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§ O. Introduction 

Rauch [41] proved a fundamental theorem on the lengths of Jacobi 
fields, called the Rauch comparison theorem. After him, Berger [4], 
Warner [48] and Heintze and Karcher [27] etc. had extended the Rauch 
comparison theorem. Especially, Heintze and Karcher showed a very 
general comparison theorem for the length and volume distortion of the 
normal exponential map of a submanifold. The proof of their compari­
son theorem in turn tells us some useful informations about the "local" 
behaviour of the Laplacian and Hessian of the distance function to a 
submanifold (cf. Greene and Wu [25] in the case when a submanifold is a 
point). On the other hand, Wu [49] has proved that, in certain situations, 
the Laplacian and the Hessian of a distance function in an appropriate 
weak sense can be "globally" estimated from above (cf. also Calabi [10], 
Cheeger and Gromoll [13, 14], Yau [51]). Moreover, making use of the 
method by Wu, we have shown in [32] general comparison theorems on 
the Laplacian and the Hessian of a distance function. The purpose of 
the present paper is to give several applications of our comparison the­
orems. 

0.1. We shall first describe our Laplacian and Hessian comparison 
theorems. Let M be a Riemannian manifold with (possibly empty) bound­
aryaM. We write Mo for the interior of M (M =Mo if aM =s")' Let X 
be a smooth vector field on M. We consider the second order elliptic 
operator Lx = J + X acting on functions, where J denotes the Laplace 

operator (i.e., locally J=.z.= ~~ ~(VGgij ~)). For a semi-contin-
'V G ax' axJ 

uous function cp on a neighborhood of a point x in M, an extended real 
number Sxcp(x) is defined by 

Sxcp(x): =liminf{f - aGrCx'~)cp(~)d~_cp(x)}/f Gr(x,y)dy, 
r-O aBr(x) aJ.{~) Br(x) 

~~~~~~---
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where BrCx) is the metric ball with radius r around x(r is sufficiently small), 
Gr(y, z) denotes the Green function of Lx with respect to the Dirichlet 
problem on Br(x) (cf. e.g., [31]) and J.!(~) is the outer unit normal vector 
field on the metric sphere aBr(x). In the case when X =0, We write SSOlx) 
for SoSO(x). We remark that if SO is smooth near x, SxSO(x)=LxSO(x). Let 
N be a closed subset of M. We write PN(X) for the distance between a 
point x E M and N. For a point x E Mo\N, a geodesic a: [0, a]~M is 
called a distance minimizing geodesic from N to x if P N(a(t)) = t for t E [0, a], 
a(a)=x and a(t)cMo for t E (0, a). 

Theorem 0.1 (cf. [32: Theorem (2.28) and Lemma (2.5)]). Let N be 
a closed subset of a Riemannian manifold M of dimension m and x a point 
of Mo\N. Suppose there exists a distance minimizing geodesic a: [0, a]~M 
from N to x. Let ~(t) (resp. r;(t)) be a continuous function on [0, a] 
such that the Ricci curvature in direction aCt) is bounded from below by 
(m-1)~(t) (resp. <X, a(t);S;r;(t)). Then for any nonincreasing C2-func­
tion t on [0, a], we have 

(0.1) SAt 0 PN)(X);;:::{t" +t'«m-1) log fa)' +t'r;}(a), 

where fa is the solution of the classical Jacobi equation: 

(0.2) f~'(t) +~(t)f.,(t) =0 with /a(O) =0 and f;(O) = 1. 

Moreover when N is a point and a can be extended to a distance minimizing 
geodesic Ii: [0, a]~M (a< a) from N through x, the equality holds in (0.1) 
if and only if the sectional curvature of any plane tangent to aCt) is equal to 
~(t) and <X, a(t)=r;(t) (t E [0, aD. 

When N is a smooth hypersurface of M, we have a better estimate 
than (0.1) (cf. [32: Lemma (2.27)]). That is: 

Theorem 0.2 (cf. [ibid. : Theorem (2.28) and Lemma (2.8)]). Let N 
be a closed hypersurface of a Riemannian manifold M of dimension m and 
x a point of Mo\N. Suppose there exists a distance minimizing geodesic 
a: [0, i1]~M from N to x. Let ~ and r; be as in Theorem 0.1. ; let A be a 
real number such that the trace of S.(o) is bounded from above by (m-1)A, 
where S.(o) denotes the second fundamental form of N with respect to a(O) 
(i.e., <S.(o) V, U) = <f7 vo(O), U»). Then for any non increasing C2-function 
t on [0, a], we have 

(0.3) SAt 0 PN)(X) 2: {til +t'«m-l) log h."A)' +t'r;}(a), 

where h.,jt) is the solution of the classical Jacobi equation: 
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(0.4) h';jt)+R(t)h"jt)=O with h",iO) = 1 and h~,iO) = A. 

Moreover when 0 can be extended to a distance minimizing geodesic ii: [0, a] 
---+M from N through x, the equality holds in (0.3) if and only if the sectional 
curvature of any plane tangent to aCt) is equal to 81!(t), N is umbilic at 0(0) 
(i.e., <S"CO) V, U>=A< V, U» and <X, &(t»=r;(t) (t E [0, aD. 

In [32], we have actually proved the above theorems for the Laplacian 
LJ, using the second variational formula of arc lengths and the method 
developed by Wu [49]. However it is easily seen that the same arguments 
as in [32] are applicable to the proofs of Theorems 0.1 and 0.2. In fact, 
we shall apply Theorems 0.1 and 0.2 of the above forms to the study of 
some function theoretic properties concerning the operator Lx on a com­
plete noncompact Riemannian manifold (cf. Section 5). 

We remark here that the Hessian 172('1/1' 0 PN) in an appropriate weak 
sense can be estimated from below in terms of the sectional curvature 
along 0 and the second fundamental form of N if N is a submanifold (cf. 
[32: Theorem (3.31)]). But this fact will not be used in this paper. 

As for a lower estimate of the Laplacian of a distance function, we 
have the following 

Theorem 0.3 (cf. [ibid.: Lemma (2.11) and Theorem (2.49)]). Let N 
be a closed submanifold of a Riemannian manifold M of dimension m and x 
a point of Mo \N. Suppose there exists a distance minimizing geodesic 
0: [0, a]---+M from N through x=o(a/)(a' <a), (so that PN is smooth near x). 
Let % be a continuous function on [0, a'l such that the sectional curvature 
of any tangent plane containing aCt) is bounded from above by %(t) 
(t E [0, a']); in the case when dim N>O, let r be a real number such that 
all the eigenvalues of the second fundamental form S"CO) of N is bounded 
from below by r. Let h;;r,r (resp.f;;r) be the solution of equation (0.4) 
defined by % and r (resp. the solution of equation (0.2) defined by x). 
Suppose h;;r,r is positive on [0, a'l. Then the Hessian P"PN of PN has an 
estimate: 

(P2PN)X(V, V)~(log h;;r,r)'(a'){11 VW-<&(a/), V>2} 

for any V E Mx, and in addition, if V E d(exPN)"co)(II), 

where II denotes the vertical subspace in the tangent space at &(0) of the 
normal bundle v(N) for N. (We take d(exPN)"Co)(II)=Mx if dim N=O.) 
In particular, 

LJpN(x):;;::::{n(Iog h;;r,r)' +tm - n - 1)(1ogf;;r)'}(a'). 
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0.2. Now we shall assume M is a complete noncompact Riemannian 
manifold of dimension m with (possibly empty) boundary aM. For a 
geodesic ray 7: [0, oo)~M (we assume ret) E Mo for t>O if aM is not 
empty), we define a function Br: M~R by 

Blx): = lim {dis (7(t), x)-t}. 
t_oo 

This function Br is called the Busemann function associated with a ray 7. 
(cf. e.g., [19: p. 56)). Let B~:= t-dis (7(t), *). Then IB~(x)I=1 dis (7(t), x) 
-dis (7(0), 7(t»I<dis (7(0), x), by the triangle inequality, so that the family 
{B~} is uniformly bounded on compact subsets of M. Moreover if s<t, 
then 

B;(x)-B;(x) = dis (r(s), x)-dis (7(t), x)+ t-s 

= dis (7(s), x) -dis (7(t), x) + dis (7(t), 7(s» 

>0, 

again by the triangle inequality. Thus the family {B;} is also nonincreas­
ing and hence the convergence of limt _ oo B; to Br is uniform on compact 
sets. In particular, the Busemann function Br is continuous. We note 
that when t is fixed, the level sets {B~=constant} are precisely the metric 
spheres about the point 7(t). Since B; ~ Br as t t + 00, we may thus 
think intuitively of the level sets of Br itself as the "metric sphere about 
the point 7(00)" and we may think of Br as "the distance from r( 00)". 
This is the intuitive meaning of the Busemann function. Note also that 
BP(t» = -t for all t>O. 

Now we shall state a result on SBr : 

Theorem 0.4 (cf. [33: Lemmas (1.12) and (1.13»)). Let M be a 
complete noncom pact Riemannian manifold of dimension m. Suppose the 
Ricci curvature of M is bounded from below by some non positive constant 
(m -1 )R. Then the Busemann function Br associated with any geodesic ray 
7 if aM is empty (resp. a distance minimizing geodesic ray 7 from aM if aM 
is not empty) satisfies 

S( -Br» -(m-l)V -R 

on M (resp . .Yf'r: ={x E M: Blx)<O}). 
Theorem 0.4 implies that if M has nonnegative Ricci curvature and 

aM is empty, the Busemann function Br associated with any ray 7 is 
superharmonic on M. (cf. the paragraph 0.5 below). This was proved 
by Cheeger and Gromoll [13] (cf. also [49]). (When we consider the 
operator L3J in Theorem 0.4, we see also that Sx( -Br»(m-l)v -R-A 
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on M or :ffr if the length II XII of X:;;:; A. But this estimate will not be 
used in this paper.) 

We shall now describe the contents of each section. In the follow­
ing, let M be a connected complete Riemannian manifold of dimension m 
with (possibly empty) boundary aM. 

0.3. As we mentioned after Theorem 0.4, Cheeger and Gromoll 
proved in [13] that if aM is empty and the Ricci curvature of M is non­
negative, then the Busemann function associated with any ray is super­
harmonic on M. From this result, they showed that M as above is iso­
metric to the direct product N X Rk (k>O), where N contains no lines and 
Rk has its standard flat metric. They also showed in [14] that if M is a 
convex subset with boundary aM in a Riemannian manifold of nonnegative 
sectional curvature, the distance function to aM is concave on M. Later, 
making use of this result, Burago and Zalgaller obtained in [9] a theorem 
on such a manifold M saying that (1) the number of components of aM 
is not greater than 2, (2) if there are exactly two components r l and rz 
of aM, M is isometric to the direct product [0, a] X r l , and (3) if aM is 
connected and compact, but M is noncompact, M is isometric to the direct 
product [0, oo)XaM. 

In Section 1, using Theorem 0.1, Theorem 0.2 and Theorem 0.4, we 
shall prove, roughly speaking, a generalization of the above result by 
Burago and Zalgaller from the view point of Ricci curvature. More pre­
cisely, we shall show that, in the case when M has nonnegative Ricci 
curvature and aM is a smooth hypersurface whose mean curvature with 
respect to the inner normal is nonpositive, (1) if aM is disconnected and 
it has a compact component r, M is isometric to the direct product [0, a] 
Xr, and (2) if aM is connected and compact, but Mis noncompact, M 
is isometric to the direct product [0, oo)XaM (cf. Theorem 1.2 (1) and 
Theorem 1.4 (2)). Moreover we shall prove an analogue of Cheng'S 
maximum diameter theorem (cf. [16] or Theorem 4.2 in Section 4). 

The results of this section have been proved in the author's previous 
paper [33]. 

0.4. We assume M is a connected compact Riemannian manifold of 
dimension m with smooth boundary aM and consider the following eigen­
value problem: 

on M, 

on aM. 

We write AI(M) for the first eigenvalue of the above equation. Let Rand 
A be two real numbers such that the Ricci curvature of M is bounded 
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from below by (m-I)R and the trace of Sv is bounded from above by 
(m-l)A, where Sv denotes the second fundamental form of aM with 
respect to the unit inner normal vector field ).I on aM. We call such a 
manifold M a Riemannian manifold of class (R, A) for the sake of brevity 
(cf. Section 1). Recently, Li and Yau [36] have given, among other 
things, computable lower bounds for A/M) in terms of R, A and the in­
radius ./,w of M (i.e., ./ M=SUP {dis (x, aM): x E MD. In particular, their 
estimate (cf. [ibid. : Theorem 11]) is optimum in the case when R=O and 
A=O. More precisely, they have proved that if M is of class (0, 0), Aj(M) 
is greater than or equal to n;2/4'/ J; the equality is attained for a flat 
cylinder. Their method is based on a gradient estimate of the first eigen­
function. Moreover, Gallot [23] has also showed another computable 
lower bound for Aj(M), estimating the Cheeger's isoperimetric constant in 
terms of R, A and ./ M' On the other hand, before the works mentioned 
above, Reilly [42] showed that if R>O and A=O, then Aj(M) is not less 
than mR and the equality holds if and only if M is isometric to the closed 
hemisphere of the standard sphere of constant curvature R. 

In Section 2, we shall show that for a Riemannian manifold M of 
class (R, A), Aj(M) has a lower bound depending on R, A and ./ M, and 
the equality holds if and only if M is isometric to a model space of class 
(R, A) (cf. Theorem 2.1). We remark that our estimate coincides with 
the above one due to Li and Yau when R=A=O, and our result contains 
the above theorem by Reilly as the special case: R>O and A=O. 

The results of this section have been proved in the author's previous 
paper [34]. 

0.5. We assume M is a c.onnected compact Riemannian manifold of 
dimension m with smooth boundary aM and consider a Poisson equation: 

{
LlU+Q=O 

u=o 
on M, 

on aM, 

where Q is a smooth function on M. We write UQ for the solution of the 
above equation. When M is a (simply connected) domain of Euclidean 

plane R2 and Q=::2, U2 and its integral 2 f M U2 are, respectively, called the 

warping function of M and the torsional rigidity of M, and it is a classical 

problem to obtain geometric bounds for U2, VU2 and 2 f M U2 etc. (cf. e.g., 

[2], [39]). 
In Section 3, we shall show that if M is of class (R, A), UQ is bounded 

from above by a continuous function of the form: F(m, R, A,./ M, Q*) 0 p, 
where p = dis (*, aM), Q*(t) = max {Q(x): x EM, p(x) = t} (O:S;: t::;./ M) 
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and F(m, R, A, .f M' Q*)(t) is a continuous function on [0, .f M] determined 
by m, R, A, .f M and Q*, and moreover the equality holds for some x E Mo 
if and only if M is a model of class (R, A) (cf. Theorem 3.1). Moreover 
in the case when Q == 1, we shall prove that if the Ricci curvature of M is 
greater than or equal to (m-l)R, Uj is bounded from below by a con­
tinuous function of the form: G(R) 0 p, where G(R)(t) is a continuous 
function determined by R (cf. Theorem 3.2). 

0.6. In Section 4, we shall show a volume estimate for a domain in 
a certain Riemannian manifold (cf. Proposition 4.1) and as its application, 
we shall prove the following 

Theorem (Theorem 4.1). Let m be a positive integer and let K E 

(1, 00) and Yo E (0, (Om) be given constants, where (Om denotes the volume oj 
the unit sphere sm(1) in Euclidean space oj dimension m+ 1. Then there 
exists Jor any number V E (Yo, (Om) a constant d(m, K, Yo; V) E (0, n), 
depending on m, K, Yo and V, such that Jor a complete m-dimensional 
Riemannian manifold M whose boundary is empty and which satisfies 

(0.5) {
the Ricci curvature ~(m-l) 

I the sectional curvature I ~ K 

the volume Volm(M);;;;:Yo, 

if the diameter d(M);;;;:d(m, K, Yo; V), then Volm (M» V. 

We remark here that if the diameter of a complete, m-dimensional 
Riemannian manifold M whose Ricci curvature ~(m-l) is equal to IT, 

M is isometric to sm(1). This is a theorem due to Cheng [16], who used 
his comparison theorem on the first eigenvalue of a metric ball to prove 
this theorem. In the course of the proof for our theorem as above, we 
shall give another proof of the Cheng's maximum diameter theorem (cf. 
Theorem 4.2). Moreover combining our theorem and a sphere theorem 
due to Shiohama [45], we see that if the diameter of a complete m-dimen­
sional Riemannian manifold M which satisfies (0.5) is sufficiently close to 
IT, M is homeomorphic to sm(1) (cf. Corollary 4.2). 

0.7. We assume M is a complete noncompact Riemannian manifold 
of dimension m without boundary. Let X be a smooth vector field on 
M and Q($O) a nonnegative smooth function on M. A C 2-function cp 
on an open subset U of M is called Lx-harmonic if Lxcp=O on U. A lower 
semi-continuous function ifJ on U is called Lx-superharmonic if for any 
relatively compact domain V in U and every Lx-harmonic function cp on 
V with ifJ;;;;:cP on av, we have ifJ;;;;:cP on V. When -ifJ is Lx-superharmonic, 
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we say if! is Lx-subharmonic. (When X:==O, we simply call if! (super-, sub-) 
harmonic if if! is (Lo-super-, Lo-sub-) Lo-harmonic.) It is easily seen that an 
upper semicontinuous function if! on an open subset U is Lx-subharmonic if 
and only if Sxif!zO on U (cf. e.g., [49] or [35: Theorem 15.2]). Let D be 
a compact domain of M with smooth boundary aD. We write Gn(x, y) 
for the Green function of Lx with respect to the Dirichlet problem on D. 
Let {Mi}i~I,2, ... be any increasing family of compact domains in M with 
smooth boundary aMi' Then {GM,(x, y)} is increasing with respect to i 
and set GM(x,y): =limi~+= GMix,y) (;;;+00) (cf. e.g., [31]). We call 
G M(X, y) the Green function associated with the elliptic differential operator 
Lx on M if GM(x, y)< + 00 (x*y). It is known that there exists a non­
constant positive Lx-superharmonic function on M if and only if M has the 
Greenfunction GM(x, y) of Lx (cf. [31]). In Section 5, we shall show geo­
metric lower or upper estimates for GM(x, y) if it exists (cf. Theorem 5.1, 
Theorem 5.3). Moreover we shall consider the equation: Lxu+Q=O on 
M and give criteria for existence or nonexistence of a positive solution of 
the above equation (cf. Theorem 5.2, Theorem 5.4). In the last part of 
Section 5, we shall consider the Dirichlet problem for Lx-harmonic 
functions "at infinity" of M under certain conditions (cf. Theorem 5.5). 
Section 5 is a continuation of the latter part of [32]. 

In connection with our results, we must mention certain previous 
investigations by several authors. For example, a theorem of Blanc-Fiala­
Huber [28] tells us that if m=2 and the Gaussian curvature of M is non­
negative outside a compact set, M possesses no nonconstant positive 
superharmonic functions, and a theorem of Ahlfors states that if m=2, M 
is simply connected and the Gaussian curvature is bounded above by a 
negative constant, M has the Green function of the Laplace operator (cf. 
[38]). Moreover Aomoto [1] proved that if m~3, M is simply connected 
and the sectional curvature is nonpositive, there are nonconstant positive 
superharmonic functions on M (cf. also [18]). Recently, Ichihara [30, I] 
has given more general geometric criteria for existence or nonexistence of 
the Green function of the Laplace operator on M (cf. also [15]). In [32], 
we have considered the case when X:==O and show generalizations of the 
results by Ichihara. His method is similar to ours, but seems to be not 
applicable for the case when X$O. 

We note that a solution of the equation: Llu+ 1 =0 on a Riemannian 
manifold is called a quasi-harmonic function in [43], where the chapter 2 
is devoted to the classification theory on quasi-harmonic functions. 

The author would like to express his thanks to Professor T. Ochiai 
for his helpful advice and encouragement, and also Professor N. Ikeda 
for his useful suggestions. 
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§ 1. Ricci curvature, geodesics and some geometric properties of Rieman­
nian manifolds with boundary 

In this section, we shall state the main results in the author's previous 
paper [33] and give the sketches of their proofs for the completeness. 

1.1. Let M be a connected, complete Riemannian manifold of di­
mension m with smooth boundary aM. Let R and A be two real numbers. 
We call M of class (R, A) if the Ricci curvature of M:;;:: (m -l)R and the 
trace of S«(~-l)A for any unit inner normal vector field ~ of aM, 
where S" is the second fundamental form of aM with respect to ~ (i.e., 
<S"X, Y)=<J7 x~, Y»). We write of M for the inradius of M (i.e., of M= 

sup {dis (x, aM): x E M}~+oo). Let hR,A E C2[0, 00) be the solution of 
equation (0.4) defined by Bl=R and A. Set C1(R, A)=inf {t: t>O, hR.it) 
=O} and C2(R, A) = inf {t: t>O, h~.it)=O}. If hR,A>O (resp. h~,A>O) 
on (0,00), we understand C1(R, A)=+oo (resp. CzCR, A)=+oo). We 
remark here that C1(R, A)< + 00 if and only if R>O, R=O and A<O, or 
R<O and A < -.v -R and that 0< C2(R, A)< + 00 if and only if R>O 
and A>O, or R<O and -.v -R<A<O. 

(1.1) Definition A Riemannian manifold M of class (R, A) is said 
to be a model space if one of the following conditions holds: 

(D C1(R, A)< + 00 and M is isometric to the metric (closed) ball 
B(R; C1(R, A)) with radius C1(R, A) in the simply connected space form 
of constant curvature R. 

(II) R=O and A=O, or 0< C2(R, A)< + 00. Moreover M is iso­
metric to the warped product [0, 2a] X hr; where h=hR,A' a is any positive 
number if R=O and A=O, and a=C2(R,A)ifO<C2(R,A)<+00. (In 
this case, aM is disconnected.) 

(III) R=O and A=O, or 0<C2(R,A)<+00. Moreover aM is 
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connected, there is an involutive isometry q of aM without fixed points 
and M is isometric to the quotient space [0, 2a] X haM/G, where a and h 
are the same as in (II), and G is the isometry group of [0, 2a] X haM whose 
elements consists of the identity and the involutive isometry a defined by 
a«t, x» = (2a - t, q(x». 

Now we shall state the main results in [33]. 

Theorem 1.1. Let M be a connected, complete Riemannian manifold 
of class (R, A). Then: 

(I) ..FJI{<CI(R,A). 
(2) If CI(R, A)< + 00 and dis (p, aM)= CI(R, A) for some p E M, 

M is isometric to the model space B(R; CI(R, A» of type (I). 

This theorem is an analogue of Cheng's maximum diameter theorem 
for compact manifolds of positive Ricci curvature (cf. [16] and Section 4). 

Theorem 1.2. Let M be a connected, complete Riemannian manifold 
of class (R, A). Suppose aM is disconn?cted and it has a compact connected 
component r l. Then: 

(1) If R=O and A=O, M is isometric to the isometric product [0, b] 
Xrl (b>O), that is M is a model space of type (II) (R=O, A=O). 

(2) If R>O, then A>O and minj <:2 dis (r j, r l)< 2ClR, A), where 
{rj}j=I,2... are the connected component of aM. Moreover if 
minl<:2 dis (Tt> r j) = 2CiR, A), M is isometric to the warped product 
[0, 2C2(R, A)] X hrl' that is, M is a model space of type (II) (0< C2(R, A) 
<+00), where h=hR,A is the solution of equation (0.4) defined by [!l=.R 
and A. 

As we mentioned in Introduction, the first assertion of this theorem 
and the second assertion (2) of Theorem 1.4 below are, roughly speaking, 
a generalization of a results by Burago and Zalgaller (cf. [9: Theorem 
5.2.1]). 

Theorem 1.3. Let M be a connected, complete Riemannian manifold 
of class (R, A). Suppose aM is connected and suppose there is a minimal 
immersion l: N -+ Mo from a Riemannian manifold N without boundary into 
the interior Mo of M such that dim N = dim M -1 and the image N: = leN) 
is compact. Then: 

(1) If R = 0, A = ° and M\N is connected, M is a model space of type 
(III) (R = 0, A = 0). In particular, N is a totally geodesic hypersurface of 
M. 

(2) If R>O, then A>O and dis (aM, N)~C2(R, A). Moreover if the 
equality holds, M is a model space of type (III) (R>O, A>O). 



Laplacian and Hessian Comparison Theorems 343 

Theorem 1.4.. Let M be a connected, complete Riemannian manifold 
of class (R, A). Suppose aM is compact but Mis noncom pact. Then: 

(1) R~O. 
(2) If R=O and A=O, aM is connected and M is the isometric 

product [0, 00) X aM. 
(3) If A<O, R<O and A> -./ -R. Moreover if A= -./ -R, M 

is isometric to the warped product [0, 00) X exp (- .,I_Rt)aM. 

We remark here that the first assertion of Theorem 1.2 has proved 
in [29] by a different method and that in this assertion, we cannot delete 
the assumption that aM has a compact component, in contrast to the 
theorem of Burago and Zalgaller cited above. In fact, it is well known 
that there is a non-parametric minimal hypersurface in Euclidean space Rm 
(m:2:9) with the form: xm =u(xt, .. " xm - 1) defined for all (xt, .. " xm - 1), 

where u is not linear (cf. [6]). Set M = {ext, .. " xm) E Rm: U(Xl, .. " xm - 1) 

~xm~u(xt, .. " xm - 1)+ 1}. Then M satisfies all the conditions of (1) in 
Theorem 1.2 except that aM has a compact component, but M is not 
isometric to the direct product [0, b] X r. 

1.2. Now we shall give the sketches of proofs for the above theo­
rems. For details, see [33]. 

Proof of Theorem 1.1. The first assertion is well known (cf. e.g., 
[ibid: § 2]). Now suppose dis (p, aM)=C1(R, A) for some p E M. Set 
paM: = dis (*, aM) and pp: = dis (*, p). Then it follows from Theorem 0.2 
that 

(m= dim M) and 

S( -pp» -(m-1)(fMfR) 0 pp 

on Q: ={x E M: O<PaM(x)<ClR, A) and O<pp(x) <PaM(P)}, where fR E 

C 2[0, 00) is the solution of the equation (0.2) defined by f?l{==R. Therefore 
PaM + pp satisfies 

(1.2) S( -(PaM+Pp))~ -(m-l){(h~,A/hR,J 0 PaM + (fMfR) 0 pp} 

on Q. We note here that if s >0, t >0 and s+t :2:C1(R, A), 

This implies that the right hand side of (1.2) is nonnegative, that is, PaM 
+Pp is superharmonic on Q, because PaM:+pp~ClR, A). Set 
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Then w is a nonempty closed subset in Q. Since PaM + pp takes the mini­
mum C1(R, A) on w(cQ), it is equal to C1(R, A) everywhere on Q and 
hence on M, by the minimum principle for superharmonic functions. 
Therefore we see that the exponential map expp at p restricted to the 
closed ball B with radius ClR, A) in the tangent space Mp at p induces a 
diffeomorphism between Band M. Moreover we have 

on M\{p}. This shows by the equality discussion of Theorem 0.1 that for 
any distance minimizing geodesic (1: [0, a]-+M from p, the sectional cur­
vature of any plane tangent to a is equal to R. Thus M is isometric to 
the closed ball with radius C1(R, A) in the simply connected space form of 
constant curvature R. 

By the similar arguments, we can prove Theorem 1.2 and Theorem 
1.3. 

Proof of Theorem 104. It follows from the assumptions that there 
exists a distance minimizing geodesic ray r: [0, oo)-+M from aM. In 
particular, R:::;:O. Let Br: M-+R be the Busemann function with respect 
to r. Then Br+PaM>O on the half space -*'r:={x eM: BrCx)<O} by the 
triangle inequality and (Br+PaM)(r(t))=o for any t>O by the definition 
of Br. Set w:={x E M: BrCx)<O, PaM(x)+BrCx)=O}. Then w is a closed 
subset of Mo( = MWM) contained in -*'r' Now we have by Theorem 0.2 
and Theorem 004 

on Mand 

on -*'r' and hence 

on -*'r' Suppose R=O and A=O. Then the right-hand side of (1.3) is 
equal to 0, that is, PaM+Br is superharmonic on -*'r and further it takes 
the minimum 0 on w. Therefore it follows from the minimum principle 
for superharmonic functions that w=-*'r=Mo and S( -PaM)=O on Mo. 
This implies that the exponential map eXptM restricted to v(aM) + = 
{t';: t>O}, where'; is the unit inner normal vector field on aM, induces a 
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diffeomorphism between v(aM)+ and M, and that for any distance mini­
mizing geodesic (1: [0, a]~M from aM, the sectional curvature of any 
tangent plane containing if is equal to 0 and aM is totally geodesic. Thus 
we see that the map 1Jf: [0, oo]XaM~M defined by 1Jf(t, x)=eXPtMt~(X) 
induces an isometry between the direct product [0, 00) X aM and M. This 
completes the proof for the assertion (2) of Theorem 1.4. As for the 
assertaion (3), it follows from the assertion (2) and the existence of a 
distance minimizing geodesic ray from aM that R<O and A> -v' -R. 
Now suppose A= -v' -R. Then the right-hand side of (1.3) is equal to 
O. Therefore the same arguments as in the preceding assertion (2) shows 
that the map 1Jf: [0, oo)XaM~M as above induces an isometry from the 
warped product [0, oo)XexPC_;l_RtjaM onto M. This completes the proof 
of Theorem 1.4. 

§ 2. Lower bounds for the first eignevalue of Laplace operator 

Let M be a connected compact Riemannian manifold of dimension 
m with smooth boundary aM. Let us consider the following eigenvalue 
problem: 

(2.1) 
on M 

on aM. 

We write A/M) for the first eigenvalue of (2.1). In this section, we shall 
apply Theorem 0.2 and Theorem 0.4 to obtain a geometric lower bound 
for Al(M). The results of this section have been proved in [34]. 

2.1. In order to state and prove our results below (cf. Theorem 2.1 
and Proposition 2.1), we need the following two lemmas. The first is a 
generalization of Barta's inequality (cf. [3]) and the second follows from 
simple calculations. 

(2.2) Lemma (cf. [34]). Suppose there are a continuous function", on 
M and a constant p such that 

Then we have 

(2.3) 

on Mo (:=M\aM), 

on M. 

Moreover if '" is smooth on some open dense subset V of M, the equality 
in (2.3) implies that", is the first eigenfunction of (2.1). 
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(2.4) Lemma. Let q be a continuous function on [0, a) (a>O) and 13 
be a positive number with f3Sa. Let us consider the following one dimen­
sional eigenvalue prblem: 

(2.5) {
ifl' +q(t)ifl +..19=0 

9(0) = 9'(m =0. 

Then the first eigenfunction 9 of (2.5) satisfies 

(2.6) 9'9'>0 

on (0, 13). 

on [0, 13] 

We remark here that the first eigenfunction f[J of (2.1) for a model 
space M(R, A) of class (R, A) can be written in the form: 

9(t) is the first eigenfunction of (2.5) with q=(m-l)(log hR,A)' and 13= 
..fi M(R,A), where hR,A is the solution of equation (0.4) defined by Plt=.R and 
A, and ..fi M(R,A) = max {PaM(X): x E M(R, A)}. 

Theorem 2.1. Let M be an m-dimensional compact Riemannian mani­
fold with smooth boundary aM. Suppose M is of class (R, A). Then 

(2.7) 

where..fi M=max {dis (x, aM): x EM}, and A(R, A,..fi M) is equal to the first 
eigenvalue of (2.5) with q=(m-l)(log hR,A)' and f3=..fi M if..fi M< C1(R, A) 
(cf Section 1 for the definitions of hR,A and C1(R, A» and equal to the first 
eigenvalue of the model space M(R, A) of class (R, A) if ..fi M = C1(R, A) (cf 
Theorem 1.1 ). Moreover the equality holds in (2.7) if and only if M is 
isometric to a model space M(R, A) of class (R, A). 

Proof We shall first show the theorem in the case when ..fi M < 
CtCR, A). Put qR,A:=(m-l)(loghR,A)" Then qR,A is a smooth function 
on [0, ..fiji], since hR,A is positive on [0, C1(R, A». Let 9 be the first eigen­
function of (2.5) with q=qR,A and f3=..fi M' We may assume that 9 and 
<p' are both negative on (O,..fi M) by Lemma (2.4). Applying Theorem 0.2 
to 9 0 P (p=dis (*, aM», we have 
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(2.8) S(p 0 p)+A(R, A, .f M)P 0 p>(p" +qR,AP' +A(R, A, .f M)) 0 p 

===0. 

Therefore it follows from Lemma (2.2) that Al(M)~A(R, A, .f M). We 
shall now assume that Al(M):=d(R, A,.f M). Since p is smooth on the 
open dense subset M\ ~(aM), where ~(aM) is the cut locus of aM, we see 
by Lemma (2.2) again that pop is the first eigenfunction of M, that is, 
pop is smooth on M and satisfies 

(2.9) 

on M. Hence by (2.8) and (2.9), we have 

tJp=qR,A 0 p 

on M\~(aM). This shows that for any distance minimizing geodesic 
a: [0, a]-+M from aM, the sectional curvature of every plane containing 
the tangent vector aCt) is equal to R and aM is umbilic at q(O) (i.e., 
S.(O)X, Y)=A<X, Y») (cf. the equality discussion of Theorem 0.2)). Then 
combining this fact with the smoothness of pop and the negativity of p' 
on (O,.f M), we see that ~(aM)={x E M: p(x)=.f M}. Now it is not hard 
to see that M is isometric to a model space of class (R, A), which is dif­
ferent from the metric ball B(R; CtCR, A)) with radius C1(R, A) in the 
simply connected space form of constant curvature R. Now we assume 
J M = C1(R, A). Then it follows from Theorem 1.1 that M is isometric to 
B(R; C1(R, A)). This completes the proof of Theorem 2.1. 

We shall now give some computable lower bounds for A(R, A, .f M) 
in the above theorem, because, in general, it would be very difficult to 
obtain the exact value of A(R, A, .f M). (For the proofs of the results 
below, see [34].) 

Corollary. Let M be as in Theorem 2.1. Then we have 

Corollary. Let M be as in Theorem 2.1. Suppose R=O and A=O. 
Then we have 

(2.10) 

Moreover the equality holds if and only if M is a model space of class (0, 0) 
(e.g, a section of a flat cylinder). 
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Corollary (Reilly [42]). Let M be as in Theorem 2.1. Suppose R>O 
and A=O. Then we have 

Moreover the equality holds if and only if M is isometric to the hemisphere 
in the standard sphere of constant curvature R. 

We remark here that estimate (2.10) was proved by Li and Yau [36] 
with a different method from ours and that in the case when R>O, we 
can obtain other computable estimates for Aj(M), making use of a result 
by Friedland and Hayman [22]. 

2.2. Before concluding this section, we shall give another estimate 
for A1(M) in the case when M is a compact domain in a certain complete, 
noncompact Riemannian manifold N without boundary. Because of the 
noncompactness of N, there is a geodesic ray r: [0, oo)-+M. Let Br be 
the Busemann function on N with respect to r. Then S( -Br) is bounded 
from below by -(m-1)'\'" -R (m=dim N) if the Ricci curvature of Nis 
bounded from below by some nonpositive constant (m -l)R (cf. Theorem 
0.4). Then making use of Br instead of the distance function p to aM in 
the proof of Theorem 2.1, we can obtain the following 

Proposition 2.1. Let M be a compact domain with smooth boundary 
in a complete, connected and noncompact Riemannian manifold N without 
boundary. Suppose the Ricci curvature of N is bounded from below by 
some non positive constant (m -I)R (m = dim N). Then we have 

n (R-O) 
4d(MY -, 1 

2 

-(m-1)2R exp 2(m-1)'\'" -Rd(M) 
(exp {(m-I)'\'" -Rd(M)}-I +4/n2)(exp (em-I)'\'" -Rd(M)}-I)2 

(R<O), 

where d(M) denotes the diameter of M. 

For the proof of the above proposition, see [34]. 

§ 3. Bounds for solutions of Poisson equations 

Let M be a connected compact Riemannian manifold of dimension m 
with smooth boundary aM. Let us consider the following Poisson equa­
tion: 
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{
AU+Q=O 

u=o 
on Mo (:=M\OM) 

on aM, 
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where Q is a smooth function on M. We write UQ for the solution of 

(3.1), that is, UQ(x) = f M Q(y)GM(x, y)dy, where GM(x, y) is the Green func­

tion of the Laplacian A with respect to the Dirichlet problem on M. In 
this section, we shall show some geometric estimates for UQ, maxM UQ and 
VUQ• 

3.1~ We shall first prove the following 

Theorem 3.1. Let M be an m-dimensional compact Riemannian mani­
fold of class (R, A) (cf. Section 1) and Q a nonnegative smooth function on 
M. Then the solution UQ of equation (3.1) has an estimate: 

(3.2) f P(X) {fJM } 
UQ(x)~ 0 t (Q*h'lCl)(s)dsjh'R:l(t) dt 

for xeM, where p(x)=dis(x,aM), fM=max{p(x):xeM},hR,A is the 
solution of equation (0.4) defined by ~ _ R and A, and 

Q*(t):=max {Q(x): x e M, p(x)=t}. 

Moreover the folloWing three conditions are equivalent to each other: 
(1) The equality holds in (3.2) for some x e Mo, 

(2) The equality holds in (3.2) everywhere on M. 
(3) M is isometric to a model space of class (R, A) (cf. Section 1) and 

Q=Q*op. 

Proof. For the sake of brevity, we write cP 0 P for the right hand side 
of (3.2). Then it follows from Theorem 0.2 that cP 0 P satisfies 

(3.3) S( -cp 0 p»Q* 0 p 

on Mo. Therefore we have 

(3.4) 

on Mo. This implies that UQ-cP 0 P is subharmonic on Mo, and hence 
inequality (3.2) holds on M, since UQ-cP 0 p=O on aM. Now we shall 
show the latter part of the theorem. It is clear that (1) and (2) are equi­
valent each other by the above argument. Moreover by the definition of 
a model space of class (R, A), we see that (3) implies (2). Finally let us 
show the converse. Suppose UQ=cP 0 P on M. Then we have by (3.4) 
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Q ==: Q* 0 p on M. In the case when ./ M = CI(R, A), we have shown that 
M is the model space of type (I) (cf. Theorem 1.1), so that we assume 
./ M < CI(R, A) (~ + 00). Since the equality holds in (3.3), we see that 
l1p=(m-1)(1og hR,A)' 0 p on M\ cg'(aM), where cg'(aM) is the cut locus 
of aM. Therefore the latter part of Theorem 0.2 says that for any dis­
tance minimizing geodesic a: [0, a]-+M from aM, the sectional curvature 
of any plane tangent to if is equal to R and aM is umbilic at 0'(0) (i.e., 
<Sq(O)X, Y)=A<X, Y». Moreover we see that cg'(aM) = {x E M: p(x) = 
./ M}, since cpt is positive on [0, ./ M)' These show that M is isometric to 
a model space of type (II) or type (III). This completes the proof of 
Theorem 3.1. 

As an immediate consequence of Theorem 3.1, we have the following 

Corollary 3.1. Under the same notations as in Theorem 3.1, the fol­
lowing two inequalities hold: 

and 

(3.6) n;!X II17UQII~ LM (Q*h';C})(s)ds. 

Moreover the equality holds in (3.5) or (3.6) if and only if the condition (3) 
in Theorem 3.1 holds. 

Remark. (1) When m=2, Q==:1 and R>O, we have by (3.5) and 
(3.6) 

JA2 1 A 
maxllPUIII~ -+-+-, 

aM R2 R R 

since./ M~ CI(R, A). These bounds for maxM Ul and maxaM II17UI II have 
been proved by Sperb [47]. 

(2) When Q==:const. and R~O, II17UQW is subharmonic on M, so 
that maxaM I 117 UQII =maxM II17UQII, because 

111I17UQW=211172UQI12+2 Ric (pUQ, PUQ»O. 

3.2. Now we consider the case when M is a domain in a noncompact 
complete Riemannian manifold. Let N be a noncompact complete 
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Riemannian manifold without boundary and M a compact domain with 
smooth boundary aM in N. Let 7: [0, oo)-+N be a geodesic ray and 
Br: N-+R the Busemann function with respect to 7. Suppose the Ricci 
curvature of N is bounded from below by some nonpositive constant 
(m-l)R (m=dim N). Put 

t(R, QM' 3M)(t) 
(3.7) 

:=f:M U:M exp (m-1).v-Rudu/exp (m-1).v-RS}ds, 

where QM=min{BrCx): x E M} and 3M=max{Br(x): x EM}. Then it fol­
lows from Theorem 0.4 that t 0 Br satisfies 

(3.8) 

on the interior Mo of M. Therefore by the same argument as in the proof 
of Theorem 3.1, we see that the solution U1 of equation (3.1) (Q == 1) has 
an estimate: 

on Mo. This shows that 

max U1;;;;max{t(t): QM<tS;:3~{} 
M 

(R<O), 

Since (3M -ilM ) is less than the diameter d(M) of M(cf. [49: Lemma 3.2]), 
we have the following 

Proposition 3.1. Let M be a compact domain in a complete noncom­
pact Riemannian manifold N whose Ricci curvature is bounded from below 
by some non positive constant (m -l)R (m = dim N). Then the solution U1 

of equation (3.1) (Q == 1) has an estimate: 

1 
d(M)~ (R=O) 

2 
max U1< 

,l[ -1 [exp{(m-1).v- R d(M)} 
(m-1)R ~ 

-1-(m-1).v -Rd(M)] (R<O). 
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3.3. Now we shall show a lower estimate for U!. 

Theorem 3.2. Let M be a compact Riemannian manifold of dimension 
m with smooth boundary aM. Suppose the Ricci curvature of M is bounded 
from below by (m-l)R (R E R). Then the solution U! of equation (3.1) 
with Q:::= 1 satisfies 

(3.9) f
P(X) f f:-l(s)ds 

U!(x)? 0 dt, 
- 0 f:- l 

where p(x)=dis (x, aM) andfR is the solution of equation (0.2) with PIl:::=R. 
Moreover the equality holds for some x E M if and only if M is isometric to 
the metric ball in the simply connected space form of constant curvature R 
and x is the center of M. 

Proof Let x be an interior point of M. We write Bix) for the 
metric ball around x with radius r «p(x)). Let Giy, z) be the Green 
function of Bix) (r<p(x)) (i.e., Giy, z) = limi _= GDlz, y), where {Dih~!,2, ... 
is an increasing family of compact domains DiCBix) with smooth 
boundaryaD i and GD/y, z) is the Green function of the Laplacian with 
respect to the Dirichlet problem on Di)' Set 

Then we have 

since GM(z, y»Gr(z, y) for any y, Z E Br(x). Therefore Theorem 3.2 
follows from the following 

(3.10) Lemma. Let N be a complete Riemannian manifold of dimen­
sion m and Br(x) the metric ball around x E N with radius r (r<dis (x, aN) 
if aN =l=ifJ). Suppose the Ricci curvature of N is bounded from below by 
(m-l)R (R E R). Then we have 

r r f:-l(s)ds 
Ur(y):?:f 0 dt 

dis(x,y) f:-l(t) 
(3.11) 

where Ur and j~ are as above. Moreover the equality holds if and only if 
Br(x) is isometric to the metric ball in the simply connected space form of 
constant curvature R. 
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Proof We write V(y) for the right-hand side of (3.11). Then it 
follows from Theorem 0.1 that SV + 1 ~ 0 on lnt (Br(x)) and V = 0 on 
oBr(x). Therefore S(V - Ur):::::::O on lnt (BrCx)) and V - Ur=O "almost 
everywhere" on aBr(x). Thus we have inequality (3.11) by the maximum 
principle for subharmonic functions. The latter part of the lemma follows 
from the same argument as in Theorem 3.1. This completes the proof of 
Lemma (3.10). 

As an immediate consequence of (3.2) and (3.9), we have the following 

Corollary. Let M be an m-dimensional compact Riemannian manifold 
of class (R, A). Set PM:={x E M: U,(x)=maxM U,}, where U, is the solu­
tion of equation (3.1) (Q == 1). Then we have 

(3.12) 

where V(m, R, A, Y; M) is the positive real number defined by 

f V(m,R,A,,FM) {f,FM } f,FM {ft } 
o t h'J'i~}(s) ds/h'J'i~}(t) dt= 0 /ft-l(s) ds/fft-l(t) dt. 

Moreover the equality holds in (3.12) if and only if M is the metric ball in 
the simply connected space form of constant curvature R. 

Corollary 3.2. Let M be a complete noncompact Riemannian mani­
fold of dimension m. Suppose the Ricci curvature of M is bounded from 
below by some non positive constant (m -1 )R. 

(1) IfaM is nonempty and there exists a positive solution U, of equa­
tion (3.1), then 

(p=dis(*, aM». 

(2) If aM is empty, there are no positive solutions of the equation: 
Au+l=O on M. 

Proof The first assertion follows from Theorem 3.2. As for the 
second assertion, let {Mi}i~,,2'" be an increasing family of compact 
domains Mi of M with smooth boundary aMi and Ui the solution of 
equation (3.1) (Q===I) on Mi' Then by Theorem 3.2, we see that for 
each i, 
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This shows the second assertion. 

In Section 5.2, we shall give a generalization of the second assertion 
of Corollary 3.2. 

§ 4. A volume estimate for a domain in a Riemannian manifold and its 
application 

Let M be a connected, complete Riemannian manifold of dimension 
m. Suppose M is a compact Riemannian manifold of class (R, A). Let 
U1 be the solution of equation (3.1) with Q == 1. Then by Stokes' theorem, 
we have 

Therefore it follows from Corollary 3.1 that 

(4.1) 

where..l" M=max {dis (x, aM): x E M} and hR.A is the solution of equation 
(0.4) defined by Rand A. Inequality t4.1) was proved by Heintze and 
Karcher [27]. In this section, we shall show a generalization of inequality 
(4.1) for a domain in M and give its application (cf. Theorem 4.1). More­
over in the last paragraph of this section, we shall prove a volume estimate 
for a domain in a noncompact complete Riemannian manifold. 

4.1. We shall first prove the following 

Proposition 4.1. Let M be an m-dimensional Riemannian manifold of 
class (R, A) and D a compact domain in M with smooth boundary aD. 
Then 

where hR,A is the solution of equation (0.4) defined by R and A, ol(D)= 
min {dis (x, aM): xED} and o2(D) = max {dis (x, aM): xED}. Moreover 
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the equality holds in (4.2) if and only if D={x E M: dis (x, aM):;;::::Ol(D)} 
and M is a model space of class (R, A). 

Remark. Simple computations show that the right-hand side of (4.2) 
is equal to 

in the case when R>O, R<O and A>o, or R<O and A= --vi -R. 

Proof of Proposition 4.1. We first consider the case when oz(D)< 
C1(R, A)(:=inf {t >0: hR,it)::;:;O}< + 00 (cf. Sec. 1)). For a sufficiently 
small positive constant e such that Oz(D)+e<C1(R, A), we put 

, ~' Jp {f~'(D)+a . } .;. = - h'lC1(u) du/hr;.-:1(S) ds, 
,,(D) s 

where p = dis (*, aM). Then it folJows from Theorem 0.2 in Introduction 
that 

on V.:={x E M: p(x)<oz(D)+e}. Then by virtue of the approximation 
theorem by Greene and Wu (cf. [26: Lemma 1.2, Lemma 3.2 and Theorem 
3.2]), we see that there exists a smooth function g. on V, such that 

Therefore integrating by parts, we get 

where lJ denotes the exterior unit normal vector field on aD. Since e is 
any small positive constant,we can obtain inequality (4.2). Now we as­
sume that the equality in (4.2) holds. Then it is not hard to see that 
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and 

(4.4) D={x E M: dis (x, aM) > o!(D)}. 

Therefore it follows from (4.4) that D is a compact Riemannian manifold 
of class (R, A(D», where A (D) = (hit,A/hR,A)(o!(D), and hence by Corollary 
3.1 

(4.5) 

where U! is the solution of equation (3.1) (Q=I) on D. Noting that the 
right-hand side of (4.5) is equal to 

J8'(D) 

hm- 1(t) dt/hm- 1{o (D» R,A R,A 1 " 
6,(D) 

we have 

Volm{D) = In -AU! 

=tD - aa~! 

This shows that equality holds in (4.5). Therefore we see by Corollary 3.1 
again that D is a model space of class (R, A(D», and hence by (4.4), Mis 
also a model space of class (R, A). Next we consider the case when o2(D) 
= C!(R, A). Then it follows from Theorem 1.1 that M is isometric to the 
metric ball with radius ClR, A) in the simply connected space form 
Mm(R) of constant curvature R. Therefore, noting that ~o(:=lim'lo ~.) 
satisfies A~o= 1 on D, we see by the same arguments as above that the 
conclusion is true. This completes the proof of Proposition 4.1. 

Corollary 4.1. Let M be a compact Riemannian manifold without 
boundary. Suppose the Ricci curvature is bounded/rom below by {m-l)R 
(m = dim M). Then/or any domain Din M with smooth boundary aD, we 
have 
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where d(M) and./ M\D' respectively, denote the diameter of M and the in­
radius of M\D (i.e., ./ M\D=max {dis (x, aD): x E M\D}), andfR is the solu­
tion of equation (0.2) defined by !!1t=R. Moreover in the case when R>O, 
equality holds in (4.6) if and only if one of the following cases holds: 

(1) M is isometric to the real projective space pm(R) of constant 
curvature Rand D is the complement of the metric ball B(R: r) of radius r 
(0< r<71:/2VR). 

(2) M is isometric to the (standard) sphere sm(R) of constant curvature 
Rand D is the metric ball B(R: r) (O<r<71:/';R). 

Proof Choose a point p of M\D such that dis (p, aD)=./ M\D' 
For any sufficiently small e>O, set M,:={xEM:dis(p,x»e}. Then 
M, is a Riemannian manifold of class (R, A,) (A,:=(m-I)(IogfR)'(e)), 
because L1pp~(m-I)(logfR)'(e) on aM.(pp: = dis (p, *)) (cf. Theorem 0.1). 
Therefore we get by Proposition 4.1. 

where h, is the solution of equation (0.4) defined by !!1t=R and A=A,. 
Since the right-hand side of (4.6) is equal to 

we have inequality (4.6). Suppose now the equality holds in (4.6). Then 
the latter part of Proposition 4.1 implies that each M, is a model space of 
class (R, A,) and D={x E M: dis (x, aM,):2:./ M\D-e}={x E M: pp(x» 
./ M\D}' This shows that one of the two cases (1) and (2) as· above holds. 
This completes the proof of Corollary 4.1. 

4.2. As an application of inequality (4.6), we shall now prove the 
following 

Theorem 4.1. Let m be a positive integer and let K> 1 and -roE 
(0, Wm) be given constants, where Wm denotes the volume of unit sphere in 
Euclidean space of dimension m + 1. Then there exists for any number V E 

(-ro, wm) a constant d(m, K, -r 0; V) E (0, 71:) such that for a complete m-dimen­
sional Riemannian manifold M whose boundary is empty and which satisfies 
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(4.7) 

A. Kasue 

{
the Ricci curvature ?::. (m -I) 

I the sectional curvature I <K 

the volume Volm(M)?::.'t"o, 

if the diameter d(M)?:.d(m, K, 't"o; V), then Volm(M)?::. V. 

(4.8) Lemma. Let M be a compact Riemannian manifold without 
boundary. For any p e M, we set lp:=max {dis (x,p): x eM}, ip:=the 
distance betweenpand the cut locusofp, andBr(p):={x e M: dis(x,p)~r}. 
Suppose the Ricci curvature of M is bounded from below by (m-I)R 
(R e R, m=dim M). Then we have 

(4.9) 

for any r' e (0, min {r, ip }). Moreover if the sectional curvature of M is 
boundedfrom above by K (K?:.R), we have 

JdCM ) 
r' fJ:-I(t)dt 

Volm(Br(p))>wm_1 J fJF-I(t)dt 11l- r 
- 0 -J~d(~M~)-------

lp-r' fJ:-l(t)dt 

(4.10) 

Proof For any sufficiently small positive number e with e < r' /2, the 
approximation theorem by Greene and Wu [26] tells us that there exists a 
smooth function p.: M ~R such that 

(4.11) 

on M, 

on M, 

on Bip_,(p)\B,(p), 

where pp=dis(p, *). We may assume p. is moreover a Morse function, 
since every smooth function on M can be approximated in the COO-topology 
by Morse functions on M (cf. [37: p.37]). For each t e [-e, lp+e], set 
D(e, t):={x e M: P.(x)~t}. Then by (4.11), 

(4.12) 

Suppose t is a regular value of p, (i.e., dp,=/=O on oD(e, t)). Then, noting 
that the inradius IM\D(.,t) is larger than lp-f-e, we get by inequality 
(4.6) 
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(4.13) 

On the other hand, we see by (4.11) that 

(4.14) VolmCD(e, t))~--1-f IWp, II 
1+e D("t) 

Therefore we have by (4.13) and (4.14) 

f:- 1(lp-t-e) < 
fd(M) 

(1 +e) lp-t-, f:-l(U)du 

(4.15) Volm(aD(e, t)) r, Volm(aD(e, u))du 

Integrating the both sides of (4.15) from r' to r, 

(4.16) ( S:~~~-, f:-l(t)dt )1/(1+,') < r, Volm _ 1(aD(e, u))du 

S:~~~,_/:-l(t)dt r, Volm _ 1caDCe, u))du 

= fD(,-,,-) IIPp~ 
f D("r') liP p, II 

359 

< (1+e) VolmCD(e, r)) by (4.11). 
Cl+e) VolmCBr,_'(p)\B.(p)) 

Thus we obtain inequality (4.9) by taking the limit of (4.16) as e t o. 
Moreover if the sectional curvature of M ~K, we see by Rauch's com­
parison theorem that 

(4.17) 

and hence inequality (4.1 0) follows from C 4.9) and (4.17). This completes 
the proof of Lemma (4.8). 

Before the proof of Theorem 4.1, it would be interesting to give an 
alternative proof of the following Cheng's theorem [16] as a corollary of 
Lemma {4.8). 

Theorem 4.2 (Cheng). Let M be a complete Riemannian manifold 
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whose boundary is empty and whose Ricci curvature is bounded from below 
by (m-l)R. Suppose R>O and d(M)=7r:j.vR. Then M is isometric to 
the standard sphere sm(R) of constant curvature R. 

Proof We keep the notations of Lemma (4.8). Let p be a point of 
M such that Ip=d(M). Then inequality (4.9) (r=d(M)=7r:j.JR) tells us 
that 

since f<I"~ flt-1=fr'flt- 1. Therefore taking the limit as r' ~ 0, we get 
<I"R-r' 0 

f~~· . Volm(M»wm_l 0 flt- 1= Volm(sm(R)). On the other hand, BIShop's 

inequality (cf. [27]) shows that Volm(M) < Volm(S m(R)). Therefore we 
have Volm(M)= Volm(sm(R)). This implies that M is isometric to sm(R). 

Proof of Theorem 4.1. We note first that the injectivity radius of M 
is larger than some positive constant I(K, "f"'o) depending on K and 
"f"'o (cf. [12]). Let p be a point of M such that Ip=d(M), where lp= 
max {dis (p, x): x eM}. Then for any r' e (0, I(K, "f"'o)), we have by 
inequality (4.10) with r=d(M) 

(4.17) 
fd(M) 

r' _ (sin t)m-1dt 
Volm(M»wm_1 f (sin .vKtj.vK)m-1dt. 0 • 

- 0 fd(M) 
(sin t)m-1dt 

d(M)-r' 

We define now a continuous function Gy(r, d) (V e (0, wm)) on (0, I(K, "f"'o)) 
x (0, 7r:] by 

Wm- 1 fr (sin .[Ktj.[K)m-1dt fd (sin t)m-1dt 
G (r d)= 0 0 v , d • 

V L-r (sin t)m-1dt 

Then Gy(r, d) satisfies limr10 Gy(r, 7r:)=Wm jV> 1. Therefore there exist 



Laplacian and Hessian Comparison Theorems 361 

constants rem, K, 1""0; V) e (0, J(K, 1""0» and d(m, K, 1""0; V) e (0, tt') such 
that 

(4.18) 

for any d>d(m, K, 1""0; V). Hence we see by (4.17) and (4.18) that if 
d(M)?d(m, K, 1""0; V), Volm(M) > Gv(r(m, K,1""o; V), d(M» X V> V. 
This completes the proof of Theorem 4.1. 

Combining Theorem 4.1 and a sphere theorem due to Shiohama [45], 
we have the following 

Corollary 4.2. Let m, K and 1""0 be as in Theorem 4.1. Then there 
exists a positive constant d(m, K, 1""0) e (0, tt') such that for a complete m­
dimensional Riemannian manifold M whose boundary is ·empty and . which 
satisfies the conditions (4.7), if the diameter d(M)?d(m, K, 1""0), then Mis 
homeomorphic to a sphere. 

Combining the above corollary and Theorem B in· Croke [17], we 
have the following 

Corollary 4.3. Let m, K and 1""0 be as in Theorem 4.1. Then there 
exists a constant p(m, K, "Yo»m such that for a complete m-dimensional 
Riemannian manifold M (aM=rp) satisfying (4.7), if the first non-zero 
eigenvalue PI of the Laplacian on M is smaller than p(m, K, 1""0), Mis 
homeomorphic to a sphere. 

4.3. 

Proposition 4.2. Let M be a complete, noncom pact Riemannian man­
ifold witho1,lt boundary such that the Ricci curvature is bounded from below 
by some non posItive constant (m-l)R (R:5:.0, m=dim M). Let D be a 
compact domain in M with smooth boundary aD. Then 

{
d(D)VOlm_l(aD) if R=O, 

(4.19) Volm(D)< exp «m-l).v-=Rd(D»-1 .. 
(m-l).v -R . Volm_1(aD) if R<O, 

where d(D) denotes the diameter of D. 

Proof Let f: [0, oo)---+ M be a geodesic ray and Br: M ---+ R the 
Busemannfunction with respect to f. Let vCR, On, 8n)(t) be the function 
defined by (3.7), where Qn=min {Br(x): xeD} and 8n = max {Br(x): xeD}. 
Then 
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S( -'l/r(R, Qn, an) 0 Brr~.1 

on Do( =D\OD) (cf. (3.8)). Therefore the same argument as in the proof 
of Proposition 4.1 shows an inequality: 

{
(an-an) Volm_l(aD) if R=O, 

(4.20) Volm(D)< exp «m.,-I)-v'=R(an-Qn))-1 
(m-l).v-R .Volm_1(aD) ifR<O. 

Noting that for any a e R, BrCx)=a+dis(x, B;l(a)) on {x e M: BT(x)~a} 
(cf. [49: Lemma 3.2]), we have d(D)~an-Qn, and hence we get inequality 
(4.19). This completes the proof of Proposition 4.2. 

Corollary (Yau [51], Calabi [11], Wu [50]). Let M be a noncom pact 
complete Riemannian manifold without boundary such that the Ricci curvature 
is nonnegative outside a compact set. Then the volume of M is infinite. 

§ 5. Function theoretic properties of noncompact Riemannian manifolds 

Let M be a connected, complete and noncompact Riemannian mani­
fold of dimension m. (In this section, we assume M has no boundary.) 
Let X be a smooth vector field on M and Q ($. 0) a nonnegative smooth 
function on M. We write Lx for the elliptic differential operator A+X 
acting on functions. In this section, we shall show lower or upper bounds 
for the Green function GM(x, y) of Lx on M if it exists. Moreover we 
shall consider the equation: 

(5.1) 

on M and get criteria for existence or nonexistence of a positive solution 
of (5.1). In the last part, we shall consider the Dirichlet problem "at 
infinity" of M under certain conditions. 

5.1. We shall first give a lower bound for GM(x, y) if it exists. Let 
D be a compact domain of M with smooth boundary aD. We write 
Pn(x) for the distance between a point x and D. Let us choose a contin­
uous function fJll on [0, 00), a continuous function 'Tj on [0, 00) and a real 
constant A such that for any distance minimizing geodesic a: [0, a]-+M 
from D, 

{
the Ricci curvature of the direction a(t»(m-l)fJll(t), 

(5.2) the trace of S'(O) ~(m-I)A, 

<X, a(t»~'Tj(t), 
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where S.(o) denotes the second fundamental form of aD with respect to 

&(0). Set T{t):=exp s: r;(s)ds and WT(t):= f l/(Th;::;/)(s) ds, where r is 

a positive constant and h .. ,A. is the solution of equation (OA) defined by Bl 
and A. Then it follows from Theorem 0.2 that 

(5.3) 

on M\D. Suppose there exists the Green function Gltf(x, y) of Lx on M. 
Fix any interior point Xo of D and put c(xo, D):=inf {G(x, xo): xED}. 
Then by (5.3) and the maximum principle for Lx-subharmonic functions, 
we see that for any x E M\D, 

Thus we have shown the following 

Theorem 5.1. Let M be a connected, complete and noncompact Rie­
mannian manifold of dimension m, X a smooth vector field on M, and DcM 
a compact domain with smooth boundary aD. Fix any interior point Xo of 
D. Suppose there existS the Green function Gltf(x, y) of Lx on M. Then 

(SA) f 1/( h;::-'/(t) exp f: r;(s)ds )dt< + 00 

and 

GM(x, xo»c(xo. D) foo l/(h;::;/(t) exp It r;(S)ds)dt 
PD(X} 0 

for any x E M\D, where, Bl, A and r; are as in (5.2), h .. ,A. is the solution of 
equation (004) defined by Bl and A, and c(xo, D): = inf {G ltf(x, xo): xED} X 
the left-hand side of (SA). . 

Remark. Theorem 5.1 implies that if the left-hand side of (SA) is 
infinite, M does not possess the Green function of Lx, That is, there are 
no nonconstant positive Lx-superharmonic functions on M (cf. Introduc­
tion 0.7). This has been proved in [32] when x::=o. 

5.2. We shall now show a criterion for M to have no positive solu­
tions of equation (5.1). When M possess no nonconstant positive L x -
superharmonic functions, it is clear that equation (5.1) has no positive 
solutions, so that we assume in this section, there are nonconstant Lx-



364 A. Kasue 

superharmonicfunctions on M. Let GM(x, y) be the Green function of Lx 
on M. Then it is easily seen that there exist positive solutions of equa-

tion (5.1) if and only if the integral f M GM(x, y)Q(y)dy is finite. In the 

following, we shall ask whether the integral f M GM(x, y)Q(y) dy is finite or 

not. 

Suppose the integral f M GM(x, y)Q(y)dy is finite. Set 

G.wQ: = f M GM(x, y)Q(y)dy. 

We fix a point Xo of M and choose continuous functions &lto, 7)0 and qo on 
[0, 00) such that for any distance minimizing geodesic (J: [0, a]---+ M from 
xo, 

(
the Ricci curvature in direction iJ(t)?:(m-1)&lto(t), 

(5.5) <X, iJ(t»~7)o(t), 

Q«(J(t))?:qoCt). 

Letfo be the solution of equation (0.2) defined by &lto and put 

where r is any positive constant and To(t): =exp f: 7)o(u)du. Then it fol­

lows from Theorem 0.1 that 

(Po:=dis (xo, *)) on M. Since WO,T 0 Po is nonpositive on {x E M: po(x»r}, 
we have by the maximum principle for Lx-subharmonic functions 

on M. Thus we get 

on M, where Wo(t):=limr _+= WoAt), that is, we have 
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for any x E M. Inequality (5.6) implies in turn that if the integral 

(5.7) 

is infinite, GMQ= + 00, i.e., M possesses no positive solutions of equation 
(5.1). This assertion, for example, tells us the following 

Theorem 5.2. Let M be a complete, connected and noncompact Rie~ 
mannian manifold of dimension m, X a smooth vector field on M and Q(*,O) 
a nonnegative smooth function on M. Then M has no positive solutions of 
equation (5.1) if one of the following conditions holds: (In the conditions 
below, po denote the distance function to some fixed point Xo E M, and a, 13 
and r are positive constants.) 

(1) The Ricci curvature of M:2':O, the length IIXII of X~f3Ipo and 
Q~r/p~ log Po outside a compact set. 

(2) The Ricci curvature of M:2': -a, IIXII~j3 and Q>r/po log Po out­
side a compact set. 

(3) The Ricci curvature of M~ -ap~, IIXII:=;;:j3po and Q>r outside a 
compact set. 

Remark. All the conditions of the theorem are optimum (cf. Section 
5.3). 

Proof of Theorem 5.2. Let us prove the third assertion and omit the 
proofs for the others, which will be shown by the similar arguments 
below. Let &£0' 7)0 and qo be as in (5.5). By the assumptions, we may 
take &£0' 7)0 and qo, respectively, to satisfy &£o(t) = -at2, 7)o(t)=j3t, and 
qo=r on [13,00) for some 13>0. Then the solution fo of equation (002) 
defined by &£0 satisfies (log fo)'(t)~o.t on [13,00) for some 0.>0. In fact, 
set g(t):=exp o.t 2• Then 

[fog'- frig]i= J: (fog' - frig)'(s)ds 

It 2o.+4o.2s2-as2 
= ds. 

J fo(s)g(s) 

Therefore if o.>max {a,fri(a)/2afo(a)}, we get (log fo)'(t):=;;: (log g)'(t)=2o.t 
on [a, 00). This shows that if t is sufficiently large, we have 
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(To(t):=exp J: 1)o(U)dU) for some IC>O. Thus the integral (5.7) is infinite 

and M possesses no positive solution (5.1). 
By the third assertion of Theorem 5.2 and Gauss' equation, we have 

the following 

Corollary 5.1. Let N be a connected Riemannian manifold whose 
sectional curvature is bounded from below by -a(p~+I) for some a>O, 
where po denotes the distance to a fixed point Xo of N. Let e: M ~ N be an 
isommetric immersion from a complete Riemannian manifold M without 
boundary into N. Suppose the length of the second fundamental form of 
the immersion l: M ~ N is bounded from above by [3(po 0 l + 1) for some 
[3>0. Then for any smooth vector field X on M such that II XII <r(po 0 l+ 1) 
for some r > 0, there are no positive solutions of equation (5.1) (Q == I) on 
M. 

The several conditions as above for M to possess no positive solutions 
of equation (5.1) have been imposed everywhere on M. However if the 

integral L GM(x,y)Q(y)dy is infinite for an open subset Q of M, the inte-

gral J M GM(x, y)Q(y)dy is also infinite. Therefore it would be desirable 

to find conditions on an open subset Q c M under which the integral 

L GM(x, y)Q(y)dy would be infinite. In the rest of this section, we shall 

show a criterion for the above integral to be infinite. 
Let D be a compact domain of M with smooth boundary aD. Fix 

an interior point Xo of D. Since the infimum of GM(x, xo) as x ranges 
over M is zero, there is a connected component Q of M\D such that 

(5.8) 

Clearly Q is noncompact. We shall now choose a continuous function &? 
on [0, 00), a continuous function 1) on [0, 00) and a constant A which 
satisfy (5.2) for any distance minimizing geodesic a: [0, a]~Q from D. 
Moreover let q be a nonnegative continuous function on [0, 00) such that 
Q(x)~qo pvCx) for any x E Q, where PD:=dis (D, *). Let h".Abe the 
solution of equation (0.4) defined by &? and A, and put 

(r >0, T(t): = exp J: 1)(s)ds). Then by Theorem 0.2, we have 
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(5.9) 

on Q. Let {Mi}i~I,2, ... be an increasing family of compact domains Mic 
M with smooth boundary aMi such that M = Ur~1 Mi' We may assume 
that the interior of MI contains D. Set Q i: = Mi n Q and fix any positive 
number r and a sufficiently large integer i so that {x E Q: Pn(x)~r}cQi' 
We write 8 i ,r for the solution of the equation: 

on Qi' 

on aQi\D, 

on aDnaQi' 

Then we have by (5.9) 

(
SA1Jfr 0 Pn-8i,rr;;;, -q 0 Pn+ Q::2:0 

1Jfr 0 Pn-8i,r~O 

1Jfr 0 Pn- 8 i,r=O 

on Qi' 

on aQi\D, 

on aDnaQi' 

Therefore it follows from the maximum principle for Lx-subharmonic 
functions that 

on Qi' 

and hence we have 

(5.10) 

on aD n aQ i, where Vi denotes the outer unit normal vector field on aQ i' 
Let G;(x, y) be the Green function of Lx on Mi' Then we get by Green's 
formula and (5.10) 

So, G;(xo, y)Q(y)dy= So, -Gi(XO, y)Lx 8 i,r(y)dy 

=f 8 i,r(y)17.,Glxo, y)dy 
annall, 

-f ei,iy)G;(xo, y)<X, vi)dy 
annalli 

>1Jfr(O)f {V.,G;(xo,y)-Glxo,y)<X, vi)}dy. 
annall, 
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Therefore we have 

(5.11) 

Let 2 i be the solution of the equation: 

on Qi' 
on aQMD, 
on aDnaQi' 

Then it follows from Green's formula again that 

This equality and (5.11) show that 

(5.12) 

Put 2:=limi~= 2 i . Then by (5.8), 2 is a Lx-harmonic function on Q 
such that 2 < 1. Therefore taking the limit of (5.12) as i t 00, we obtain 

(11:= -17 Pnlan). We note here that -17.2>0 on aD n aQ, since 2< 1 (cf. 
e.g., [40: Chap. 2, Theorem 7]). Thus, taking the limit of (5.13) as r t 00, 

we have the following assertion: if the integral 

r U: (qh;,-]T)(u) duj(h;,-;/T)(s) }ds 

is infinite, so is the integral L GM(x, y)Q(y)dy, and hence there are no posi­

tive solutions of equation (5.1) on M. Therefore we see, for example, that 
if one of the conditions (1)-(3) in Theorem 5.2 holds on Q as above, M 
possesses no positive solutions of equation (5.1). 

5.3. We shall now give an upper bound for the Green function of 
Lx and moreover a sufficient condition for M to have positive solutions of 
equation (5.1) under certain assumptions. Let M be a connected, com-
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plete and noncompact Riemannian manifold·of dimension m, X a smooth 
vectorfield on Mand Q (:;EO) a nonnegative smooth function on M.' Let 
D be a (possibly noncompact) domain with C1 boundary aD. We write 
PD (resp. IJD) for the distance to D (resp. the outer unit normal vector field 
on aD). Set IJt(aD): = {tIJD(X): x e aD, t >O} and Q: =M\D. In general, 
it would be impossible to obtain a lower estimate of SXPD everywhere on 
M, in contrast to an upper estimate of SXPD' so that, in ,order to, get all; 
upper estimate for the Green function or a criterion for M to have positive 
solutions of equation (5.1), we shall impose the folloWing conditions on 
M,D, X and Q throughout this section: 

(A.1)-the distance function PD is of class C2 on Q .. ' 
(A.2)-there, is a continuous function 't': [0, =)-+R such that LlpD':2: 

't'0PD on Q. " , 
(A.3)-there is a continuous function ,: [0, =)-+R such that (X, V p~> 

;;::, 0 PD on Q. . 
(A.4)-there exists Ii continuous function q*: [0, = )-+R such that 

q*':2:0 and Q<q* 0 PD on Q. 

We remark that if D is compact, we can always find' and q* as 
above under the assumption (A.1). 

(5.14) Example. Let M be a complete, simply connected Rieman­
nian manifold with nonpositive sectional curvature. Then it is well known 
that for every point 0 e M, the exponential map expo: Mo-+M at 0 induces 
a diffeomorphism between Mo and M. Therefore M and D=B(o, r):= 
{x e M: dis (0, x)<r} satisfy the assumption (A.1). Moreover let :fo be 
a nonpositive continuous function on [0, =) such that for any v e Mo with 
II v II = 1, the sectional curvature for every tangent plane containing the 
vector iJ~(t) (qv(t):=expo tv) is bounded from above by :fo(t). Then by 
Theorem 0.3, we have 

LlpD':2:(m-l)(logfo)' 0 (PD+r) 

on M\D, where fo is the solution of equation (0.2) defined by :fo• 

(5.15) Example. Let Mbe a complete Riemannian manifold whose 
sectional curvature is bounded from above by some nonpositive constant 
K. Suppose M contains a totally convex closed subset C. (Recall that a 
closed subset C in a Riemannian manifold is said to be totally convex if 
for any geodesic q: [0, a]-+M whose ends are contained in C, q(t) belongs 
to C for every t e [0, a] (cf. [5]).) If C is in addition a domain with smo­
oth boundary, it is known that M and C satisfy (A.l) (cf. [ibid.: Proposi­
tion 3.4 and Proposition 4.7). If C is a submanifold without boundary 
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or K < 0, we can find a totally convex domain D containing C and with 
smooth boundary aD, within any e-neighborhood of C (cL [32: the proof 
of Theorem (5.5)]). Therefore M and D satisfy (A.l). Moreover by 
Theorem 0.3, we have 

i/PD>(m-l)(log hK )' 0 PD 

on Q, where hK(t):=cosh.v -Kt. 

(5.16) Example. Let M be a complete, noncompact Riemannian 
manifold whose sectional curvature is bounded from above by some neg­
ative constant K and bounded from below by some negative constant k 
(k:::;;'K <0). Let H be the universal covering of M and 10: H ~M the 
projection. Suppose the volume of M is finite. Then there is a compact 
domain DcM with C1 boundary aD such that M and D satisfy (A. 1). 
Furthermore there is a family {r;};~1,2, ... ,n of geodesic rays ri of H, which 
corresponds to the connected components {Q;}i~I, ... ,nof M\D, such that for 
each i, PD 0 10 restricted to 1O-I(Q;) is equal to -Br" where PD:=dis (D, *) 
and Bn is the Busemann function associated with rio (See [20] or [46] for 
these results.) Therefore by Theorem 0.4, we have 

onM\D. 
Now we shall show a criterion for M to have the Green function 

GM(x, y) of Lx and give an upper bound for GM(x, y). Suppose the as­
sumptions (A. I) - (A.3) hold and further the intergral 

is finite. We put 

and define a continuous function 1Jf on M by 1Jf =tJ) 0 PD on M\D and 
1Jf-=tJ)(0) on D. Then the assumptions (A.l) - (A. 3) imply that 1Jf is of 
class C2 on M\D and L x1Jf<O on M\D. This shows that 1Jf is a positive 
Lx-superharmonic function on W, and hence M possesses the Green function 
GM(x, y) of Lx. Moreover it follows from the maximum principle that 

for x E M\D, where Xo is an interior point of D and c:=max{GM(x, xo): 
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x e M, dis (x, xo)=dis (xo, iW)} x (1/ifJ(O». We remark that if D separates 
M, M has bounded nonconstant Lx-harmonic functions (cf. Coronary (5.8) 
in [32]). 

The above result and Examples (5.14)-(5.16) tell us, for instance, 
the following 

Theorem 5.3. Let M be a connected, complete and noncom pact Rie­
mannian manifold of dimension m and X a smooth vector field on M. 

(1) Suppose M is simply connected and the sectional curvature is 
non positive. Fix a point 0 of M. Let Po and fa be as in Example (5.14). 
Then if, for some e>O, 

outside a compact set, M possesses the Greenfunction GM(x, y) of Lx which 
satisfies 

outside a compact set for some 0>0. 
(2) Suppose the sectional curvature of M is bounded from above by 

some negative constant K and M contains a totally convex closed set C. If, 
for some e>O, 

IIXII~(m-l)v -K-e 

outside a compact set, there exists on M the Green function GM(x, y) of Lx 
which satisfies 

GM(x, xo)<o/exp epc 

outside a compact set for some 0>0, where Xo is afixed point of C and 
Pc:=dis(C, *). 

(3) Suppose the volume of M is finite and the sectional curvature is 
bounded from above by some negative constant K and from below by some 
negative constant k (k<K <0). Let D be a compact domain as in Example 
(5.16). If, for some e>O, 

(X, P'PD»(m-l)v-k+e 

(PD:=dis (D, *» outside a compact set, M has the Greenfunction GM(x, y) 
such that 

outside a compact set for some 0>0, where Xo is a fixed point of D. 
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Now we shall consider equation (5.1) under the assumptions (A.1)­
(AA); We keep the riotations of those assumptions. In the following, 

let us prove that if the integral f n Q(y)dy is finite and the integral. 

is also finite, there are positive solutions of equation (5.1) on M,and more­
over if iJ is compact, thereis a uniqu~ solution UQ of equation (5.1) such 
that Uix) approaches to 0 as Pn(x) tends to 00. . 

Proof We first remark that M possesses the Green function GM(x, y) 

of Lx, because the integral r {I / exp s: (T+O }dt is finite. Set 

Let {Mth=I.2 •••• be an increasing family: of compact domains MtcM such 
that for each i, the boundary 'aMt is smooth and intersects transversally the 
boundary iW if the intersection aMt n aD is not empty, and M = Ui=1 Mi' 
Now we fix a point Xo of M. We may assume MI contains Xo' Let us 
consider the case when Xo is not contained in D. We write {Qt.k}r.=I ••••• k(t> 
for the connected components of Mt\Dand 8 i for the solution of equa­
tion: 

Then we have 

(5.17) 

{
Lx8 t+Q=0 

8,=0 

8 t='IF(0) 

on Mi\D, 

on aMt\D, 

on aD\Int (Mt). 

on Mt\D. In fact, by the assumptions (A.l)-(A.4), we see that 'IF 0 Pn is 
of class C2 on M\D and satisfies Lx'IF 0 Pn+Q~O on M\D. Therefore 
inequality (5.17) follows from the maximum principle for Lx-subharmonic 
functions. Moreover by (5.17), we get 

(5.18) 

on aD n Int (Mi)' Since Xo is contained in Mt but not contained in D, we 
may assume Xo is a point of Qt.I' Then it follows from the Green's for­
mula that 
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J Q(y)Gi(XO' y)dy (Glx, y): =the Green function of Lx on M i) 
ni,1 

= L"l -Lx19.cy)GtCxo, y)dy 

=19.(xo)-1Jf(O) J {I7.Gi(XO, y)-GtCxo, y)<X, v>}dy 
aDnaD'.l 

where v denotes the outer unit normal vector field on aD. Therefore we 
have by (5.18) and (5.19) 

(5.20) 
L"l Q(y)G.(xo, y)dy 

Similarly for the other components {Qi.kh=2 .... ,kCi)' we get 

(5.21) 
J D, •• Q(y)Gi(xo, y)dy 

-1Jf(O)J {I7.Gi(XO, y)-G;(xo, y)<X, v>}dy. 
aDnaD, .• 

Noting that 

where Vi denotes the outer unit normal vector field on aMi, we obtain by 
(5.20) and (5.21) 

(5.22) J Q(y)G.(xo, y)dy~1Jf 0 PD(XO) +J Q(y)Gixo, y)dy. 
Mi DnM, 

Thus, taking the limit of the both sides of (5.22) as it + 00, we have 

In the case when Xo is contained in D, the same calculations as above 

show us again inequality (5.23). By the assumption: In Q(y)dy < + 00, 
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we see that the right-hand side of (5.23) is finite, and hence so is the left­
hand side of (5.23). This implies that M possesses a positive solution 

Uix):= f M Q(y)GM(x, y)dy of (5.1). Moreover if D is compact, it fol­

lows from (5.23) that Uix) tends to 0 as PD(X) t + 00. The uniqueness of 
such a solution is clear because of the maximum principle. This com­
pletes the assertion. 

By the assertion which has just proved and Examples (5.14) -(5.16), 
we have the following 

Theorem 5.4. Let M be a connected, complete and noncompact Rie­
mannian manifold of dimension m, X a smooth vector field on M and Q(:t:O) 
a nonnegative smooth function on M. 

(1) Suppose M is simply connected and the sectional curvature is 
non positive. We fix a point 0 of M. Let Po and!o be as in Example (5.14). 
IJ,for some ei>O (i= 1,2,3), 

II XII < (m -1- ej)(Iog 10)' 0 Po, 

and 

outside a compact set. Then there exists a unique positive solution UQ of 
equation (5.1) such that UQ(x) tends to 0 as Po(x) t + 00. 

(2) Suppose the sectional curvature of M is bounded from above by 
some negative constant K and M contains a totally convex subset C. Then 
if, for some ei>O (i= 1,2,3), 

IIXII«m-l).v -K -ej , 

and 

Q<e2/p}/" 

outside a compact set and further if the integral f c Q(y)dy is finite, M pos­

sesses positive solutions of equation (5.1). Moreover if C is compact, there 
is a unique solution UQ of equation (5.1) such that Uix) tends to 0 as 
Pc(x) t + 00. 

(3) Suppose the volume of M is finite and the sectional curvature of 
M is bounded from above by some negative constant K and from below by 
some negative constant k (k<K <0). Let D be a compact domain as in 
Example (5.16). Then if, for some ei>O (i= 1,2,3), 

<X, f7 PD»(m-l).v -k +ej> 
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and 

outside a compact set, or if, for some e;>O (i= 1,2,3), 

and 

outside a compact set, there exists a unique positive solution UQ of equation 
(5.1) such that UQ(x) tends to 0 as Pn(x) t + 00. 

Corollary 5.2. Let M be as in the first assertion of Theorem 5.4. 
Suppose the' sectional curvature of M is bounded from above by _ejp~+a· 
and II XII is bounded from above by espo outside a compact set, where 
e,(i= 1,2,3) are positive constants and Po denotes the distance to a fixed 
point 0 E M. Then there is a unique solution Uj of the equation: Lxu+ 1 =0 
on M such that Uj(x) tends 0 as Po(x) t + 00. 

Proof Let fo and!o be as in Example (5.14). By the assumption, 
we can take fo(t) = -e j t 2+... Then the same calculations as in the proof 
of Theorem 5.2 show that (log!o)'(t»ljt jH• for some l,>0(i=1,2). 
Therefore the corollary follows from the first assertion of Theorem 5.4. 

Remark. Let N be a connected compact Riemannian manifold 
without boundary. Let f be a smooth function on R such that f(t)= 
a j exp a2t for t<O and f(t)=as exp a4t 2+a. for t>ae, where a's are all 
positive constants. Set M:=RX,N (the warped product of Rand N) and 
D:={(t, x) E M: t<ae}. Then the assertion after Theorem 5.3 and its 
proof tell us that M possesses a positive solution Uj of equation: L1u + 1 = 0 
such that Uj(t, x) tends to 0 as t t + 00. On the other hand, since the 
Ricci curvature of M is bounded from below by some constnat on D, we 
see by Corollary 3.2 (1) that any positive solution of the above equation 
tends to + 00 as t ~ - 00. (See [5: pp. 26-27] for the curvature formula 
of warped products.) 

5.4. In this section, we shall consider the Dirichlet problem "at 
infinity" of visibility manifolds. Let M be a complete connected Rieman­
nian manifold of dimension m. Suppose M is simply connected and the 
sectional curvature is bounded from above by a negative constant K. 
Two geodesic rays r j and r 2 are called equivalent if dis (rj(t), r2(t» is 
bounded for t >0. The set of all equivalence classes of geodesic rays is 
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denoted by M(oo). We assume that M=MUM(oo) is equipped with 
the "cone topology" (i.e., a subbase for the topology is the set of open 
cones of geodesic rays), which makes M homeomorphic to a cell (cf. [19: 
Theorem 2.10]). 

Let us consider the Dirichlet problem on M for the elliptic differential 
operator Lx = L1 + X, using the Perron-Wiener-Brelot method (cf. [7: Chap. 
V] or [S]). The following lemma is obvious, since M is compact. 

(5.24) Lemma. For any Lx-superharmonicfunction cp, the condition: 

lim inf cp(p) > 0 for every x E M(oo) implies cp~O. 
M:Jp~x 

Let cp be an extended real valued function on M( 00) and 2'1' a family 
oflowerbounded Lx-superhramonic functions ifJ such that lim infM:Jp~xifJ(p) 
>cp(x) for any x E M( 00). Then the lower envelope D<p of 2'1' U {+ oo} is 
+ 00, - 00 or Lx-harmonic, and /2,':::;;"D<p, where /2, is by definition -D_'P 
(cf. [7: Theorem 16]). If D", is finite and D<p=/2" cp is called resolutive, 
We call a point x E M(oo) (Lx-) regular if for any function cp bounded 
above, 

(cf. [S: Sec. IS]). We see that if e-iiery point of M( 00) is regular, any 
continuous function cp on M( 00) is resolutive and 

for every x E M( 00), because of Lemma (5.24) and 

cp(x)= lim inf cp(y) <lim inf /2,(p)':::;;"lim sup D",(p) 
M(oo):JlI~X M~p~x M:Jp~x 

;;:::: lim sup cp(y)=cp(x). 
M(oo):JlI~X 

In [32], we have considered the case of Lx=L1 (i.e., X=O) and shown that 
if m = 2 or M has constant curvature outside a compact set, every point 
of M( 00) is regular. Let us now generalize this result. 

Theorem 5.5. Let M be a complete, simply connected Riemannian 
manifold of dimension m. Assume the sectional curvature is bounded 
from above by some negative constant K and the length IIXII of a smooth 
vector field X on M is bounded from above by (m -1).v - K - e for some 
positive constant e>O. Suppose m=2, or the following conditions holds: 
there exist a point 0 E M and positive constants a, {3, rand (5 such that 
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where (p, 01,' • " Om-I) (p:=dis (0, *)) is a polar coordinate system around 
oEM, G:=det (gij), (gij):=(gij)-I and gij:=<ajaOi, ajaO j). Then for 
every point of M( 00) is regular, so that for any continuous function cp on 
M( 00), there is a unique Lx-harmonic function Dp such that limM~p~" Dp(p) 
=cp(x) for each x E M( 00). 

Before proving Theorem 5.5 we shall give examples of M which 
satisfies (5.25). 

Example. Let M be a complete, symply connected Riemannian 
manifold whose sectional curvature is bounded from above by a negative 
constant K. Suppose the Riemannian metric g is rotationally symmetric 
around 0 E M, that is, g can be written in the form: 

in a polar coordinate system (P,OI' .. " Om-I) around 0, where f is a 
smooth function on [0,00) satisfyingf(O) = O,J'(O) = 1 and -f"jf-;;2K, and 
d82: = L.'t;;~l go.ijdOidOJ denotes the standard metric on the unit sphere 
of Euclidean space Rm. Then M satisfies the condition (5.25), since 
giJ=f-2(p)g5J and f(t)~sinh -v' -Kt/-v' -K. Therefore another metric 
on M which is close enough to the above metric g in the sence of C=­
topology satisfies all the conditions of Theorem 5.5. 

Example. Let Mo be the unit ball in en with Bergman metric go. 
That is, Mo:={z=(zl' .. " zn): Izl< I}, go:=go.ijdzidzj and 

Then it is not hard to see that Mo satisfies (5.25). Therefore if M is a 
strictly pseudoconvex domain in en with smooth boundary which is close 
enough to the unit ball M o, M with the Bergman metric satisfies all the 
conditions of Theorem 5.5 (cf. [24]). 

Proof of Theorem 5.5. The key of the proof is to construct a 
"barrier" at each point x E M( 00). 

(A) Suppose the dimension of Mis 2. Then every point x E M( 00) 
has a fundamental neighborhood system 'PI such that the complement of 
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each U E Ci!i is totally convex, because every pair of points of M( 00) can 
be joined by a unique geodesic line (cf. [19]) and a domain whose bound­
ary is a geodesic line is totally convex. Moreover for each totally convex 
set C of M, there is a Lx-superharmonic function Fe on M such that 
Fe= Ion C and Fe(P) tends to ° as Peep) t + oo(Pe:=dis (C, *)). In fact, 
we put Fe=1 on C and 

Fe(p):=af= {1/exp ft (r+ c- V-K)(u)du}dt 
pc(p) 0 

on M\C, where ret): = V -K sinh V -Ktjcosh v-Kt and 

Then by the assumptions, we see that Fe is Lx-superhamonic on M (cf. 
Example (5.15)). Therefore the theorem follows from the same arguments 
as in the proof of Theorem (7.3) in [32]. 

(B) In order to prove the theorem in the case when the metric satisfies 
the condition (5.25), it suffices to show that for each point x E M( 00), 
there exist an open neighborhood U of x E M( 00), and a positive L x -

-superharmonic function !!J x on U n M such that !!J x(p) tends to ° as p----+x 
and the infimum of !!J x over the complement of any neighborhood U' c U 
of x is positive (cf. [8: Theorem 15]). For the sake of brevity, we call 
such a function a (Lx-) barrier at x. In the following, let us consider the 
Dirichlet problem at infinity of a Riemannian manifold which satisfies 
more general assumptions than that of Theorem 5.5 and seek certain con­
ditions which ensure us the existence of a barrier at each point of infinity. 

(C) Let M be a connected, complete Riemannian manifold of di­
mension m and X a smooth vector field on M. Suppose there is a domain 
D with smooth boundary aD such that the exponential map eXPfD restrict­
ed to ].i+(aD): = {t].iD(X): t >0, x E aD} induces a diffeomorphism between 
].i+(aD) and Q:=M\D, where].iD denotes the outer unit normal vector field 
on aD. Moreover suppose there exists a continuous function r: [0, 00) 
such that the Hessian f12p of the distance function P to D satisfies 

(5.26) 

for any point p E Q and every tangent vector V E M p , where we write V 1. 

for the component of V perpendicular to f1 P (i.e., V 1.:= V -<V, f1 p)f1 p). 
Let iJ be a positive smooth function on [0, 00) such that the integral 

f IjiJ(u)du is finite. SetgS(t):= f: IjiJ(u)du (t E [0,00)). Then a map 

®: Q----+[O, gS( 00)) X aD defined by ®(exPfDt].iD(X)): = (gS(t), x) induces a 
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diffeomorphism between Q and (0, if!( 00)) X aD. We write M( 00) (resp. M) 
for if!( 00) X aD (resp. MUM ( 00)) and assume M has the natural topology 
induced by ®. Now we fix a coordinate neighborhood {U, 0=(01, •• " 

Om-I)} of aD. We may assume O(U) contains the closed unit ball around 
(0, ... ,0) E Rm-\ Set W:={p E U: .67'~10lpY~lj4} and fix a point 
Po of W. Then (s, 01, .. ,,0 m -I) (s: = if!(p)) is a coordinate system on if/': = 

eXptD({tvD(x): t >0, pEW}). Then the Laplace operator .1 of M can be 
expressed as follows: 

1 [ a2 a ] .:1=--- -+,9op(.:1p-{1og,9)'op)- +.1-1, 
,920 P as2 as 

where 

.1-1:= Y;1 1 JL(.JGgijJL), 
i,j~l .J G ao j aOj 

G=det(gjj), gjj=<alaoi, ajaOJ) and (giJ)=(gij)-\ For two positive con­
stants a and b such that a<b<min {I/2, if! ( 00 )}, we put 

and 

Then f!# a, b is a positive smooth function on if/' such that f!# a, b(P) tends to ° as P E"/Y approaches to Po:=(if!(oo),po) E M(oo), and the infimum of 
gj a, b over the complement of any neighborhood of Po in ifl is positive, 
where ifl denotes the closure of if! in M. Moreover there exist positive 
constants $1 and $2 such that 

(5.27) 

on Ba,b' Therefore if «m-l)!'-(log,9)' +rr) 0 p:2.0 on Ba,b' we have by 
(5.26) and (5.27) 

(5.28) 
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on Ba ,,,, where 7r is a continuous function on [0, 00) satisfying 

on "fr. Let a, X and w be continuous functions on [0, 00) which satisfy, 
respectively, 

IIXl.llsaop 

I a log..jc.i I <X max = op 
l;;;i;;;m-l ao i 

max -g- swop I a ij I 
l;;;i,j;;;m-l aOi 

on "fr. Then there are positive constants Ck (k= 3, 4, 5, 6) such that 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

on Ba .". (The proof of the above inequalities (5.29) ~ (5.32) will be given 
at the end of the proof for Theorem 5.5). Therefore we see by (5.27) ~ 
~ (5.32) that 

1 
Lx!J#a,,,?:'o2~[c2-(1-cl){.{)«m-l)z--(log.{))' +7r)} 0 p 

v op 

+ {.{)2(C3a + C4 +c5X)T-2} 0 P+C6(.{)2W) 0 p] 

on Ba,,,, and hence Lx!J#a,,,?:'O on Ba,,, for sufficiently small a and b if the 
following conditions hold: 

(5.33) 

lim B(t)=+oo (B:=.{)«m-I)z--(log.{))'+7r)), 
t-+oo 

lim sup (.{)2a)(t) =0, 
t~+= (BT)(t) 

.{)\t) lim sup 0, 
t~+oo (BP)(t) 
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and 

lim sup (i)2X)(t) 0, 
t~+oo (BT 2w)(t) 

lim sup (,92W)(t) O. 
t~+oo B(t) 

(5.34) 

Thus we have seen that there is a (Lx-) barrier at each point jJ: = (<p( 00 ), p) 
E M( (0) n if under the conditions (5.33) and (5.34). 

(D) We shall now return e the proof of Theorem 5.5. We keep the 
notations as above. At first, we put .,9(t):=(t+ 1)1+o'(O<ol<min {,B, oD. 
Moreover by the assumptions of the theorem, we can take D: = a metric 
ball around 0 E M, 

-r(t):= V -K sinh V -Ktlcosh V -K t, a(t):=c:-(m-l)V -K, 

a(t):=(m-l)V -K -c:, 

X(t):=at- 1 - P exp 2".1 -Kt and w(t):=rt- 1- o• 

Then the arguments of the preceding paragraph (C) show that for each 
x E M( (0), there is a (Lx-) barrier at x, that is, every point of M( (0) is 
regular. 

(E) It remains to show the inequalities (5.29) ~ (5.32). Inequalities 
(5.32) is clear because of the choice of w. The inequalities (5.29) and 
(5.31) are direct concequences of the lemma below. Moreover inequality 
(5.30) follows from the positive semidefiniteness of the matrix (a2.'?# a, blao iao j) 
and the following lemma again. 

Lemma. Under the assumptions of the paragraph (C), let Y be a 
tangent vector at p E if/' such that < Y, 17 p) = 0 and f a smooth function 
defined near p. Then: 

(1) II YW= i~ll g ij Y i yJ:;::;;K2 exp fP) 2-r(u)du· ('%ill PI2), 

(2) I Y-fI~K-l exp fP) --r(u)du·11 YII{'%t (aflaOi)2r2, 

where Y = L:7'~11 p(ajaOi)(p) and K is a positive constant independent of p, 
Yandf. 

Proof. We identify if/' with [0, (0) X W by the coordinate system 
(P,Ol' "',Om-l)' Let c: [-c:,c:]-+Wp(P):=p(p)XW be a smooth curve 
such that c(O) = p and c(O) = Y. Define a smooth map g;: [0, (0) X 
[-c:, c:]-+if/' by .'F(p, u)=(p, 01 0 c(u), .. " Om-l 0 C(u)). Set Y:=.'F * (ajau). 
Then we have 
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Therefore we get 
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a - - - --<Y, Y)=2<17a/ap Y, Y) ap 
=2<17y17p, Y) 

=2172p(Y, Y) 

> 2r 0 p .11 YI12 by (5.26). 

and hence, integrating the both sides, we have 

- fP(P) 
IIYI1 2(p(p), O)~IIYW(O, 0) exp 0 2r(u)du 

(m-l ) fP(P) 
~K2 ~ I yi 12 exp 0 2r(u)du 

for some K>O. This proves the first assertion, from which the second 
assertion follows. In fact, 

fP(P) {m-l ( aj )2}1/2 
:;;;K-1 exp -r(u)dull YII .L: - . 

o ,~l aei 

Before we state a corollary to Theorem 5.5, we recall some definitions 
in [19]. Let T be a freely acting, properly discontinuous group of iso­
metries of a complete, simply connected Riemannian manifold M whose 
curvature is bounded from above by a negative constant K. We write 
MjT for the quotient manifold of M by T. A unit speed geodesic ret) 
t :2:0) in MjT is called an almost minimizing geodesic if there is a positive 
number c such that dis (r(O), r(t))>t-c for t>O. Two unit speed geo­
desics r 1 and r2 in MIT are called equivalent if dis (r/t), r2(t)) is bounded 
for t >0. The set of all equivalence classes of almost minimizing geodesi­
cs in MjT is denoted by MjT(oo). Let r be an almost minimizing geo­
desic in Mj T and t a lift of r in M. If t represents an equivalence class 
in M( 00 )-L(T), where L(T) is the cone limit set of T, r represents, by 
definition, a class of F(MjT). We assume that MjT:=MjTUMjT(oo) 
is equipped with the topology induced from the cone topology and the 
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"horocycle topology" (i.e., a subbase of the neighborhoods of a point 
x e M( =) with respect to the topology is the set of all limit balls at x) on 
M. Then the covering map 'K: M ---+ Mj T extends naturally to the covering 
map also denoted by 'K, from MU OCT) onto MjTUF(MjT) and the 
restriction map 'K: O(T)---+F(MjT) is again a covering map, where OCT) 
=M(=)-L(T). Then by the same arguments as in the proof of Theo­
rem 5.5, we have the following 

Corollary. Let M be a Riemannian manifold which satisfies all the 
conditions of Theorem 5.5. Let T be a freely acting, properly discontinuous 
group of isometries of M. Suppose the length of a smooth vector field X 
on MjT is boundedfrom above by (m-l)xJ-K-e for some positive 
constant e and MjT is compact. Then there isfor any continuous function 
cp on MjT(=) an Lx-harmonicfunction D<p on MjT such that 

for any x E F(Mj T). 

We remark that Mj T is compact, for example, if Mj T is corecompact, 
that is, MjT contains a compact totally convex set, or if the dimension 
of M is equal to 2 and T is finitely generated (cf. [19]). 

We shall conclude this section with the following 

Remark. (1) Let M be a complete, connected and noncompact 
Riemannian manifold and X a smooth vector field on M. Let (~t' 1;, P:e, 
X E M) be the minimal diffusion process on M with the differential gene­
rator L x :=L1+X, where 1; is the explosion time of ~tCw). If there is a 
positive solution U of the equation: LxU+1=0 on M, it follows from 
the Dynkin's formula that U(x»E:e[t;] for any x E M(cf. e.g., [21]: Pro­
position 8BD, and hence 1; is finite almost surely, for every starting point 
x E M. For example, if M and X are as in Corollary 5.2, we see that 1; is 
finite almost surely (cf. [30, II] in the case when X =0). On the other 
hand, if M and X satisfy, for instance, the condition (3) of Theorem 5.2, 
it turns out from the proof of the theorem and the approximation theorem 
due to Greene and Wu [26] (cf. the proof of Proposition 4.1 in Section 4) 
that there is a smooth function ([>: M ---+[0, =) such that ([>(x)---+ + = as 
x---++ = in M and Lx ([>~a on M, for some constant a, and hence we 
see by Theorem 6A in [21] that 1; is infinite almost surely for every starting 
point x E M (cf. [30, II] in the case when X=O). 

(2) Let M be a complete, simply connected Riemannian manifold 
of negative curvature. Recently, Sasaki [44] has proved that if the sec­
tional curvature is "asymptotically negative constant", the Dirichlet prob-
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lem for harmonic functions can be solved on M =M U M( 00). However 
both his condition and ours in Theorem 5.5 seem to be very restrictive, 
and it would be wishful to solve the Dirichlet problem on M under a 
weaker condition. Moreover it would be interesting to describe the Martin 
boundary of M from a view point of geometry. 

Added in proof After the completion of this paper, the author 
recieved a preprint [52] from M. T. Anderson on May 7, 1983. In his 
paper, it is proved that a complete, simply connected Riemannian mani­
fold whose sectional curvature is pinched by negative constants admits a 
wealth of global convex sets so that the Dirichlet problems for the 
Laplacian can be solved at infinity (cf. Theorem 5.5). The author would 
like to thank M. T. Anderson for sending him his preprint. 
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