Ly-super-, Li-sub-) L,-harmonic.) It is easily seen that an
upper semicontinuous function ¢ on an open subset U is Ly-subharmonic if
and only if Sx¢=0 on U (cf. e.g., [49] or [35: Theorem 15.2]). Let D be
a compact domain of M with smooth boundary dD. We write G,(x, ¥)
for the Green function of L with respect to the Dirichlet problem on D.
Let {M};_,,,.. be any increasing family of compact domains in M with
smooth boundary 6M,. Then {G,,(x, y)} is increasing with respect to i
and set Gu(x, y): =lim,.,. Gy ,(x, ) (£ +o0) (cf. e.g., [31]). We call
G (x, y) the Green function associated with the elliptic differential operator
Ly on M if Gy(x, y) <400 (x+£y). Itis known that there exists a non-
constant positive L y~superharmonic function on M if and only if M has the
Green function Gy(x, y) of Ly (cf. [31]). In Section 5, we shall show geo-
metric lower or upper estimates for G,(x, y) if it exists (cf. Theorem 5.1,
Theorem 5.3). Moreover we shall consider the equation: Lyu+ Q=0 on
M and give criteria for existence or nonexistence of a positive solution of
the above equation (cf. Theorem 5.2, Theorem 5.4). In the last part of
Section 5, we shall consider the Dirichlet problem for Ly-harmonic
functions “at infinity” of M under certain conditions (cf. Theorem 5.5).
Section 5 is a continuation of the latter part of [32].

In connection with our results, we must mention certain previous
investigations by several authors. For example, a theorem of Blanc-Fiala-
Huber [28] tells us that if m=2 and the Gaussian curvature of M is non-
negative outside a compact set, M possesses no nonconstant positive
superharmonic functions, and a theorem of Ahlfors states that if m=2, M
is simply connected and the Gaussian curvature is bounded above by a
negative constant, M has the Green function of the Laplace operator (cf.
[38]). Moreover Aomoto [1] proved that if m>3, M is simply connected
and the sectional curvature is nonpositive, there are nonconstant positive
superharmonic functions on M (cf. also [18]). Recently, Ichihara [30, I]
has given more general geometric criteria for existence or nonexistence of
the Green function of the Laplace operator on M (cf. also [15]). In [32],
we have considered the case when X'=0 and show generalizations of the
results by Ichihara. His method is similar to ours, but seems to be not
applicable for the case when X 0.

We note that a solution of the equation: du+1=0 on a Riemannian
manifold is called a quasi-harmonic function in [43], where the chapter 2
is devoted to the classification theory on quasi-harmonic functions.

The author would like to express his thanks to Professor T. Ochiai
for his helpful advice and encouragement, and also Professor N. Ikeda
for his useful suggestions.
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8§ 1. Ricci curvature, geodesics and some geometric properties of Rieman-
nian manifolds with boundary

In this section, we shall state the main results in the author’s previous
paper [33] and give the sketches of their proofs for the completeness.

1.1. Let M be a connected, complete Riemannian manifold of di-
mension m with smooth boundary M. Let R and 4 be two real numbers.
We call M of class (R, A) if the Ricci curvature of M =(m—1)R and the
trace of S.<(m—1)4 for any unit inner normal vector field & of 9M,
where S, is the second fundamental form of dM with respect to & (i.e.,
(SX, Y>=(V4& Y. We write .#, for the inradius of M (i.e., £y =
sup {dis (x, 0M): x e M}< +o0). Let hy 4 e C*[0, o0) be the solution of
equation (0.4) defined by Z=R and 4. Set C\(R, A)y=inf{t:¢>0, h (t)
=0} and Cy(R, A)=inf {t: >0, hy (t)=0}. If hy >0 (resp. iy ,>0)
on (0, oo), we understand C|(R, 4)= + oo (resp. C(R, A)= + ). We
remark here that C,(R, A)<<+ oo if and only if R>0, R=0 and 4<0, or
R<0 and A< —+—R and that 0< Cy(R, )<+ oo if and only if R>0
and A>0, or R<0 and —y =R < A4<0.

(1.1) Definition A Riemannian manifold M of class (R, 4) is said
to be a model space if one of the following conditions holds:

(D C(R, )<+ o0 and M is isometric to the metric (closed) ball
B(R; C/(R, A)) with radius C(R, 4) in the simply connected space form
of constant curvature R.

(I)) R=0and A=0, or 0<<CL(R, A)<+ 0. Moreover M is iso-
metric to the warped product [0, 24] X ,I", where A=h 4, a is any positive
number if R=0 and 4=0, and a=Cy(R, 4) if 0 CyR, )<<+ 0. (In
this case, dM is disconnected.)

() R=0 and A=0, or 0<<Cy(R, A)<+oo0. Moreover oM is



342 A. Kasue

connected, there is an involutive isometry ¢ of dM without fixed points
and M is isometric to the quotient space [0, 2a] X ,0 M/G, where a and A
are the same as in (II), and G is the isometry group of [0, 2a] X ,0 M whose
elements consists of the identity and the involutive isometry ¢ defined by

6((t> X)) = (2(1— Z, O'(X)).
Now we shall state the main results in [33].

Theorem 1.1. Let M be a connected, complete Riemannian manifold
of class (R, A). Then:

(1) Iu=C(R, 4).

2 If C(R, <+ oo and dis(p,dM)=C,(R, A) for some p e M,
M is isometric to the model space B(R; C(R, A)) of type (D).

This theorem is an analogue of Cheng’s maximum diameter theorem
for compact manifolds of positive Ricci curvature (cf. [16] and Section 4).

Theorem 1.2. Let M be a connected, complete Riemannian manifold
of class (R, A). Suppose 0M is disconnected and it has a compact connected
component I',. Then:

(1) IfR=0and A=0, M is isometric to the isometric product [0, b]
XTIy (b>>0), that is M is a model space of type () (R=0, 4=0).

(2) If R>0, then A>0 and min,,, dis (I";, I}))<2Cy(R, A), where
{I';};1,5... are the connected component of oM. Moreover if
min,,, dis (I'y, I';) = 2C(R, A), M is isometric to the warped product
[0, 2C(R, DI X ,Iy, that is, M is a model space of type (II) (0<<CyR, A)
< + ), where h=hy, , is the solution of equation (0.4) defined by Z=R
and A.

As we mentioned in Introduction, the first assertion of this theorem
and the second assertion (2) of Theorem 1.4 below are, roughly speaking,
a generalization of a results by Burago and Zalgaller (cf. [9: Theorem
5.2.1).

Theorem 1.3. Let M be a connected, complete Riemannian manifold
of class (R, A). Suppose 0M is connected and suppose there is a minimal
immersion ¢: N—M, from a Riemannian manifold N without boundary into
the interior M, of M such that dim N =dim M —1 and the image N: = «(N)
is compact. Then:

(1) If R=0, A=0 and M\N is connected, M is a model space of type
(II) (R=0, A=0). In particular, N is a totally geodesic hypersurface of
M.

(2) IfR>O0, then A>0 and dis (0M, N)< C(R, A). Moreover if the
equality holds, M is a model space of type (II1) (R>0, 4>0).
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Theorem 1.4. Let M be a connected, complete Riemannian manifold
of class (R, A). Suppose M is compact but M is noncompact. Then:

() RxO.

() If R=0 and A=0, M is connected and M is the isometric
product [0, co) X oM.

(3) IfA<0, R<0 and A= —+ —R. Moreover if A=—+—R, M
is isometric to the warped product [0, 00) X oop(- /=50 M.

We remark here that the first assertion of Theorem 1.2 has proved
in [29] by a different method and that in this assertion, we cannot delete
the assumption that M has a compact component, in contrast to the
theorem of Burago and Zalgaller cited above. In fact, it is well known
that there is a non-parametric minimal hypersurface in Euclidean space R™
(m=9) with the form: x™=u(x!, - - ., x™") defined for all (x', - - -, x™"Y),
where u is not linear (cf. [6]). Set M={(x', ---, x™) e R™:u(x", - - -, x™)
<x™Zu(x', - -, x™ )1}, Then M satisfies all the conditions of (1) in
Theorem 1.2 except that oM has a compact component, but M is not
isometric to the direct product [0, b} X I".

1.2. Now we shall give the sketches of proofs for the above theo-
rems. For details, see [33].

Proof of Theorem 1.1. The first assertion is well known (cf. e.g.,
[ibid: § 2]). Now suppose dis (p, 0M)=C,(R, A) for some p e M. Set
Pox: =dis (x, M) and p,: =dis (x, p). Then it follows from Theorem 0.2

that
S(—po)= —(m—1) "z, 4hn,s) © pou
(m= dim M) and
S(—=pp) = —m—1)fzlfz) > 0»

on 2: ={xe M:0<p,,(x)<Cy(R, 4) and 0<p,(x) < p,x(p)}, Where f; e
C7[0, <o) is the solution of the equation (0.2) defined by Z=R. Therefore

0ax + p, satisfies

(1.2)  S(=loax+p) = —(m—D{(Hz,slhz,) ° pore+(f2lfz) © 05}

on 2. We note here that if s >0, >0 and s+t >C,(R, 4),
(a, sl DO+ (f2lfe)(5)=0.

This implies that the right hand side of (1.2) is nonnegative, that is, p,,
+p, is superharmonic on 2, because p,, +p,=C(R, 4). Set
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o: ={x € M: p,;,(x) >0, p,(x)>0, p,,(x) 4 p,(x) = Cy(R, A)}.

Then w is a nonempty closed subset in £. Since p,,+p, takes the mini-
mum C,(R, 4) on o(C#), it is equal to C,(R, A) everywhere on £ and
hence on M, by the minimum principle for superharmonic functions.
Therefore we see that the exponential map exp, at p restricted to the
closed ball B with radius C,(R, 4) in the tangent space M, at p induces a
diffeomorphism between B and M. Moreover we have

Ao, =(m—1)(fzlfe) ° p»

on M\{p}. This shows by the equality discussion of Theorem 0.1 that for
any distance minimizing geodesic ¢: [0, a] >M from p, the sectional cur-
vature of any plane tangent to ¢ is equal to R. Thus M is isometric to
the closed ball with radius C,(R, A) in the simply connected space form of
constant curvature R.

By the similar arguments, we can prove Theorem 1.2 and Theorem
1.3

Proof of Theorem 1.4. 1t follows from the assumptions that there
exists a distance minimizing geodesic ray 7:[0, co)—>M from M. In
particular, R<0. Let B,: M—R be the Busemann function with respect
to 7. Then B,+p;,=0 on the half space #,:={x € M: B(x)<0} by the
triangle inequality and (B, p,,)(7(¢))=0 for any >0 by the definition
of B,. Setw:={xe M: B(x)<O0, p;,(x)+B,(x)=0}. Then v is a closed
subset of M (=M\0M) contained in 5#,. Now we have by Theorem 0.2
and Theorem 0.4

S(—ps)Z —(m— Dl ks, > pan
on M and
S(—B)z—(m—1)V—R
on 2#,, and hence
(13) St BNZ —(m— 1) alhz,) o pos++ —R)

on 5,. Suppose R=0and A=0. Then the right-hand side of (1.3) is
equal to 0, that is, p,, + B, is superharmonic on 5, and further it takes
the minimum 0 on @. Therefore it follows from the minimum principle
for superharmonic functions that w=s#,=M, and S(— 0a)=0 on M,.
This implies that the exponential map expj, restricted to v(@M)*=
{t&: =0}, where ¢ is the unit inner normal vector field on M, induces a
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diffeomorphism between v(6M)* and M, and that for any distance mini-
mizing geodesic ¢: [0, a]l>M from 6M, the sectional curvature of any
tangent plane containing ¢ is equal to 0 and M is totally geodesic. Thus
we see that the map 7: [0, co] X 9M—M defined by ¥'(¢, x) =expl,t£(x)
induces an isometry between the direct product [0, c0) XdM and M. This
completes the proof for the assertion (2) of Theorem 1.4. As for the
assertaion (3), it follows from the assertion (2) and the existence of a
distance minimizing geodesic ray from dM that R<0 and 4> —+/—R.
Now suppose A= —+/ —R. Then the right-hand side of (1.3) is equal to
0. Therefore the same arguments as in the preceding assertion (2) shows
that the map 7': [0, co) X dM— M as above induces an isometry from the
warped product [0, 00) X oz~ y=20M onto M. This completes the proof
of Theorem 1.4.

§2. Lower bounds for the first eignevalue of Laplace operator

Let M be a connected compact Riemannian manifold of dimension
m with smooth boundary dM. Let us consider the following eigenvalue
problem:

@.1)

Au+2u=0 on M
u=0 on oM.

We write A,(M) for the first eigenvalue of (2.1). In this section, we shall
apply Theorem 0.2 and Theorem 0.4 to obtain a geometric lower bound
for 2,(M). The results of this section have been proved in [34].

2.1. In order to state and prove our results below (cf. Theorem 2.1
and Proposition 2.1), we need the following two lemmas. The first is a
generalization of Barta’s inequality (cf. [3]) and the second follows from
simple calculations.

(2.2) Lemma (cf. [34]). Suppose there are a continuous function \r on
M and a constant p such that

<0 on M, (:=M\oM),
S+ =0 on M.

Then we have

23) H(M)=p.

Moreover if \r is smooth on some open dense subset V of M, the equality
in (2.3) implies that < is the first eigenfunction of (2.1).
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(2.4) Lemma. Let q be a continuous function on [0, a) (>0) and
be a positive number with B<a. Let us consider the following one dimen-
sional eigenvalue prblem:

@5 {¢"+q(t)¢'+l¢=0 on [0, f]

$(0)=¢'(8)=0.
Then the first eigenfunction ¢ of (2.5) satisfies
2.6) $-¢>0
on (0, p).

We remark here that the first eigenfunction @ of (2.1) for a model
space M (R, A) of class (R, A) can be written in the form:

@: ¢ o PaM
where p,,, =dis (M, x) and ¢ € C*[0, £ (5, »]. Since
dpyy=(m—1)(log hg 1) o psy on M(R, 4),

@(t) is the first eigenfunction of (2.5) with g=(m—1)(log %z ,)’ and f=
F . Where hy 4 is the solution of equation (0.4) defined by Z=R and
A4, and £y »=max {p,,(x): x € M(R, A)}.

Theorem 2.1. Let M be an m-dimensional compact Riemannian mani-
fold with smooth boundary oM. Suppose M is of class (R, A). Then

2.7 LM ZAR, 4, 7 ),

where £, =max {dis (x,0M): x € M}, and AR, A, #,) is equal to the first
eigenvalue of (2.5) with q=(m—1)(log hy ,) and p=5, if £, <Cy(R, A)
(cf. Section 1 for the definitions of hy 4 and C(R, A)) and equal to the first
eigenvalue of the model space M(R, A) of class (R, A) if #,=C(R, A) (cf.
Theorem 1.1). Moreover the equality holds in (2.7) if and only if M is
isometric to a model space M (R, A) of class (R, A).

Proof. We shall first show the theorem in the case when .7, <
C(R, 4). Put g, =@m—1)loghg, . Then g, is a smooth function
on [0, #,], since A , is positive on [0, C\(R, 4)). Let ¢ be the first eigen-
function of (2.5) with g=g¢, , and B=.,. We may assume that ¢ and
¢’ are both negative on (0, .#,) by Lemma (2.4). Applying Theorem 0.2
t0 ¢ o p (o=dis (x, 9M)), we have
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2.8)  S(gop)+AR, 4, y)pop=(P"+qrud + AR, 4, Fy)) o p
=0.

Therefore it follows from Lemma (2.2) that A,(M)=A(R, 4, .#,). We
shall now assume that 2,(M)=2A(R, 4, #,). Since p is smooth on the
open dense subset M\% (M), where € (0 M) is the cut locus of 9M, we see
by Lemma (2.2) again that ¢op is the first eigenfunction of M, that is,
¢ o p is smooth on M and satisfies

(2.9) Ao p)+ AR, 4, £ )¢ p=0
on M. Hence by (2.8) and (2.9), we have
do=qz 40p

on M\%(@M). This shows that for any distance minimizing geodesic
o: [0, al->M from 9M, the sectional curvature of every plane containing
the tangent vector (¢) is equal to R and M is umbilic at ¢(0) (i.e.,
S, X, Y>=ALX, Y) (cf. the equality discussion of Theorem 0.2)). Then
combining this fact with the smoothness of ¢ o p and the negativity of ¢’
on (0, .#,), we see that ¥(@M)={x € M: p(x)=.#,}. Now it is not hard
to see that M is isometric to a model space of class (R, A), which is dif-
ferent from the metric ball B(R; C\(R, A4)) with radius C(R, 4) in the
simply connected space form of constant curvature R. Now we assume
Fy=Ci(R, A). Then it follows from Theorem 1.1 that M is isometric to
B(R; C(R, A)). This completes the proof of Theorem 2.1.

We shall now give some computable lower bounds for (R, 4, .#,)
in the above theorem, because, in general, it would be very difficult to
obtain the exact value of A(R, 4, 7,). (For the proofs of the results
below, see [34].)

Corollary. Let M be as in Theorem 2.1. Then we have

AM)Z AR, A, fM)>[4 max (Ith%j(u)du L l/h}’;j(u)du)]-l

0<t=Z=sy

Corollary. Let M be as in Theorem 2.1. Suppose R=0 and A=0.
Then we have
77,'2

402"

.10) A 20,0, F,) =

Moreover the equality holds if and only if M is a model space of class (0, 0)
(e.g, a section of a flat cylinder).
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Corollary (Reilly [42]). Let M be as in Theorem 2.1. Suppose R>0
and A=0. Then we have

A(M)=mR.

Moreover the equality holds if and only if M is isometric to the hemisphere
in the standard sphere of constant curvature R.

We remark here that estimate (2.10) was proved by Li and Yau [36]
with a different method from ours and that in the case when R>0, we
can obtain other computable estimates for 2,(M), making use of a result
by Friedland and Hayman [22].

2.2. Before concluding this section, we shall give another estimate
for 2,(M) in the case when M is a compact domain in a certain complete,
noncompact Riemannian manifold N without boundary. Because of the
noncompactness of N, there is a geodesic ray 7: [0, co)—>M. Let B, be
the Busemann function on N with respect to7. Then S(— B,) is bounded
from below by —(m—1)¥/ —R (m=dim N) if the Ricci curvature of N is
bounded from below by some nonpositive constant (m—1)R (cf. Theorem
0.4). Then making use of B, instead of the distance function p to dM in
the proof of Theorem 2.1, we can obtain the following

Proposition 2.1. Let M be a compact domain with smooth boundary
in a complete, connected and noncompact Riemannian manifold N without
boundary. Suppose the Ricci curvature of N is bounded from below by
some nonpositive constant (im—1)R (im=dim N). Then we have

(M) >

n,Z

aaory =

—(m—1)°R exp 2(m—1)v/ —Rd(M)
(exp {(m— D — Rd(M)} — 1 +4/z*)(exp {(m—1)¥/ —Rd(M)} — 1)’
(R<0),

where d(M) denotes the diameter of M.

For the proof of the above proposition, see [34].

§3. Bounds for solutions of Poisson equations

Let M be a connected compact Riemannian manifold of dimension m
with smooth boundary dM. Let us consider the following Poisson equa-
tion: .
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3.1) {Au—|—Q=0 on M, (:=M\oM)

u=0 on oM,

where Q is a smooth function on M. We write U, for the solution of
(3.1), that is, UQ(x)=IM O(»)Gy(x, y)dy, where G,(x, y) is the Green func-

tion of the Laplacian 4 with respect to the Dirichlet problem on M. In
this section, we shall show some geometric estimates for U,, max, U, and
VUQ.

3.1. We shall first prove the following

Theorem 3.1. Let M be an m-dimensional compact Riemannian mani-
fold of class (R, A) (cf. Section 1) and Q a nonnegative smaoth function on
M. Then the solution U, of equation (3.1) has an estimate:

62 ves [ {[ " @ hmn stz

Sfor x e M, where p(x)=dis(x,0M), S ,=max {p(x): x € M}, hy , is the
solution of equation (0.4) defined by Z=R and A, and

O*(t):=max {Q(x): x € M, p(x)=t}.

Moreover the following three conditions are equivalent to each other:
(1) The equality holds in (3.2) for some x € M,,
(2) The equality holds in (3.2) everywhere on M.
(3) M is isometric to a model space of class (R, A) (cf. Section 1) and

0=0%cp.

Proof. For the sake of brevity, we write ¢ o p for the right hand side
of (3.2). Then it follows from Theorem 0.2 that ¢ o p satisfies

(3.3) S(—@op)=Q*op
on M,. Therefore we have
(34 S(Ug—pop)=—0+0*0p=0

on M, This implies that U,—¢op is subharmonic on M,, and hence
inequality (3.2) holds on M, since Uy—¢@op=0 on dM. Now we shall
show the latter part of the theorem. It is clear that (1) and (2) are equi-
valent each other by the above argument. Moreover by the definition of
a model space of class (R, 4), we see that (3) implies (2). Finally let us
show the converse. Suppose U,=¢op on M. Then we have by (3.4)
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Q=0Q%*opon M. Inthe case when £, =C(R, 1), we have shown that
M is the model space of type (I) (cf. Theorem 1.1), so that we assume
Iy <<C(R, A) (£ +o0). Since the equality holds in (3.3), we see that
do=m—D(log hp ) o p on M\F(@M), where ¥(0M) is the cut locus
of 9M. Therefore the latter part of Theorem 0.2 says that for any dis-
tance minimizing geodesic o [0, a]—M from dM, the sectional curvature
of any plane tangent to ¢ is equal to R and 9M is umbilic at ¢(0) (i.e.,
{S,X, Yy=AX, Y)). Moreover we see that ¥(0M)={x ¢ M: p(x)=
Fu}, since ¢ is positive on [0, .#,). These show that M is isometric to
a model space of type (II) or type (III). This completes the proof of
Theorem 3.1.

As an immediate consequence of Theorem 3.1, we have the following

Corollary 3.1. Under the same notations as in Theorem 3.1, the fol-
lowing two inequalities hold:

(3.5) max. UQgr” U’” (O*hz=1)(s) ds/hg,—;(z)}dr
and
(3.6) max | U | _é.jo”’ (Q* - )(s)ds.

Moreover the equality holds in (3.5) or (3.6) if and only if the condition (3)
in Theorem 3.1 holds. ,

Remark. (1) When m=2, 0=1 and R>0, we have by (3.5) and
(3.6)
1 1 — . .
max U, < — log [——(0—{—/1«/0')] (o: =R+ 4,
o R R

maxHVUH<\/A —|- —{-4_

since £, < C(R, A). These bounds for max, U, and max,, ||[F'U,| have

been proved by Sperb [47].
(2) When Q=const. and R=0, |FU,|! is subharmonic on M, so

that max,, ||V U,||=max, |[FU,||, because
AP U |P=2||P*U,|P+2 Ric (F Uy, VU =0.

3.2. Now we consider the case when M is a domain in a noncompact
complete Riemannian manifold. Let N be a noncompact complete
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Riemannian manifold without boundary and M a compact domain with
smooth boundary M in N. Let7:[0, o)—N be a geodesic ray and
B,: N—R the Busemann function with respect to 7. Suppose the Ricci
curvature of N is bounded from below by some nonpositive constant
(m—1R (m=dim N). Put

67 (R, 8y, 02)(t)
. ::J: {fM exp (m— v/ — R u dufexp (m—l)x/———Rs}ds,

where d, =min {B/(x): x € M} and 0,,=max {B(x): x e M}. Then it fol-
lows from Theorem 0.4 that + o B, satisfies

(3'8) S(——‘!’(Ra EM’ SM)OBr)gl

on the interior M, of M. Therefore by the same argument as in the proof
of Theorem 3.1, we see that the solution U, of equation (3.1) (Q=1) has
an estimate:

Ul—g\!"(R, EM: 5M) ° Br
on M,. This shows that

max U,<max {4(1): 8, <t <8y}
M

— =1 fexp {m— 1)V =R Gy — )}
(m—1)R L
_ —1—(m—DV—R@y—0,)]  (RO),
Gu— )’ _
CuZtul (R=0)

Since (6,, —3,,) is less than the diameter d(M) of M (cf. [49: Lemma 3.2]),
we have the following

Proposition 3.1. Let M be a compact domain in a complete noncom-
pact Riemannian manifold N whose Ricci curvature is bounded from below
by some nonpositive constant (in—1)R (im=dim N). Then the solution U,
of equation (3.1) (Q=1) has an estimate:

dMY  (r=0)
max U, <
* =L fexp {(n— )V =R}
m—1)R

—1—(m—1DV=Rd(M)]  (R<O0).
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3.3. Now we shall show a lower estimate for U,.

Theorem 3.2. Let M be a compact Riemannian manifold of dimension
m with smooth boundary M. Suppose the Ricci curvature of M is bounded
from below by (m—1)R (Re R). Then the solution U, of equation (3.1)
with Q=1 satisfies

o [ 29
39 vz[" )Mdt,

where p(x)=dis (x, 0M) and f3 is the solution of equation (0.2) with Z=R.
Moreover the equality holds for some x € M if and only if M is isometric to
the metric ball in the simply connected space form of constant curvature R
and x is the center of M.

Proof. Let x be an interior point of M. We write B.(x) for the
metric ball around x with radius r (Zp(x)). Let G,(», z) be the Green
function of B,(x) (r<p(x)) (i.e., Gy, z2)=lim, ., G, (2, y), where {D;};_, 5....
is an increasing family of compact domains D,C B,(x) with smooth
boundary 0D, and Gp(y, z) is the Green function of the Laplacian with
respect to the Dirichlet problem on D,). Set

U,(y):=j3 Gy, )dz.

Then we have
UQ(X) g Ur(x)s

since Gyu(z, ¥Y)=G.(z, y) for any y, z € B,(x). Therefore Theorem 3.2
follows from the following

(3.10) Lemma. Let N be a complete Riemannian manifold of dimen-
sion m and B,(x) the metric ball around x € N with radius r (r<dis (x, ON)
if 0N¢). Suppose the Ricci curvature of N is bounded from below by
(m—1R (ReR). Then we have

- [ e
Jo
diswyy  fRN(E)

(3.11) U(nz dt

where U, and f; are as above. Moreover the equality holds if and only if
B,(x) is isometric to the metric ball in the simply connected space form of
constant curvature R.



Laplacian and Hessian Comparison Theorems 353

Proof. We write V() for the right-hand side of (3.11). Then it
follows from Theorem 0.1 that SV+1>=0 on Int (B,(x)) and V=0 on
9B,(x). Therefore S(V—U,)=0 on Int(B,(x)) and V—U,=0 "almost
everywhere” on 8B,(x). Thus we have inequality (3.11) by the maximum
principle for subharmonic functions. The latter part of the lemma follows
from the same argument as in Theorem 3.1. This completes the proof of
Lemma (3.10).

As an immediate consequence of (3.2) and (3.9), we have the following

Corollary. Let M be an m-dimensional compact Riemannian manifold
of class (R, A). Set Py:={x e M: U(x)=max, U}, where U, is the solu-
tion of equation (3.1) (Q=1). Then we have

(3.12) Vim, R, 4, J ) <dis (Py, 0M) (£S5 ),

where V(m, R, A, £, is the positive real number defined by

V(m,R,A, 5 ) I M 25 t
| ([ mao asmzacofae= [ { [ ra-0) s o}
0 t 0 0
Moreover the equality holds in (3.12) if and only if M is the metric ball in
the simply connected space form of constant curvature R,

Corollary 3.2, Let M be a complete noncompact Riemannian mani-
fold of dimension m. Suppose the Ricci curvature of M is bounded from
below by some nonpositive constant (m—1)R.

(1) If oM is nonempty and there exists a positive solution U, of equa-
tion (3.1), then

v [ fr dsipeoldr (o=dis(+, 200,

(2) If 0M is empty, there are no positive solutions of the equation:
du+1=0 on M.

Proof. The first assertion follows from Theorem 3.2. As for the
second assertion, let {M,};,_,,... be an increasing family of compact
domains M, of M with smooth boundary dM, and U, the solution of
equation (3.1) (Q=1) on M,. Then by Theorem 3.2, we see that for
each i,

v ["{[ a0 s

on M, (p,:=dis (x, 3M,)) and hence
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lim U, >lim L Fr=i(s) ds/f;n—l(t)}dt= + oo

G0
This shows the second assertion.

In Section 5.2, we shall give a generalization of the second assertion
of Corollary 3.2.

§4. A volume estimate for a domain in a Riemannian manifold and its
application
Let M be a connected, complete Riemannian manifold of dimension
m. Suppose M is a compact Riemannian manifold of class (R, 4). Let
U, be the solution of equation (3.1) with @=1. Then by Stokes’ theorem,
we have :

Volm(M):j — AU,
M

:J _ay
oM oy
<max|[FU,||-Vol,_,(0M).

Therefore it follows from Corollary 3.1 that
4.1) Vol (M)<Vol,_,oM) .j’” h=Xt)dt,
0

where £, =max {dis (x, dM): x € M} and h; , is the solution of equation
(0.4) defined by R and A. Inequality (4.1) was proved by Heintze and
Karcher [27]. In this section, we shall show a generalization of inequality
(4.1) for a domain in M and give its application (cf. Theorem 4.1). More-
over in the last paragraph of this section, we shall prove a volume estimate
for a domain in a noncompact complete Riemannian manifold.

4.1, We shall first prove the following

Proposition 4.1. Let M be an m-dimensional Riemannian manifold of
class (R, A) and D a compact domain in M with smooth boundary 0D.
Then

2 (D)
42) Vol (D)<Vol, ,(@D)- max j " pmeas) i),
i(D)Stsd(D)J

where hg , is the solution of equation (0.4) defined by R and A, § (D)=
min {dis (x, dM): x € D} and §,(D)=max {dis (x, 0M): x e D}. Moreover
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the equality holds in (4.2) if and only if D={xe M:dis(x,dM)=5,(D)}
and M is a model space of class (R, /).

Remark. Simple computations show that the right-hand side of (4.2)
is equal to

92(D)
Vol@D) [ * (o) i 3(6,(D)

in the case when R>0, R<0 and 4>0, or R<0 and A=—+ —R.

Proof of Proposition 4.1. We first consider the case when §,(D)<<
C(R, A) (:=inf {t >0: hy () <0} < + oo (cf. Sec. 1)). - For a sufficiently
small positive constant ¢ such that §,(D)+¢<<C\(R, 4), we put

0 S2(D)+e )
=0 AT i) dupzacs) s,
81(D) 8

where p=dis (x, M ). Then it follows from Theorem 0.2 in Introduction
that

S&.z=1

on V,:={x e M: p(x)<d,(D)+¢}. Then by virtue of the approximation
theorem by Greene and Wu (cf. [26: Lemma 1.2, Lemma 3.2 and Theorem
3.2]), we see that there exists a smooth function &, on V, such that

Ageg 1 &,

. : 52(D) +e '
1|Va||§e+j ha=(2) dtfi o),
I&e_éc]<e‘ |

Therefore integrating by parts, we get

(1—o) Vol (D)= 4,
D
_ j o5,
ap Qv
d3(D) +¢
§Volm_l(8D)<e+ max f 2 H(s) ds/hﬁ;‘(t)),
5Dyt Jt

where v denotes the exterior unit normal vector field on dD. Since ¢ is
any small positive constant, we can obtain inequality (4.2). Now we as-
sume that the equality in (4.2) holds. Then it is not hard to see that
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@3) Vol (D)=Vol,_ (D) j R} () defhE=H3,(D)
81(D)

and

@4.4) D={x e M: dis (x, 0M)=5,(D)}.

Therefore it follows from (4.4) that D is a compact Riemannian manifold
of class (R, A(D)), where A(D)=(h%, 4/hzr,)(3,(D)), and hence by Corollary
31

32(D)~81(D)
@“.5) max [PU, < | i Ao (0,

0

where U, is the solution of equation (3.1) (Q=1) on D. Noting that the
right-hand side of (4.5) is equal to

32(D)
[7" o) 2o, 0,
01(D)

we have

Vol (D)= f —4U,
D

— I _ 90U,
ap dov
32(D)
<Vol,@D) [ " Hii(@) dilhgiD))
81(D)
=Vol,, (D) by (4.3).

This shows that equality holds in (4.5). Therefore we see by Corollary 3.1
again that D is a model space of class (R, 4(D)), and hence by (4.4), M is
also a model space of class (R, 4). Next we consider the case when §,(D)
=C{(R, 4). Then it follows from Theorem 1.1 that M is isometric to the
metric ball with radius C(R, A) in the simply connected space form
M™(R) of constant curvature R. Therefore, noting that &(:=lim, ,§,)
satisfies 48,=1 on D, we see by the same arguments as above that the
conclusion is true. This completes the proof of Proposition 4.1.

Corollary 4.1. Let M be a compact Riemannian manifold without
boundary. Suppose the Ricci curvature is bounded from below by (m—1)R
(m=dim M). Then for any domain D in M with smooth boundary 9D, we
have
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@6  Vol(D)=Vol,.@D) [ [0 dilf (S,

where d(M) and # ., respectively, denote the diameter of M and the in-
radius of M\D (i.e., . p=max {dis (x, dD): x € M\D}), and f5 is the solu-
tion of equation (0.2) defined by Z=R. Moreover in the case when R>0,
equality holds in (4.6) if and only if one of the following cases holds:

(1) M is isometric to the real projective space P™(R) of constant
curvature R and D is the complement of the metric ball B(R: r) of radius r
(0< r<z/24/R).

(2) M is isometric to the (standard) sphere S™(R) of constant curvature
R and D is the metric ball B(R: r) (0<r<=/+/R).

Proof. Choose a point p of M\D such that dis(p, 0D)=.5p.
For any sufficiently small ¢>0, set M,:={x e M: dis(p, x)=¢}. Then
M, is a Riemannian manifold of class (R, 4,) (4.:=(m—1)(log 1) (¢)),
because dp, < (m—1)(log /) (e) on dM (p,:=dis(p, x)) (cf. Theorem 0.1).
Therefore we get by Proposition 4.1.

Go(Me)—e
Vol (D)= Vol @D)- [ """ =) dufh = p—e)
5

M\D—¢

" ) duf NSy —),

SH\ —¢

d(M)—

<Vol,,_,(D) f

where A, is the solution of equatioil (0.4) defined by Z=R and A=4..
Since the right-hand side of (4.6) is equal to
(M) —

" B ) dufhn (S p—e),s

M\D—¢

Vol,_,(3D) Id
Ed

we have inequality (4.6). Suppose now the equality holds in (4.6). Then
the latter part of Proposition 4.1 implies that each M, is a model space of
class (R, 4,) and D={xe M: dis (x, IM)=I p—e}={x € M: p,(x)=
Fp}. This shows that one of the two cases (1) and (2) as above holds.
This completes the proof of Corollary 4.1.

4.2. As an application of inequality (4.6), we shall now prove the
following

Theorem 4.1. Let m be a positive integer and let K>1 and ¥, e
0, w,,) be given constants, where w.,, denotes the volume of unit sphere in
Euclidean space of dimension m~+1. Then there exists for any number V e
(7", 0n) a constant d(m, K, ¥ ;V) e (0, ©) such that for a complete m-dimen-
sional Riemannian manifold M whose boundary is empty and which satisfies
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the Ricci curvature = (m—1)
“.7) |the sectional curvature|< K
the volume Vol,,(M)=7",,

if the diameter d(M)=d(m, K, ¥"y; V), then Vol ,(M)=V.

(4.8) Lemma. Let M be a compact Riemannian manifold without
boundary. For any p € M, we set l,:=max{dis (x, p): x € M}, i,:=the
distance between p and the cut locus of p, and B,(p):={x e M: dis (x, p)<r}.
Suppose the Ricci curvature of M is bounded from below by (m—1)R
(Re R,m=dim M). Then we have

(M)
VOlm(Br(p)) > lp—7r fR (t)dt
Volm(Br'(P)) - JWM) f‘én—l(t)dt

153

4.9)

Jor any v’ € (0, min {r, i,}). Moreover if the sectional curvature of M is
bounded from above by K (K= R), we have

d (M)

y )t
(4.10) Volm(Bxp))gwm-xj frNe)dt S .

(M

SR (O)dt

lp—7r

Proof. For any sufficiently small positive number e with ¢<(r’/2, the
approximation theorem by Greene and Wu [26] tells us that there exists a
smooth function p.: M — R such that

lo.—p,|<e on M,
(4.11) e || <l+e on M,
IVo.I>1—e  on B;,_.(p)\B(p),

where p,=dis (p, *). We may assume p, is moreover a Morse function,
since every smooth function on M can be approximated in the C*-topology
by Morse functions on M (cf. [37: p.37]). For each te[—e, [,+¢], set
D(e, t):={xe M: p(x)<t}. Then by (4.11),

4.12) B, (p)CD(, t)C B,. (D).

Suppose ¢ is-a regular value of p, (i.e., dp,5=0 on dD(e, t)). Then, noting
that the inradius /.y, is larger than /,—t—e, we get by inequality
(4.6)
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[ gt
(4.13) Vol (D(e, 1)< Vol,,_,(D(e, )2 lo=t==
JE T, —t—¢)

On the other hand, we see by (4.11) that

1
(4.14) Vol,(D(, t))_z_l_—l_e Lw) 170l
_1rr
T 14 f _ Vol (3D, w))du.

Therefore we have by (4.13) and (4.14)

(4.15) é":((}i;;—t—a) < Voln(@D(e, 1)
(I+¢) L SE7 Wdu j Vol,,(8D(e, u))du

—f—e

Integrating the both sides of (4.15) from r’ to r,

d(M) . 1/(1+e) r
I e J Vol,,_,@D(e, u)du
S -

(4.16) _%r&_’):___, ===
L =0 Jf Vol,,_,(3D(, u))du
[ e
— Jpen
L
D(eyr’)
(1+¢) Vol(D(e, r)) by (4.11)

~ (I+¢) Vola(B,.- ()\B.(p))

Thus we obtain inequality (4.9) by taking the limit of (4.16) as ¢ 0.
Moreover if the sectional curvature of M <K, we see by Rauch’s com-
parison theorem that

@.17) Vol BA ) Z0n j " fe et

and hence inequality (4.10) follows from (4.9) and (4.17). This completes
the proof of Lemma (4.8).

Before the proof of Theorem 4.1, it would be interesting to give an
alternative proof of the following Cheng’s theorem [16] as a corollary of
Lemma (4.8).

Theorem 4.2 (Cheng). Let M be a complete Riemannian manifold
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whose boundary is empty and whose Ricci curvature is bounded from below
by (n—1)R. Suppose R>0 and d(M)=z/vVR. Then M is isometric to
the standard sphere S™(R) of constant curvature R.

Proof. We keep the notations of Lemma (4.8). Let p be a point of
M such that I,=d(M). Then inequality (4.9) (r=d(M)=x/vR) tells us
that

jn/ «/ng_l(t)dt
f”/ et
w/ SR~

[ ra-apa
=Vol.(B,.(p)*%,——y

!

[ s

since I”Ni f,’;”:‘r f2-t Therefore taking the limit as r’ | 0, we get
afVR—1' 0
Vol (M)=w,_, f ¥E fmo1_yol (S™R)). On the other hand, Bishop’s
0
inequality (cf. [27]) shows that Vol (M)<Vol,(S™(R)). Therefore we
have Vol,.(M)=Vol,(S™R)). This implies that M is isometric to S™(R).

Proof of Theorem 4.1. We note first that the injectivity radius of M
is larger than some positive constant I(K,#",) depending on K and
v, (cf. [12]). Let p be a point of M such that [,=d(M), where [,=
max {dis (p, x): x e M}. Then for any r’e (0, I(K, 7)), we have by
inequality (4.10) with r=d(M)

d (M) .
I (sin #)™'dt
0

@17)  Volu(D)z o, [ (sin VEilVEyd- [ :
(sin £)™~'dt

Ay~
We define now a continuous function G,(r, d) (V & (0, ®,,)) on (0, I(K, 7))
% (0, z] by

GV(I", d): D -1 J: (Sin '\/..Kt/\/K)qut f: (Sin t)m—ldt |

d
VJ (sin ¢)™-'dt
d—r

Then G,(r, d) satisfies lim,,, G(r, x)=w,/V >1. Therefore there exist
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constants r(m, K, ¥"y; V) € (0, I(K, ¥",)) and d(m, K, ¥"y; V) € (0, ©) such
that

(418) GV(r(m> Ka Vo? V)’ d)Zl

for any d=d(m, K, ¥"; V). Hence we see by (4.17) and (4.18) that if
dM)zd(m, K, 7"; V), Volu(M) = Gy(r(m, K, Vo3 V), dM)XV = V.
This completes the proof of Theorem 4.1.

Combining Theorem 4.1 and a sphere theorem due to Shiohama [45],

we have the following

Corollary 4.2. Let m, K and ", be as in Theorem 4.1. Then there
exists a positive constant d(m, K, ¥",) € (0, &) such that for a complete m-
dimensional Riemannian manifold M whose boundary is empty and which
satisfies the conditions (4.7), if the diameter d(M)=d(m, K, V"), then M is
homeomorphic to a sphere.

Combining the above corollary and Theorem B in Croke [17], we
have the following

Corollary 4.3. Let m, K and ¥, be as in Theorem 4.1. Then there
exists a constant p(m, K, ¥")>m such that for a complete m-dimensional
Riemannian manifold M (0M=¢) satisfying (4.7), if the first non-zero
eigenvalue p, of the Laplacian on M is smaller than p(m, K, 7)), M is
homeomorphic to a sphere.

4.3.

Proposition 4.2. Let M be a complete, noncompact Riemannian man-
ifold without boundary such that the Ricci curvature is bounded from below
by some nonpositive constant (im—1)R (RL0, m=dim M). Let D be a
compact domain in M with smooth boundary dD. Then

d(D)Vol,_,(3D)  if R=0,

(4.19)  Volu(D)<{ exp ((m—1)v/ —Rd(D))—1
(m—1v—R

.Vol,,_,(@D) if R<O0,

where d(D) denotes the diameter of D.

Proof. Let 7:[0, 0)—>M be a geodesic ray and B,: M—R the
Busemann function with respect to 7. Let ¥(R, 8,, 0,)(f) be the function
defined by (3.7), where §,=min {B/(x): x ¢ D} and §,=max {B,(x): x € D}.
Then
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S(—¥(R, 35, ) 0 B) =1

on D(=D\dD) (cf. (3.8)). Therefore the same argument as in the proof
of Proposition 4.1 shows an inequality:

(3,—8,) Vol,,_,(@D)  if R=0,

420) Vol (D)< NV TRG —5))
(4.20) Vol,.(D) exp((m-(;i)i/l)ﬁ(_f?z;z 9»)) l.Volm_l(aD) if R<O0.

Noting that for any a € R, B(x)=a+dis(x, B;'(a)) on {x ¢ M: B(x)=a}
(cf. [49: Lemma 3.2]), we have d(D)=0,—d,, and hence we get inequality
(4.19). This completes the proof of Proposition 4.2.

Corollary (Yau [51], Calabi [11], Wu [50])). Let M be a noncompact
complete Riemannian manifold without boundary such that the Ricci curvature
is nonnegative outside a compact set. Then the volume of M is infinite.

§5. Function theoretic properties of noncompact Riemannian manifolds

Let M be a connected, complete and noncompact Riemannian mani-
fold of dimension m. (In this section, we assume M has no boundary.)
Let X be a smooth vector field on M and Q (0) a nonnegative smooth
function on M. We write L, for the elliptic differential operator 44X
acting on functions. In this section, we shall show lower or upper bounds
for the Green function G,(x,y) of Ly on M if it exists. Moreover we
shall consider the equation:

(.1 Lyu+0Q=0

on M and get criteria for existence or nonexistence of a positive solution
of (5.1). In the last part, we shall consider the Dirichlet problem “at
infinity” of M under certain conditions.

5.1. 'We shall first give a lower bound for G,(x, y) if it exists. Let
D be a compact domain of M with smooth boundary dD. We write
oo(x) for the distance between a point x and D. Let us choose a contin-
uous function Z on [0, o), a continuous function 7 on [0, o) and a real
constant / such that for any distance minimizing geodesic o: [0, a]—>M
from D,

the Ricci curvature of the direction 6(¢) = (m— 1)%(r),
(5.2) the trace of S, <(m—1)4,

<X, 6(2)) =n(0),
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where S, denotes the second fundamental form of 6D with respect to
2 7

3(0). Set T (t):=expf 7(s)ds and W,(t)::f 1/(ThzM(s) ds, where r is
0 t

a positive constant and 4, , is the solution of equation (0.4) defined by Z
and 4. Then it follows from Theorem 0.2 that

(5.3) Sx(W,0p)=0

on M\D. Suppose there exists the Green function G,(x, y) of Ly on M.
Fix any interior point x, of D and put c(x,, D):=inf {G(x, x,): x € D}.
Then by (5.3) and the maximum principle for L,-subharmonic functions,
we see that for any x € M\D,

(X, D)

W— W, o pD(x)-

Gy (x, xo) =

Thus we have shown the following

Theorem 5.1. Let M be a connected, complete and noncompact Rie-
mannian manifold of dimension m, X a smooth vector field on M, and DC M
a compact domain with smooth boundary 0D. Fix any interior point x, of
D. Suppose there exists the Green function G,(x,y) of Ly on M. Then

(5.9) f: 1 / (h;;‘;ﬂ(t) exp L n(s)ds)dt< too
and

Gy (x, x,) = &(x,. D) I;m 1 / <hg‘;ﬁ(t) exp JZ p(s)ds)dt

for any x e M\D, where, &, A and v are as in (5.2), h,, 4 is the solution of
equation (0.4) defined by Z and A, and &(x,, D):=inf {G(x, x,): x € D} X
the left-hand side of (5.4). '

Remark. Theorem 5.1 implies that if the left-hand side of (5.4) is
infinite, M does not possess the Green function of Ly, That is, there are
no nonconstant positive Lg-superharmonic functions on M (cf. Introduc-
tion 0.7). This has been proved in [32] when X=0.

5.2. We shall now show a criterion for M to have no positive solu-
tions of equation (5.1). When M possess no nonconstant positive L x-
superharmonic functions, it is clear that equation (5.1) has no positive
solutions, so that we assume in this section, there are nonconstant Ly-
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superharmonic functions on M. Let G,(x, y) be the Green function of Ly
on M. Then it is easily seen that there exist positive solutions of equa-

tion (5.1) if and only if the integralj Gu(x, WO(»)dy is finite. In the
M

following, we shall ask whether the integral J Gy (x, »)O(») dy is finite or
M

not.

Suppose the integral I Gy (x, »)O(»)dy is finite. Set
M

GxQ:= Gulx, HOOID.

We fix a point x, of M and choose continuous functions Z%,, 7, and g, on
[0, c0) such that for any distance minimizing geodesic a: [0, a]—>M from
Xos

the Ricci curvature in direction ¢(¢)=(m— DZ,(?),
(5.9 (X, o(6)) =),
Qo= q4(1).

Let £, be the solution of equation (0.2) defined by #, and put
@0,0:= [ {[ @ sr-Tw0 dul(fr-T5) s,

£
where r is any positive constant and T(,(t):=expj no(W)du. Then it fol-
0

lows from Theorem 0.1 that

SX(@o,r ° o)+ 0=S54(9,,, o P+ o0 0,20

(po:=dis (x,, )) on M. Since @, , o p, is nonpositive on {x € M: p(x)=r},
we have by the maximum principle for L;-subharmonic functions

GMQ2@0,1 ° 0o
on M. Thus we get
Gy Q=90 o

on M, where @(¢):=lim,_, ., @, ,(t), that is, we have

68 Guowz| [ @ T ddir- T s
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for any x ¢ M. Inequality (5.6) implies in turn that if the integral

(57) ], @fe o) duthe= 1) s

is infinite, G, Q= -+ o0, i.e., M possesses no positive solutions of equatioﬁ
(5.1). This assertion, for example, tells us the following

Theorem 5.2.  Let M be a complete, connected and noncompact Rie-
mannian manifold of dimension m, X a smooth vector field on M and Q(z0)
a nonnegative smooth function on M. Then M has no positive solutions of
equation (5.1) if one of the following conditions holds: (In the conditions
below, p, denote the distance function to some fixed point x, € M, and o, B
and T are positive constants.)

(1) The Ricci curvature of M =0, the length ||X I of X<B/p, and
Q=7/0} log p, outside a compact set.

(2) The Ricci curvature of M = —a, | X || <8 and Q=T/p, log p, out-
side a compact set.

(3) The Ricci curvature of M = —ap;, | X|| < Bp, and Q=T outszde a
compact set.

Remark. All the conditions of the theorem are optimum (cf. Section
5.3).

Proof of Theorem 5.2. Let us prove the third assertion and omit the
proofs for the others, which will be shown by the similar arguments
below. Let %, 7, and g, be as in (5.5). By the assumptions, we may
take %,, 7, and ¢,, respectively, to satisfy Z,(t)= —at® 7,(t)=pt, and
q,=7 on [0, o) for some §>0. Then the solution f, of equation (0.2)
defined by %, satisfies (log f,)(¢)<et on [, o0) for some ¢>0. In fact,
set g(¢):=exp et’. Then

g~ igh=| (g~ gy (s)ds

[ 2e+4e%s* — s’ ds
o f(9)g(s)
Therefore if e max {a, f;(3)/23/,(0)}, we get (log f3) () =<(log g)'(t)=2et

on [5, co). This shows that if ¢ is sufficiently large, we have

[ @se-mowas
Joo T T sk
G T 1
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(To(t):=exp J: no(u)du) for some £>0. Thus the integral (5.7) is infinite

and M possesses no positive solution (5.1).
By the third assertion of Theorem 5.2 and Gauss’ equation, we have

the following

Corollary 5.1. Let N be a connected Riemannian manifold whose
sectional curvature is bounded from below by —oa(pi+1) for some a>0,
where §, denotes the distance to a fixed point X, of N. Let ¢: M—N be an
isommetric immersion from a complete Riemannian manifold M without
boundary into N. Suppose the length of the second fundamental form of
the immersion ¢: M—N is bounded from above by B(g, ¢+1) for some
B>0. Then for any smooth vector field X on M such that | X || <7(y 0 ¢+ 1)
for some T >0, there are no positive solutions of equation (5.1) (Q=1) on
M.

The several conditions as above for M to possess no positive solutions
of equation (5.1) have been imposed everywhere on M. However if the

integral‘[ G (x,»)0(»)dy is infinite for an open subset 2 of M, the inte-
Q

gral J. Gu(x, »)O(»)dy is also infinite. Therefore it would be desirable
M
to find conditions on an open subset £2C M under which the integral
J Gy(x, »)Q(»)dy would be infinite. In the rest of this section, we shall
2

show a criterion for the above integral to be infinite.
Let D be a compact domain of M with smooth boundary 6D. Fix
an interior point x, of D. Since the infimum of G,(x, x,) as x ranges
over M is zero, there is a connected component £ of M\D such that

(5.9) inf {G,(x, x,): x € 2}=0.

Clearly £ is noncompact. We shall now choose a continuous function %
on [0, o), a continuous function 7 on [0, o) and a constant 4 which
satisfy (5.2) for any distance minimizing geodesic ¢: [0, a]—>2 from D.
Moreover let g be a nonnegative continuous function on [0, co) such that
O(x)=qo py(x) for any x e 2, where p,:=dis(D, x). Let h, be the
solution of equation (0.4) defined by Z and 4, and put

v.0):= [ {[] @it duz2 70 s

(r >0, T(t):=exp f[ n(s)a’s). Then by Theorem 0.2, we have
0
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(5.9 Sx(wr°PD)+q°PDgo

on £. Let{M},_,,,... be an increasing family of compact domains M,C
M with smooth boundary M, such that M= J;, M,. We may assume
that the interior of M, contains D, Set £2,:=M,N 2 and fix any positive

number r and a sufficiently large integer i so that {x e 2: p,(x)Zr}C£,.
We write 0, , for the solution of the equation:

Ly6,,+0=0 on £,
0,,=0 on 8£2,\D,
0,,.=T.0) on DN,

Then we have by (5.9)

SX(¢¢°PD_@i,r)Z“‘Q°PD+Q_Z_O on 2,
U, 00,—6,,.<0 on 82,\D,
¥, 00,—0;,=0 on dDNJQ,.

Therefore it follows from the maximum principle for Ly-subharmonic
functions that

@i,rgwropD on Qz,
and hence we have
(5.10) V,0,;,:={v, VO, ,><¥,(0)=0

on 9D N 942, where v, denotes the outer unit normal vector field on 6£2,.
Let G,(x, ») be the Green function of Ly on M,. Then we get by Green’s
formula and (5.10)

[ 6uxw 0OIMy=[ | —Giw L, ()dy
=j 64, ()7 .G (52, Yy
aDNd2;
—j G (X0, Y)WV,.0..,(3)dy
aDNd2;
_J @'L,r(y)Gi(xm y)(X, Vi>dy
aDN32;

200 [ (7G50 D)= Gl DX, )y
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Therefore we have

[, 6w o0y

(5.1 1) o
" gT,(O) LDnam {Vv%Gi(x0> ¥)— G (X, .V)<X’ Vt>}dy-

Let 3, be the solution of the equation:

L,2,=0 on 2,
3,=0 on 92D,
=1 on 3D N 3R,

Then it follows from Green’s formula again that
j G (X, J’)Vuizsz’:J‘ {7.,G (%0, ¥) — G (X0, YXX, v )}dy.
aDNnag . dDNIR;
This equality and (5.11) show that
612 [ GUx NOMZEO [ Gilxe V. Ty
. 2 aDNaR;

Put 3:=lim,.. 3, Then by (5.8), 3 is a Ly-harmonic function on £
such that ¥<1. Therefore taking the limit of (5.12) as i 1 oo, we obtain

613 [ Guln NOOMYZTO [ Gulxo 97 3dy

(v:=—VFpplsp). We note here that —F,3>0 on 9D N 42, since 3 <1 (cf.
e.g., [40: Chap. 2, Theorem 7]). Thus, taking the limit of (5.13) as r 1 oo,
we have the following assertion: if the integral

r {j: (ghz 7 T)(w) du/(h;ﬁ;lT)(s)} ds

is infinite, so is the integral j Gu(x, Y)O(y)dy, and hence there are no posi-
Q

tive solutions of equation (5.1) on M. Therefore we see, for example, that
if one of the conditions (1)~ (3) in Theorem 5.2 holds on 2 as above, M
possesses no positive solutions of equation (5.1).

5.3. We shall now give an upper bound for the Green function of
L, and moreover a sufficient condition for M to have positive solutions of
equation (5.1) under certain assumptions. Let M be a connected, com-
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plete and noncompact Riemannian manifold of dimension »2, X a smooth
vector field on M and Q (=0) a nonnegative smooth function on M. Let
D be a (possibly noncompact) domain with C' boundary dD. We write
pp (resp. vy) for the distance to D (resp. the outer unit normal vector field
on dD). Setvi(@D):={tv,(x): x 3D, t >0} and 2:=M\D. In general,
it would be impossible to obtain a lower estimate of Syp, everywhere on
M, in contrast to an upper estimate of Syp,, so that, in order to get an
upper estimate for the Green function or a criterion for M to have positive
solutions of equation (5.1), we shall impose the following conditions on
M, D, X and Q throughout this section:

(A.1)-the distance function p,, is of class C* on £.
(A.2)-there is a continuous function z: [0, oo)——>R such that dppr=
700, 0n Q.
(A.3)-there is a continuous function : [0, co)—R such that (X, Fp,>
=Loppon . ‘
(A.4)-there exists a continuous function g*:[0, co)—R such that
g*=0and @<g*op, on L.

We remark that if D is compact, we can always find { and ¢g* as
above under the assumption (A.1).

(5.14) Example. Let M be a complete, simply connected Rieman-
nian manifold with nonpositive sectional curvature. Then it is well known
that for every point o € M, the exponential map exp,: M,—M at o induces
a diffeomorphism between M, and M. Therefore M and D=2B(o,r):=
{x e M: dis (0, x)<r} satisfy the assumption (A.1). Moreover let ", be
a nonpositive continuous function on [0, o) such that for any v € M, with
llv]j=1, the sectional curvature for every tangent plane containing the
vector ¢,(t) (6,(t):=exp, tv) is bounded from above by #°(¢). Then by
Theorem 0.3, we have

dpp=(m— D(log foY o (p+71)
on M\D, where f, is the solution of equation (0.2) defined by 7.

(5.15) Example. Let M be a complete Riemannian manifold whose
sectional curvature is bounded from above by some nonpositive constant
K. Suppose M contains a totally convex closed subset C. (Recall that a
closed subset C in a Riemannian manifold is said to be fotally convex if
for any geodesic g: [0, al->M whose ends are contained in C, o(¢) belongs
to C for every ¢ € [0, a] (cf. [5]).) If Cis in addition a domain with smo-
oth boundary, it is known that M and C satisfy (A.1) (cf. [ibid.: Proposi-
tion 3.4 and Proposition 4.7). If C is a submanifold without boundary
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or K <0, we can find a totally convex domain D containing C and with
smooth boundary 9D, within any e-neighborhood of C (cf. [32: the proof
of Theorem (5.5)]). Therefore M and D satisfy (A.1). Moreover by
Theorem 0.3, we have

dop=(m—1)(log hg) o pp
on 2, where h(t):=cosh v —Kt.

(5.16) Example. Let M be a complete, noncompact Riemannian
manifold whose sectional curvature is bounded from above by some neg-
ative constant K and bounded from below by some negative constant k&
(k<K<0). Let H be the universal covering of M and n: H—M the
projection. Suppose the volume of M is finite. = Then there is a compact
domain DC M with C* boundary 9D such that M and D satisfy (A.1).
Furthermore there is a family {7,};_,,,,...,, of geodesic rays 7, of H, which
corresponds to the connected components {2,},_, ... ,of M\D, such that for
each i, p, o m restricted to z~'(2,) is equal to —B,,, where p,:=dis (D, %)
and B,, is the Busemann function associated with 7,. (See [20] or [46] for
these results.) Therefore by Theorem 0.4, we have

dop= —(m—1)W —k

on M\D.

Now we shall show a criterion for M to have the Green function
G(x,y) of Ly and give an upper bound for G,(x, y). Suppose the as-
sumptions (A.1) ~(A.3) hold and further the intergral

r {1 ' / exp f (r+C)(s)ds}dt

is finite. We put

D(1): =f {1 / exp _[: (T+C)(S)ds}du

and define a continuous function ¥ on M by ¥=0op, on M\D and
¥=0@(0) on D. Then the assumptions (A.1)~(A.3) imply that ¥ is of
class C* on M\D and L ¥ <0 on M\D. This shows that ¥ is a positive
Ly-superharmonic function on W, and hence M possesses the Green function
Gy(x,y) of Ly. Moreover it follows from the maximum principle that

Gy(x, X)) S D o pp(x)

for x e M\D, where x, is an interior point of D and ¢:=max {G(x, x,):
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x € M, dis (x, x,) =dis (x,, D)} X (1/@(0)). We remark that if D separates
M, M has bounded nonconstant Ly -harmonic functions (cf. Corollary (5.8)
in [32]).

The above result and Examples (5.14) ~(5.16) tell us, for instance,
the following

Theorem 5.3. Let M be a connected, complete and noncompact Rie-
mannian manifold of dimension m and X a smooth vector field on M.

(1) Suppose M is simply connected and the sectional curvature is
nonpositive. Fix a point o of M. Let p, and f, be as in Example (5.14).
Then if, for some >0, '

[ X =(log fi*~(£)/t*) © p,
outside a compact set, M possesses the Green function G,(x, y) of Ly which
satisfies
Gyl(x, x)) <0/05
outside a compact set for some 3 >0.
(2) Suppose the sectional curvature of M is bounded from above by

some negative constant K and M contains a totally convex closed set C. If,
for some ¢>0,

[ XIS @m—1V —K—e¢
outside a compact set, there exists on M the Green function Gy(x,y) of Ly
which satisfies
G, x) S 3fexp epo
outside a compact set for some §>>0, where x, is a fixed point of C and
pc:=dis (C, %).

(3) Suppose the volume of M is finite and the sectional curvature is
bounded from above by some negative constant K and from below by some
negative constant k (k<K <0). Let D be a compact domain as in Example
(5.16). If, for some ¢ >0,

(X, PopyZ(m—1)W —k +e

(op:=dis (D, %)) outside a compact set, M has the Green function Gy(x, y)
such that

Gy (x, x,) < d/exp €0p

outside a compact set for some 6 >0, where x, is a fixed point of D.
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Now we shall consider equation (5.1) under the assumptions (A.1)~
(A.4). We keep the notations of those assumptions. In the following,

let us prove that if the integral J Q(»)dy is finite and the integral
‘ D

Jw {‘[ ( *(s) expj (T—}—C)(u)du)ds / expf (r—f—C)(u)du}dt

is also finite, there are positive solutions of equation (5. 1) on M, and more-
over if D is compact, there is a unique solution U, of equation (5.1) such
that Uy(x) approaches to 0 as p,(x) tends to co.

Proof. We first remark that M possesses the Green function Gy(x, y)
oo t
of Ly, because the integralf {1 / expj (r-i—C)}dt is finite. Set
0

v =J‘j {IZ q*(u) exp I: (T,+ O)du / exp ﬁ) (r—{—C)}ds.

Let {M},_i,,... be an increasing family of compact domains M, M such
that for each i, the boundary M, is smooth and intersects transversally the
boundary aD if the intersection M ;N 0D is not empty, and M=\, M,.
Now we fix a point x, of M. We may assume M, contains x,. Let us
consider the case when X, is not contained in D. We write {2, ;}i-1.....x0
for the connected components of M,\D and 8, for the solution of equa-
tion:

Ly0,+0=0 on M\D,

6,=0 on dM\D,
0,=7(0) on oD\Int (M)).
Then we have
(5.17) 8, < o p,

on M,\D. In fact, by the assumptions (A.1)~(A.4), we see that ¥ o g, is
of class C* on M\D and satisfies Ly¥ o 0,+0=<0 on M\D. Therefore
inequality (5.17) follows from the maximum principle for L,-subharmonic
functions. Moreover by (5.17), we get

(5.18) Fpn, 7O <¥"(0)=0

on DN Int(M,). Since X, is contained in M, but not contained in D, we
may assume X, is a point of £,,. Then it follows from the Green’s for-
mula that
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L' 1 O(»)G(x,, Y)dy (G (x, y):=the Green function of Ly on M)
=, ~LO.0)G L 1)y
=00)=FO [, .65 )G 3K, )y
+IaDnani,1 G (%, YV ,0.dy,

where v denotes the outer unit normal vector field on 9D. Therefore we
have by (5.18) and (5.19)

J Q(»)Gxo, V)dy
(5.20)
<T o py(x)—T(0) LDW {7,600 )G o, XX, ).

Similarly for the other components {2, .};_..... 1y, We get

o, LOVG L5, )y

(5.21)
—¥(0) j 17,6 (%0, ) — Goloxor YX X, D).

aDNI 1
Noting that
—FO |, {7,640 )=Cxo XX, )}y
aDNM;
—TO|, 7.6 =0,
aMiﬂD

where v, denotes the outer unit normal vector field on dM,, we obtain by
(5.20) and (5.21)

62 [, 00IC(r DT opsx)+[  00IG o ).

i i
Thus, taking the limit of the both sides of (5.22) as i 1 -+ o0, we have
(523) [, 00l NYST o 0+ [ | Q)G ).

In the case when x, is contained in D, the same calculations as above

show us again inequality (5.23). By the assumption: I O(»)dy <+ oo,
D
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we see that the right-hand side of (5.23) is finite, and hence so is the left-
hand side of (5.23). This implies that M possesses a positive solution

UQ(x):zf O(NGy(x, y)dy of (5.1). Moreover if D is compact, it fol-
M
lows from (5.23) that Uy(x) tends to 0 as p,(x) } +oo. The uniqueness of

such a solution is clear because of the maximum principle. This com-

pletes the assertion.
By the assertion which has just proved and Examples (5.14) ~(5.16),

we have the following

Theorem 5.4. Let M be a connected, complete and noncompact Rie-
mannian manifold of dimension m, X a smooth vector field on M and Q(=£0)

a nonnegative smooth function on M.
(1) Suppose M is simply connected and the sectional curvature is

nonpositive. We fix a point o of M. Let p, and f, be as in Example (5.14).
If, for some ¢,>0 (i=1, 2, 3),

X< (m—1—e)(log £5) © po,
and
O=e{(log foy (1)t~} o p,

outside a compact set. Then there exists a unique positive solution U, of

equation (5.1) such that Uy(x) tends to 0 as p,(x) T + oo.
(2) Suppose the sectional curvature of M is bounded from above by
some negative constant K and M contains a totally convex subset C. Then

if, for some ¢,>0 (i=1, 2, 3),
| XS (m—1)V —K —e,

and
O<e/oi*

outside a compact set and further if the integral j Q(y)dy is finite, M pos-
c

sesses positive solutions of equation (5.1). Moreover if C is compact, there
is a unique solution U, of equation (5.1) such that Uy(x) tends to 0 as
po(x) 1 +oo.

(3) Suppose the volume of M is finite and the sectional curvature of
M is bounded from above by some negative constant K and from below by
some negative constant k (k< K<0). Let D be a compact domain as in
Example (5.16). Then if, for some ¢,>>0 (i=1, 2, 3),

<X> VAOD>_2._(m_ I)W/Tk‘]‘en



Laplacian and Hessian Comparison Theorems 375

and
O=e/op™
outside a compact set, or if, for some e, >0 (i=1, 2, 3),
(X, Vo) ze0p™
and
0=,

outside a compact set, there exists a unique positive solution U, of equation
(5.1) such that Uy(x) tends to 0 as pp(x) T + co.

Corollary 5.2. Let M be as in the first assertion of Theorem 5.4.
Suppose the sectional curvature of M is bounded from above by —e p3**
and || X|| is bounded from above by e, outside a compact set, where
efi= 1, 2, 3) are positive constants and p, denotes the distance to a fixed
point 0 € M. Then there is a unique solution U, of the equation: Lyu+1=0
on M such that U(x) tends 0 as py(x) T + oc.

Proof. Let ", and f, be as in Example (5.14). By the assumption,
we can take " (t)= —¢,t***2. Then the same calculations as in the proof
of Theorem 5.2 show that (log f;)(¢#)=2¢'** for some &>0 (=1, 2).
Therefore the corollary follows from the first assertion of Theorem 5.4.

Remark. Let N be a connected compact Riemannian manifold
without boundary. Let f be a smooth function on R such that f(#)=
a, exp a,t for t+<0 and f(t)=a, exp a,t*** for t >a,, where a’s are all
positive constants. Set M:=R X ,N (the warped product of R and N) and
D:={(t,x) e M: t<a;}. Then the assertion after Theorem 5.3 and its
proof tell us that M possesses a positive solution U, of equation: Ju+1=0
such that U,(z, x) tends to 0 as # 1 +oo. On the other hand, since the
Ricci curvature of M is bounded from below by some constnat on D, we
see by Corollary 3.2 (1) that any positive solution of the above equation
tends to +oo0 as ¢} —oo. (See [5: pp. 26-27] for the curvature formula
of warped products.)

5.4. 1In this section, we shall consider the Dirichlet problem ‘“at
infinity”* of visibility manifolds. Let M be a complete connected Rieman-
nian manifold of dimension m. Suppose M is simply connected and the
sectional curvature is bounded from above by a negative constant K.
Two geodesic rays 7, and 7, are called equivalent if dis (7,(¢), 7.(¢)) is
bounded for 1 0. The set of all equivalence classes of geodesic rays is
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denoted by M(co0). We assume that M= M M (o) is equipped with
the “cone topology” (i.e., a subbase for the topology is the set of open
cones of geodesic rays), which makes M homeomorphic to a cell (cf. [19:
Theorem 2.10]).

Let us consider the Dirichlet problem on M for the elliptic differential
operator Ly =4+ X, using the Perron-Wiener-Brelot method (cf. [7: Chap.
V] or [8]). The following lemma is obvious, since M is compact.

(5.24) Lemma. For any Ly-superharmonic function ¢, the condition:

lim inf ¢(p)=0 for every x e M(oo) implies ¢=>0.
M2p-x
Let ¢ be an extended real valued function on M(o0) and X, a family
of lower bounded L -superhramonic functions ¢ such that lim inf,, 5, ..4(p)
=>¢(x) for any x € M(co0). Then the lgwer envelope D, of X, U {+ oo_}_ is
+ 00, — oo or Ly-harmonic, and D, < D,, where D, is by definition —D_,
(cf. [7: Theorem 16]). If D, is finite and D,=D,, ¢ is called resolutive.
We call a point x € M(co) (Ly-) regular if for any function ¢ bounded
above,
lim sup D,(p) < lim sup ¢(y)
M3p~2x M(x)dy—z

(cf. [8: Sec. 18]). We see that if every point of M(oo) is regular, any
continuous function ¢ on M(oo) is resolutive and

lim D,(p)=¢(x) (D,:=D,)
; M3p-zx
for every x € M(oo), because of Lemma (5.24) and
o(x)= lim inf ¢(y)<lim inf D (p)<lim sup D,(p)
M (o) dy—a M32p-x M3p-zx
= lim sup ¢(»)=p(x).
M () dy—z

In [32], we have considered the case of Ly=4 (i.e., X =0) and shown that
if m=2 or M has constant curvature outside a compact set, every point
of M(c0) is regular. Let us now generalize this result.

Theorem 5.5. Let M be a complete, simply connected Riemannian
manifold of dimension m. Assume the sectional curvature is bounded
from above by some negative constant K and the length || X|| of a smooth
vector fleld X on M is bounded from above by (m—1)¥ —K —¢ for some
positive constant ¢>0. Suppose m=2, or the following conditions holds:
there exist a point 0 € M and positive constants «, B, 1 and & such that
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15—3‘9— log x/f?‘ <ap-fexp 2/ —Kp.
(5.25) ;
E érp"l“a,
26,
where (0, 0y, - -, 0 _y) (p:=dis (0, %)) is a polar coordinate system around

oeM, G:=det(g,;), (89):=(g;;))™" and g,;:=(3/00,,0/30,>. Then for
every point of M(co) is regular, so that for any continuous function ¢ on
M((o0), there is a unique Ly-harmonic function D, such that lim, ., D,(p)
=o(x) for each x € M(o0).

Before proving Theorem 5.5 we shall give examples of M which
satisfies (5.25).

Example. Let M be a complete, symply connected Riemannian
manifold whose sectional curvature is bounded from above by a negative
constant K. Suppose the Riemannian metric g is rotationally symmetric
around o € M, that is, g can be written in the form:

g=dp*+1(o)d6"

in a polar coordinate system (p,6,, - - -, 6,-;) around o, where f is a
smooth function on [0, co) satisfying f(0)=0, f/(0)=1 and —f”’/f <K, and
de*:=3 771 g,,,d0,d0, denotes the standard metric on the unit sphere

of Euclidean space R™. Then M satisfies the condition (5.25), since
g¥=f"%p)g¥ and f(t)=sinh / —Kt/s/ —K. Therefore another metric
on M which is close enough to the above metric g in the sence of C=-
topology satisfies all the conditions of Theorem 5.5.

Example. Let M, be the unit ball in C"” with Bergman metric g,.
That is, My:={z=(z,, - - -, 2,):|2|<1}, gy:=go,:;dz:dz; and

n+1 -
go,ij:='(1——%lz—){(1_]le)aij+zizj}'
Then it is not hard to see that M, satisfies (5.25). Therefore if Misa
strictly pseudoconvex domain in C™ with smooth boundary which is close
enough to the unit ball M,, M with the Bergman metric satisfies all the
conditions of Theorem 5.5 (cf. [24]).

Proof of Theorem 5.5. The key of the proof is to construct a
“barrier” at each point x € M(co).

(A) Suppose the dimension of M is 2. Then every point x € M (o)
has a fundamental neighborhood system % such that the complement of
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each U e % is totally convex, because every pair of points of M (e0) can
be joined by a unique geodesic line (cf. [19]) and a domain whose bound-
ary is a geodesic line is totally convex. Moreover for each totally convex
set C of M, there is a Ly-superharmonic function F, on M such that
F,=1on Cand Fy(p) tends to 0 as p,(p) 1 + co(ps:=dis (C, *)). In fact,
we put F,=1 on C and '

oo

{l/exp j: (r+e— J‘—*K)(u)du}dt

on M\C, where z(t):=+ —K sinh v/ — K t/cosh ¥/ — Kt and

a::(f {l/exp J: (r+ 5—«/—7)(u)du}dt>—l.

Then by the assumptions, we see that F, is Ly-superhamonic on M (cf.
Example (5.15)). Therefore the theorem follows from the same arguments
as in the proof of Theorem (7.3) in [32].

(B) In order to prove the theorem in the case when the metric satisfies
the condition (5.25), it suffices to show that for each point x € M(o0),
there exist an open neighborhood U of x e M(c0), and a positive Ly-
-superharmonic function Z, on U N M such that #,(p) tends to 0 as p—x
and the infimum of &, over the complement of any neighborhood U’ U
of x is positive (cf. [8: Theorem 15]). For the sake of brevity, we call
such a function a (L,-) barrier at x. In the following, let us consider the
Dirichlet problem at infinity of a Riemannian manifold which satisfies
more general assumptions than that of Theorem 5.5 and seek certain con-
ditions which ensure us the existence of a barrier at each point of infinity.

(C) Let M be a connected, complete Riemannian manifold of di-
mension m and X a smooth vector field on M. Suppose there is a domain
D with smooth boundary 9D such that the exponential map expz;, restrict-
ed to v*(@D):={tv,(x): t >0, x € 6D} induces a diffeomorphism between
v*(@D) and Q:=M\D, where v, denotes the outer unit normal vector field
on dD. Moreover suppose there exists a continuous function z: [0, oo)
such that the Hessian /'?p of the distance function p to D satisfies

Fo(p)::aj

ec(p)

(5.26) (7*0),(V, V) =z o p(p)| VP

for any point p ¢ 2 and every tangent vector V e M,, where we write J'+
for the component of ¥ perpendicular to Vp (i.e., V+:=V—(V, Vo)l p).
Let & be a positive smooth function on [0, co) such that the integral

r 1/9(u) du is finite. Set ¢(t)::j’ 1/9(u)du (¢ € [0, 00)). Then a map
©&: 2-[0, ¢g(c0)) X3D defined by G(exprptvy(x)):=(4(t), x) induces a
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diffeomorphism between 2 and (0, ¢(o0)) X 0D. We write M(oo) (resp. M)
for ¢(c0) XD (resp. MU M (o)) and assume M has the natural topology
induced by ®. Now we fix a coordinate neighborhood {U, §=(@@,, - - -,
0.,-1)} of dD. We may assume 6(U) contains the closed unit ball around
©,---,00eR™". Set Wi={peU: > ,"7*0(p)<1/4} and fix a point
p,of W. Then(s,0,, - --,0,_,) (s:=¢(p)) is a coordinate system on #":=
expyp({tvp(x): t >0, p e W}). Then the Laplace operator 4 of M can be
expressed as follows:

1 [# 3
A=———[ 9o o(dp—(log 9) o _] s
Fop o T9°p(dp—(log9) p)as +

where

n 19 (e d
A'L:—: = ( G ’Lj;>9
2 ve )\ a0,

G=det(g,,), g,;,=<0/00,,9/30;) and (g)=(g;;)"". For two positive con-
stants a and b such that a<b<min {1/2, ¢(c0)}, we put

Bopi={s—ge)—ar+3] 0.~04p))}" —a

and
B,,:={pew: %, ,(p)<a+b}.

Then %, , is a positive smooth function on #~ such that #Z, ,(p) tends to
0 as p e #" approaches to p,:=(¢(0), p,) € M(o0), and the infimum of
A, over the complement of any neighborhood of p, in ¥ is positive,
where # denotes the closure of %" in M. Moreover there exist positive
constants ¢, and ¢, such that

&<l
a.@u,b éel—l

(5.27) as
* 7, ,

<e,
os*

on B, ,. Therefore if (m—1)r—(log9)+n)ep=0 on B, ,, we have by
(5.26) and (5.27)
Ly, <L le—(1—e)90 p((m—1)z—(log 9 +7)o ]
(5.28) Fop
+Alga,b+X-Lga,b
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on B, ,, where r is a continuous function on [0, co) satisfying
(X, Voyzmop
on #". Leto, X and o be continuous functions on [0, oo) which satisfy,
respectively,
X+ <a0p

max Mlé){op

1=is=m-1

max
1=i,jsm—-1

on #°. Then there are positive constants ¢, (k=3, 4, 5, 6) such that

(5.29) X1, ,|<eoT "o p (T(t)::exp f z‘(u)du)
0
(5.30) b
) zél aﬁiaﬁj ‘0
m=1 dlogv/G 0% -
5.31 yZ eV T TPeab | e (AT %o
(5.3 nglg %, %, Ze(XTHop
m-—1 a ij agg
5.32 987 0%an | <epo
(532 S o0, a0, 10

on B, ,. (The proof of the above inequalities (5.29) ~(5.32) will be given
at the end of the proof for Theorem 5.5). Therefore we see by (5.27) ~
~(5.32) that

LB, ,< 9} S (1—e)8(0n— e —(og 8 +)} o0

{9 (es0+e,+eX)T % 0 p+e(Fw) o o]
on B, ,, and hence L;%, ,<0 on B, , for sufficiently small a and b if the
following conditions hold:
im Z()=+oc0 (&:=9((m—1)r—(log I +r)),

t— oo

Fo)(t
Gay  lmsuwp GD=0
T
P T




Laplacian and Hessian Comparison Theorems 381

and

- 0@ _
11{3 sup W =0,

' Fo)t)
fim sup -FOE) _q
[0

(5.34)

Thus we have seen that there is a (Lg-) barrier at each point p:=(¢(c0), p)
€ M(o0) N under the conditions (5.33) and (5.34).

(D) We shall now return @ the proof of Theorem 5.5. We keep the
notations as above. At first, we put 9(¢):=(t+1)'***(0<5,<min {8, 8}).
Moreover by the assumptions of the theorem, we can take D:=a metric
ball around o € M,

o(t):=+ —Ksinh v/ —K t/cosh ¥ —Kt, z(t):=c¢—(m—1)v/—K,
o(t):=(m—1)v —K —e¢,
X(@t):=at ' Pexp2v/—Kt and o(t):=7t"'"%.

Then the arguments of the preceding paragraph (C) show that for each
X € M(o0), there is a (Lx-) barrier at x, that is, every point of M(o0) is
regular.

(E) It remains to show the inequalities (5.29) ~(5.32). Inequalities
(5.32) is clear because of the choice of w. The inequalities (5.29) and
(5.31) are direct concequences of the lemma below. Moreover inequality
(5.30) follows from the positive semidefiniteness of the matrix (0°4,, ,/06,06,)
and the following lemma again.

Lemma. Under the assumptions of the paragraph (C), let Y be a
tangent vector at p € W such that (Y, Vp)=0 and f a smooth function
defined near p. Then:

m—1 (») m=1
W 1YE=3 ey vz e [ 2 (5 1Y),

p(p) m—1 1/2
@ rsizeten [~ YI{E @nonr)”
where Y= 77 Y¥0/00,)(p) and « is a positive constant independent of p,
Y and f.

Proof. We identify #~ with [0, co) X W by the coordinate system
(0,01, -+, 0n_y). Letc:i[—e, e]l=>W,,:=p(p)X W be a smooth curve
such that ¢(0)=p and ¢(0)=Y. Define a smooth map £ :[0, o)X
[—e, el>W by F (o, u)=(p, 0,0 c(u), - - -, 0, 0c()). Set ¥:=F ,(3/ou).
Then we have
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s =~ o o
£< Y, Y5=205,,Y, ¥)

=2V 3Vp, ¥
=2rp(¥, ¥)
=2tep || Y|* by (5.26).

Therefore we get
d
——(log || Y|[(p, 0)) =7 0
dp
and hence, integrating the both sides, we have
o p (D)
1Y 1*Ce(p), )= Y IO, 0) exp L 2c(u)du
m—1 . 0 (p)
gxz(z |Y* IZ) exp f 2¢(u)du
i=1 0

for some £>>0. This proves the first assertion, from which the second
assertion follows. In fact,

vr=l5r jj;
=B 5G]
< exp [ et V11 {5 (2 )1

Before we state a corollary to Theorem 5.5, we recall some definitions
in [19]. Let I" be a freely acting, properly discontinuous group of iso-
metries of a complete, simply connected Riemannian manifold M whose
curvature is bounded from above by a negative constant K. We write
M|I for the quotient manifold of M by I'. A unit speed geodesic 7(¢)
t=0)in M/I" is called an almost minimizing geodesic if there is a positive
number ¢ such that dis (7(0), 7(¢))=¢—c for t 0. Two unit speed geo-
desics 7, and 7, in M/I" are called equivalent if dis (7,(¢), 7,(¢)) is bounded
for t=0. The set of all equivalence classes of almost minimizing geodesi-
cs in M/I" is denoted by M/I'(o0). Let 7 be an almost minimizing geo-
desic in M/I" and 7 a lift of 7 in M. If 7 represents an equivalence class
in M(o0)-L(I"), where L(I") is the cone limit set of I', ¥ represents, by
definition, a class of F(M/I'). We assume that M/I":=M/I" U M/I"(c0)
is equipped with the topology induced from the cone topology and the
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“horocycle topology” (i.e., a subbase of the neighborhoods of a point
X € M(oo) with respect to the topology is the set of all limit balls at x) on
M. Then the covering map =: M —M/I" extends naturally to the covering
map also denoted by =, from M UO(I") onto M/I"UF(M/I') and the
restriction map z: O(I')—F(M/I") is again a covering map, where O(I")
=M(o0)—I(I"). Then by the same arguments as in the proof of Theo-
rem 5.5, we have the following

Corollary. Let M be a Riemannian manifold which satisfies all the
conditions of Theorem 5.5. Let I be a freely acting, properly discontinuous
group of isometries of M. Suppose the length of a smooth vector field X
on M|T" is bounded from above by (m—1)X+ —K —e for some positive
constant ¢ and M|T" is compact. Then there is for any continuous function
¢ on M|I'(c0) an Ly-harmonic function D, on M/I" such that

lim  D,(p)=¢(x)
/I'2p—-x

M

for any x e F(M|T).

We remark that M/ is compact, for example, if M/I” is corecompact,
that is, M/I" contains a compact totally convex set, or if the dimension
of M is equal to 2 and [’ is finitely generated (cf. [19]).

We shall conclude this section with the following

Remark. (1) Let M be a complete, connected and noncompact
Riemannian manifold and X a smooth vector field on M. Let (£,, ¢, P,,
x € M) be the minimal diffusion process on M with the differential gene-
rator Ly:= A4+ X, where { is the explosion time of Z',(w). If there is a
positive solution U of the equation: LyU+1=0 on M, it follows from
the Dynkin’s formula that U(x)=E,[¢] for any x € M (cf. e.g., [21]: Pro-
position 8B]), and hence { is finite almost surely, for every starting point
x e M. For example, if M and X are as in Corollary 5.2, we see that { is
finite almost surely (cf. [30, II] in the case when X =0). On the other
hand, if M and X satisfy, for instance, the condition (3) of Theorem 5.2,
it turns out from the proof of the theorem and the approximation theorem
due to Greene and Wu [26] (cf. the proof of Proposition 4.1 in Section 4)
that there is a smooth function @: M —[0, co) such that @(x)—+co as
x—+4oo in M and Ly O<« on M, for some constant «, and hence we
see by Theorem 6A in [21] that  is infinite almost surely for every starting
point x € M (cf. [30, 1] in the case when X =0).

(2) Let M be a complete, simply connected Riemannian manifold
of negative curvature. Recently, Sasaki [44] has proved that if the sec-
tional curvature is “asymptotically negative constant”, the Dirichlet prob-
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lem for harmonic functions can be solved on M=M U M (o). However
both his condition and ours in Theorem 5.5 seem to be very restrictive,
and it would be wishful to solve the Dirichlet problem on M under a
weaker condition. Moreover it would be interesting to describe the Martin
boundary of M from a view point of geometry.

Added in proof. After the completion of this paper, the author
recieved a preprint [52] from M. T. Anderson on May 7, 1983. In his
paper, it is proved that a complete, simply connected Riemannian mani-
fold whose sectional curvature is pinched by negative constants admits a
wealth of global convex sets so that the Dirichlet problems for the
Laplacian can be solved at infinity (cf. Theorem 5.5). The author would
like to thank M. T. Anderson for sending him his preprint.
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