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Complete Integrability of the Geodesic Flows
on Symmetric Spaces

Kiyotaka Ii and Shin-ichi Watanabe

Introduction

The geodesic flow of a Riemannian manifold M of dimension 7 is
said to be completely integrable if there exist real-valued C=-functions
fi» -+ -, f» on the cotangent bundle T*M which satisfy

(i) f;is the function assigning to each cotangent vector the square

of its length,
(ii) {f. f;}=0for all 14, j<n, where {,} is the Poisson bracket,
and

(iii) the set of critical points of the map (f,, - - -, f»): T*M—R" has
Liouville measure 0 in 7%M (cf. Def. 5.2.20 in [1]).

The classical examples of compact Riemannian manifolds with completely
integrable geodesic flow are (a) compact surfaces of revolution, (b) SO(3)
with left invariant metric, (c) »n-dimensional ellipsoids with different
principal axes and (d) flat tori (cf. [5]). Itis also known that the geodesic
flow of a Zoll surface, which is not necessarily a surface of revolution, is
completely integrable. In [6], Weinstein showed that the geodesic flow of
the n-dimensional sphere S™ of constant curvature is completely integrable.
Recently, Thimm showed that the geodesic flows of the following homo-
geneous spaces are completely integrable (cf. [4], [S]: (a) G, (R), (b)
G,,(C) (i.e., real and complex Grassmannians), (c) SU(n)/SO(n), (d) a
distance sphere in P™(C), () SO(n)/SO(n—2). The method, exposed by
Thimm, which allows the construction of families of first integrals in
involution, is available for other homogeneous spaces.

In the present paper, we show that the geodesic flows of the following
symmetric spaces are completely integrable: (a) SU(n), (b) SO(m), (c)
SUQ2n)/Sp(n), (d) SOQ2n)/U(m). The procedure of the proof is as follows:
Let g be a Lie algebra and g* its dual space. The set C*(g*) of all C=-
functions on g* has a naturally defined Poisson structure (§ 1). In the
case that g is the Lie algebra of SU(n) or of SO(n), we construct concretely
a commutative Poisson subalgebra A(g) of C=(g*) and a system {F{?} of its
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generators (§ 2). In Section 3, we introduce a convex polyhedral domain
D in a Euclidean space R?, d=(dim g+rank g)/2, and a map 4: g*—D,
so that the generators {F{”} are obtained by the pull-back, by A, of the
symmetric polynomial functions on D. In Section 4, for the symmetric
spaces M mentioned above, we show that the image 4 o y(T*M) of T*M
under the composite map of the moment map p: T*M—g* with A4, is itself
a convex polyhedral domain of dimension equal to that of M. Next, we
determine a set of symmetric polynomial functions on D, of which restric-
tions to Ao g(T*M) are functionally independent. By the pull-back of
these functions, we obtain a complete system of first integrals in involu-
tion for the geodesic flow of M. In our method, the polyhedral domain
D plays a crucial role. By the introduction of this domain, the choice of
a complete system and its independence become almost obvious. Here, we
note that, as Thimm says in [5], the independence of the functions in
question, i.e., (iii) in the definition of the complete integrability, was a
difficult part to prove. In Appendix, it is stated that each point of a
lattice in the convex polyhedral domain A o p(7T*M) is seen to correspond
to a one-dimensional subspace of C*(M), which is obtained as a simulta-
neous eigen-space of a system of differential operators on M.

The authors wish to thank Professor T. Sakai and Professor T. Sunada,
who kindly informed us of the work of Thimm, [4]. We also have been
informed, when our paper was in typing, by Professor T. Sunada of the
following paper: A.S. Mishchenko, Integration of geodesic flows on sym-
metric spaces, Math. Notes, 31 (1982), 132-134.

§1. Poisson algebra and moment map

Let & be a commutative, associative algebra with identity over a
field K. A Poisson bracket on & is a binary operation on & : (f,, fo)—
{ /i, 12} satisfying the following relations:

(i) {f£f}=0,

(i) {f Lof}={1s L} fit+ LA S1s S}

i) {fo (o S+ Lo Ui SN+ Ui S} =0 and
(v) {k,f}=0forallkeKk,f,f, f. f,c F.

& is called a Poisson algebra over K if a Poisson bracket is defined on
F (see [2]). Let g* be the dual space of a Lie algebra g over the field R
of real numbers. Then the algebra C*(g*) of C=-functions on g* has a
Poisson structure defined as follows (cf. [2]): Let define a bilinear map
ay: gXg¥—g* by (X, 6(Y, Z¥)=([X, Y], Z*) for all X e g, and a map
g: g Xg*¥—g* X g* by o X, Z¥)=(0,(X, Z%), Z*). Identifying gXxg*
(resp. g* X g*) with the cotangent (resp. tangent) bundle to g*, we may
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consider ¢ to be a bundle map of these bundles. For any fe C=(g*), o(df)
is a tangent vector field to g*. If we define a bracket product on C>(g*)

by {1, fi} =(a(df))(f,), then we have

Proposition 1.1 (cf. [2]). C=(g*) is a Poisson algebra under the
bracket operation defined above. The ring C[g] of polynomial functions on
g* is a Poisson subalgebra of C=(g*).

Note that g is naturally identified with a subspace of C[g] or of
C=(g%).

Proposition 1.2 (cf. [2]). Let j, be a homomorphism of g to a Poisson
algebra A. Then j, is uniquely extended to a homomorphism j: Clgl—A of
Poisson algebras.

Proposition 1.3. Let j,: g—q’ be a homomorphism of Lie algebras.
Then j, is uniquely extended to homomorphisms j: Clgl—>Clg’] and j: C=(g*)
—C=(g'*) of Poisson algebras.

Let (P, ©2) be a symplectic manifold with a symplectic action @ of a
Lie group G. Let g be the Lie algebra of G. For any X ¢ g, a tangent
vector field p,(X) to P is defined by

(L1 0o(X)(N)],=[(d/dt) fo D(exp(—1X), )]0

for any fe C~(P) and pe P. It is well-known that C*(P) has a natural
Poisson structure. A pair (@, 7) is called a Hamiltonian action of G on P
if 7: g—C=(P) is a homomorphism of Lie algebras satisfying the following
condition:

(1.2) po(X) () ={z(X), /'}

for all fe C*(P). For each Hamiltonian action (@, r) of G on P, the
moment map p: P—g* is defined by (X, p(p))=(z(X))(p) for all X e g.

Proposition 1.4 (cf. [2]). The map p*: C(g*)—C>(P) induced by p
is a homomorphism of Poisson algebras.

There does not, in general, exist a Hamiltonian action (@, 7) for any
symplectic action @. However, in the following case, there exists a
Hamiltonian action (@, r) determined naturally by @. Let M be a C~-
manifold and ¢ be a C~-action of a Lie group G on M. Then ¢ induces
a symplectic action @ of G on the cotangent bundle T*M. Forany X e g,
a tangent vector field p,(X) to M is defined in the same manner as (1.1).
The cotangent space at m ¢ M is denoted by T:M. If we define maps
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z:g—>C=(T*M) and p: T*M—g* by

(1.3) X, (@) =(=(X)) (@) =(0,(X)m, @)
foral Xeg, e TEM, me M, then we have

Proposition 1.5 (cf. [4]). (@, 7) is a Hamiltonian action of G on T*M
and p is the corresponding moment map.

If M has a G-invariant Riemannian metric and g has an (Ad G)-
invariant non-degenerate symmetric bilinear form, then 7*M and g* are
identified naturally with TM and g, respectively. Thus, g induces a map
of TM to g. We shall identify this map with g and call it the moment map.

§2. The center and a commutative subalgebra of C[g]

Let G be a connected Lie group with Lie algebra g. g (resp. g¥) is
a G-module under the adjoint (resp. coadjoint) action of G. By Proposi-
tion 1.3, we have

Proposition 2.1. The coadjoint action of G induces naturally auto-
morphisms of Poisson algebras C>(g*) and C[g].

Let Z= and Z denote the centers of C=(g*) and C[g], respectively,
ie.,

Z=={fe C2(@M)|{/, /}=0 for all f" € C=(g¥)},
Z={fe Clgl|{/, f'}=0 for all /" & C[g]}.

Then we have Z=Z~N C[g]. The following is easily obtained from the
definition of the bracket product on C*=(g¥*).

Propesitien 2.2. For any fe C=(g*), the following conditions are
equivarent to each other:

(i) feZ-=,

(i) {X,f}=0forall Xeg,

(iii) fis invariant under the coadjoint action of G.

If g has a non-degenerate symmetric bilinear form B invariant under
the adjoint action of G, then a linear map ¢: g—g* is defined by (X, «(Y))
=B(X, Y) for all X e g. We shall identify C=(g*) (resp. C[g]) with C=(g)
(resp. C[g*]) under the isomorphism ¢* induced from ¢. In the following,
for the cases of u(?), 3u(f) and 3o(i), we give standard generators of the
centers as Ad-invariant functions on these Lie algebras.
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(1) For the Lie algebra g,=u(i) of the unitary group U(P), let F{" e
Clg?¥], 1<j<i, be polynomial functions on g, defined by

det(E,—(— )" X2) =1+ > FPOR',
=1

Let Z, denote the center of C[g;]. Then we have (under the identification
of Clg,] with Clg¥]) Z,=CI[F{", - --, F{"]; a ring of polynomials of i-
variables.

(2) For the Lie algebra g, =35u(i) of the special unitary group SU(),
we have F{?=0and Z,=C[F{®, - - ., F{"]; a ring of polynomials of (i —1)-
variables.

(3) For the Lie algebra g,=30(i) of the special orthogonal group
SO(i), let F{? e Clg¥l, 1< j<d, d=[i/2], be polynomial functions on g,
defined by

d-1 n
det (E;+ X =1+ > F{(X)2 -+ EH(X) 2%,
=1

and F§) =F® for odd i and (F)*=F» for even i. Here, note that, for
even i, there exists actually a polynomial function F{¥ on g, satisfying
(Fgfi))2=ﬁ 2. Then we have Z,=C[F{®, - - -, F{?]; a ring of polynomials
of d-variables.

Let g, be either u(i) or 30(¢). There exists a series of natural inclu-
sions: @,Dg,.;D -+ DgDa;, where 30(1)={0}. Let x,: g¥—>g} be the
projection corresponding to the inclusion g,Cg,. Let z¥: Clg,]—Cla.]
be the homomorphism of rings induced by z;. Then, by Proposition 1.3,
it is a homomorphism of Poisson algebras. We identify, under =¥, C>(g¥)
(resp. Cl[g;]) with the Poisson subalgebra z}(C=(g¥)) (resp. #¥(Clg.])) of
C>(g¥) (resp. Clg,]). Let denote the center of C[g,] by Z;, and the com-
posed algebra of Z,, .- ., Z, by A(g,). Then it is easily seen that A(g,)
is a commutative subalgebra of the Poisson algebra C[g,]. Let {F{®} be
the generators of Z, defined above. Then we have

AQum)=CIFP|1<j<i<n] and
AGo(w)=CIFS |1 < j <[if2], 2<i <n].

In the following section, we shall show that these generators are func-
tionally independent.

Remark. Though we do not use in the present paper, we have the
following:

Proposition 2.3.  A(u(n)) and A(3o(n)) are maximal commutative sub-
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algebras of the Poisson algebras C[u(n)] and C[30(n)], respectively.

For the symplectic group Sp(n), we can easily construct a commuta-
tive subalgebra A(3p(n)) in the same manner as above. However, the fact
corresponding to Proposition 2.3 does not hold.

§ 3. [Eigenvalues and eigen-polynomials

Foreacha=(a, ---,a,_), a,=a,=---=a,_, t€ Rand z=(z, - - -,

Z,_,) € C""%, define a Hermitian matrix X=X(q, ¢, z) by

(al .0 Z_‘l
G.1) x=| o, |
LZI e Zay t

Then the eigen-polynomial F, of X is given by
Fy(D)=det(QE,— X)
n—1 n—1
=(1—1) -U1 (R_ai)_azifi I1 (2—ay).

1=j2n-1,7%1

(3.2)

Proposition 3.1. Let b,=>b,= - - - = b, be the eigenvalues of X. Then
the following relations hold:

(3.3) bzazb>a,>---=za,,=b,.

Conversely, for any a,, - - -, a,_,, b, - - -, b, which satisfy (3.3), there exist
teRandz=(z,, ---,z,_,) € C"* such that

(3.4) det(2E, — X(a, 1, 2) =] (—b).

Proof. To prove the first half, it is enough to show for the case
a>a,>--->a,., and zz,---z,_,20, since b,, ---, b, are continuous
functions of a, t and z. In this case, we have
(3.5) (=D'Fla)=(—D""zz, T[] (a,—a)>0

1€7En-1,j%1i
for 1<i<n—1. From this, we have immediately b, >a,>b,> .- - >a,_,
>b,. To prove the latter half, we consider the following two cases:
(i) The case of a,>a,> - -->a,_,. Foranyb,, ---, b, which satisfy (3.3),
let define e R and z=(z,, - - -, 2,-,) by t=27_,b,— > *"1a, and z,=
(—(4)7'B)"?, where A;=T]1zzn-1,5x:i(@;—a,) and B,= [17-:(0;—a)).
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Note that 4,20 and —(A4,)"'B,=0. Then (3.4) is satisfied for these ¢ and
z. (i) General case. 'Assume that a=(a, ---,a,.,) and b, ---, b,
satisfy (3.3). Define o[> - - - >a/_,, d(k) and e(k), 1<k<r—1, by a,=a,
for d(k—1)<i £d(k) (d(0)=0) and e(k)=d(k)—d(k—1). Furthermore,
define b, > - . - =b. by

3

r—1 r
@A=b)=]] @—a)y " [[ (A—b3).
1 j=1 k=1

(2

Then, since bj=a;>b;= - - - =al_,=b,, we can choose, as in (i), z}, 1<i
<r—1, and t € R such that

6o [la-th=-nTla-a)-Szz [ G-a).

k=1 1gjsr—1,j=t

Let define z=(z,, - - -, z,_)) by z;4,=2; and z,=0 for ixd(k), I<k<
r—1. Multiplying []521 (A—a})°¥’~* to the both hand sides of (3.6), we
obtain (3.4) for X=X(q, t, z). q.e.d.

For each a=(a, ---,4a,_),a,=---=a,_,, let define real-valued
functions F, , -+, F, ,and 4, , =4, ,=>---=4,,, on R"'={(t, x, y)|
x=(x1a RS xn—l): y=(y1’ . "yn—l)} by

Fa@) =2+ 3 (= D'Fe, 2 =[] G — 4.0,

where X=X(a, t,2), z=(z, -+, 2,-,) and z;=x,+(—=D)"?,. F,, is a
polynomial function and 4,, ; is a continuous function. Furthermore, let
define a subset L, of R**~! by

Lo={p=t%) ¢ B*| [T = A0 (D)@~ A, (P) =0}

and the Jacobi matrix J, by
Jo=0(Fg, 1, + o5 Fo, )0 X1, =+ Xuty Y1y« +5 Vand)-
Then we have
Proposition 3.2.
L,={p=(, x,y) ¢ R""'|rank(Ju(p)) =n—1}.

Proof. Let F, be a polynomial of the variables (z, x, y, 2) defined by
F,(t,x,y,)=Fx@,. »A), and f,, f,,,, 1=i<n—1, be polynomials of 2
defined by
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f=T0-a).  fudd=_ Tl G-a)

1gjsn-1,j%i
Then we have

aFa(t9 X5 s 2)/at= ’—fa(z)a
(37) aFa(t’ X, Vs )‘)/axi= _2xifa, i(z),
aFa(ta X, Y, l)/ay,;= —'2yifa., i('z)

n polynomials f, and f, ,, 1<i<n—1, are linearly independent in the ring
R[] of polynomials if and only if
) (a;—a;)=0.
15i<jsn-1
From this and (3.7), it follows that rank(J,(p))=n if and only if
a,>--->a, ,and [[221 (x3+)D)=:0 for p=(t, x,y). On the other hand,
by the definition of A4,,,;, we have that (a,— A4,, (p))(a;— 4., :+:(p)) 20 if
and only if a,_,<a,<a,,, and z,20, where @qy= — o0, a,= -+ c0. From
these, our assertion follows. g.ed.

For a Hermitian matrix C of degree n—1, te€ R and z=(z, - - -,
Z,_1) € C" ', define a Hermitian matrix X,=X(¢, z) of degree n by

21
C :
X, PG
Z, *Zp-1 4
Let a,=a,= - --=a,_, be the eigenvalues of C. Then, by Proposition
3.1, we have

Proposition 3.3. The eigenvalues b,> - - - =b,, of X, satisfy
3.8) bzazb>a>-- -za, ,=b,.

Conversely, for any b,, - - -, b, which satisfy (3.8), there exist te Rand z €
C™~" such that the eigenvalues of X(t, z) are b,, - - -, b,.

We put z,=x,+(—1)"*,, x;, ¥; € R, and consider b, ---, b, to be
functions of #, x=(x;, - - -, x,_) and y=(y, - - -, Yu_p). Let Fg ,, 1<i<
n, be the i-th fundamental symmetric polynomial of b,, ---, b,. We
consider F, ; to be a polynomial function on R*-!. Define the Jacobi
matrix J; and a subset L, of R*"~' by

JC=a(FC,b D) FC, n)/a(t: X1y =0 s Xp-1s yl, °r "yn-l)
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and
. n-1
Lo={p=(t, %) ¢ B~*| [T (0= b.(p) (@~ bus (p) =0,

Then, by Proposition 3.2, we have
Proposition 3.4.
Lo={p=(t, x, y) € R*‘|rank (Jo(p)) =n—1}.

For any skew-Hermitian matrix X of degree », i.e., X € u(n), the
matrix consisting of the first i raws and columns of X is denoted by X,
1<i<n. Note that X; e u(i). Let F{” and 4%, 1<j<i<n, be func-
tions on u(n) defined by

det (B, — (= 1)"2X,) =143 FOX)X=]] (14+ 4900, and
iT1 i=1

AP = = AD,

Then F{” is a polynomial function and 4{” is a continuous function. Le.
d=nn+1)/2and (x™, -« -, x{7; x{" "V, ««, x5 - - -5 x(V) be the standard
coordinates of R*=R"X R""'X --- X R'. We define maps 4: u(n)—R*
F:u(n)—R* and S: R*—R* and a subset D of R? as follows:

AX) =(4PX) | 1< <i<n),
FXO)=(FP(X)| 1< j<i<n),
SCPISTSIZn) =P 1< j<i<n),

where y{? are determined by [[%., (14+x{P) =14 2%, ¥/, and
(3.9) D={(x{) € B2, 2 x50 29, 25 j<i .

F and S are polynomial maps and 4 is a continuous map. The following
theorem is obtained directly from Propositions 3.3 and 3.4.

Theorem 3.5. We have SoA=F and D =1Image(4). The map
S|p: D—Image (F) is a homeomorphism, and hence Image(F) contains a
non-empty open subset of R®*. Moreover, the set of degenerate points of
the differential dF of F coincides with the inverse image A-'(0D) of the
boundary 8D of D.

Corollary 3.6. The polynomial functions {F{?|1<j<i<n} on u(n)
are functionally (and hence algebraically) independent. Therefore, the sub-
ring A(u(n)) defined in Section 2 is isomorphic to a ring of polynomials of
n(n-+1)/2-variables.
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Proof. Let B be a negative-definite symmetric bilinear form on u(n)
defined by B(X, Y)=tr(XY). Then the projection x,: g¥—g} defined in
Section 2 is identified with the orthogonal projection #7: g,—g,;, 1<iZn.
Then our assertion follows directly from Theorem 3.5. g.e.d.

As to the Lie algebra 3o(n) of the special orthogonal group SO(n) of
degree n, the similar arguments as above also hold: For any X e 3o0(n),
X, denotes the matrix consisting of the first i rows and columns of X,
1<i<n. Let F{? and AP, 1< 7 <[i/2], 2<i<n, be polynomial functions
and continuous functions on 3o(n), respectively, defined by

[¢/2]
det(E,+X,)=1+ Z F‘”(X)l“+F§g;/2](X),22Ei/2J
Jj=
[/2]
=[] (1+APX))2),
j=1

and for odd i Fz[z/zj‘—Fz[z/z]a AP = AP = . >A[z‘,2]go, for even i,
(F. z.)[z/z])2 2[{/2]’ AP =-- >A[z/2] 1= |A[z/2jl F 204/2] = A{"4, -, AE;,;}Z]'
Let d=371,[i2]=((n—1)/2+[n/2])/2 and (x{, - - -, x{D); X" 70, -,
x[(,,_l)m, -+ ;3 x®) be the standard coordinates of R:. We define maps
A: 8o(n)—R?, F: 2o(n)—R* and S: R*—R? and a subset D of R® as
follows:

AX)=APX)|1=j<[i2], 2<i<n),
FX)=FPX)|1<j<[i2], 2<i <n),
SxPI<j<[i2], 2£i<m) =P 1< <[i/2], 2<i <n),
where y{” is the j-th fundamental symmetric polynomial of (x{*)’,
(x{hy)? for 1< j<i/2 and y{i}=x{"x{" - - - x{}} for even i, and
D={(x{") € RSO Za D ZxOZ A2 - 230y |G
for odd 7, and x> x{! V> x{O>x{""V> . - - Zx{GH) =] x|
for even i, 2<i<n}.
Theorem 3.7. We have So A=F and D=Image(A4). The map S|,:
D—Image (F) is a homeomorphism, and hence Image (F) contains a non-
empty open subset of R°. Moreover, the set of degenerate points of the

differential dF of F coincides with the inverse image A=*(D) of the boundary
oD of D.

Corollary 3.8. The polynomial functions {F{?|1<j<[if2], 2<i<n}
on 30(n) are functionally (and hence algebraically) independent. Therefore,
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the subring A(30(n)) defined in Section 2 is isomorphic to a ring of polynomials
of (n(n—1)/2+[n/2))/2-variables.

§4. Symmetric spaces

In the present section, we shall consider, for every symmetric spaces
M obtained as the quotient spaces of the groups U(n), SU(n) and SO(n),
the following:

(1) arealization of M in a Euclidean space,

(2) the moment map u: TM (=T*M)—g (=g*),

(3) the image of the map 4o u: TM—D, and

(4) a complete system of first integrals in involution for the

geodesic flow of M.

For the sake of simplicity, we give the proofs for only a few cases.

(I) Complex Grassmannian manifold
M=G, (O)=Up+9/UMp*xU@@) (A=p=9.

We consider M to be the set of all orthogonal projections of rank p
in C*, n=p-+q. M is realized in the space (C), of all complex matrices
of degree n as follows:

M={Xe(C),|X*=X, X*=X, tr X=p}.
The tangent bundle TM is realized in (C), X (C), as follows:
TM={(X, Y) e MX(C),|Y*=Y, XY+ YX=7Y}.

The action ¢: U(m) X M—M of U(n) on M is given by ¢(g, X)=gXg*.
For each X e M, the linear map y: u(n)—TyM defined by (Z)=
0,(Z)|x is given by ¥(Z)=[Z, X]. By Proposition 1.5, the restriction of
the moment map to T, M coincides with the dual map of r5. If we define
a Riemannian metric g on M and an Ad U(n)-invariant, negative-definite
symmetric bilinear form B on u(n) by

gx(Y,, Y)=tr (¥,Y,) for (X, Y)eTM, i=1,2,
and
B(Z,, Z,)=tr (Z,Z,) for Z, e u(n), i=1, 2,

respectively, then we have

8x(¥x(2), V)=tr (Z, X]Y)=tr (Z[X, Y]))=B(Z, [X, Y])



116 K. Ii and S. Watanabe

for (X, Y)e TM, Z e u(n). It follows that the moment map y: TM—
u(n) is given by

p(X, V)=[X, Y].
Proposition 4.1.

Image (4 o ) ={(x§") &€ D|x{" +x{?,;.,=x{=0,
1<i<p,p<j<n—p}.

Proof. For (X, Y) e TM, we have dim(XC™)=p, dim((E, — X)C")=
q, (XC» | (E,—X)C", XY!=(Y—-YX)Y=Y(Y—XY)=Y*X and Y?°XC"
=XY2C"CXC". Since Y is a Hermitian matrix, the eigenvalues of Y?
are all non-negative. Let a2, 1<i<p, be the eigenvalues of ¥? in XC?,
where a,=a,>---=a,>a,,,=---=a,=0, and «, 1=i<p, be the
corresponding orthonormal eigenvectors. Since YXC"=(Y—XY)C"=
(E,—X)YC"C(E,—X)C", we have Ya, e (E,—X)C"=(XC™*+ for
1<igp. Bi=(a)'Yea,, 1<i<r, are orthonormal and Ya,=0 for
i=r+1. Extend g8, 1<i<r, to an orthonormal basis {8,|1=<i<gq} of
(E,—X)C". Then we have Ya,=a,$;, YB,=a,a, for 1<i<p and YB,
=0 for p<i<q. Let Y,=pX, Y)=[X,Y]. Then we have Yo,=
—a,fy, Yifi=asx; for 1<i<pand Y,5,=0for p<j<gq. It follows that
the eigenvalues of —(—1)/*Y, are ,> -+ - =2a,=20=-..-=0=2—a,=> -+
= —a,. Conversely, for any ¢,>a,>>---=a,=20 and any orthonormal
basis {e;} of C", define X, Y e (C), by Xe,=e,, 1<i< p, Xe;=0, p<j<n,
Ye,=a,e,,,;, 1<i<p, Ye,,,=ae,, | <i<pand Ye,=0, 2p<j<n. Then
(X, Y) e TM and the eigenvalues of —(—1)"*u(X, Y) are a,>= - - - =a,=0
=-..=0=—a,=--=—a, As{e]} runs over all orthonormal basis of
C", u(X, Y) runs over all elements of u(n) which have the eigenvalues as
above. From this, our assertion follows easily. q.e.d.

Let F{?, 1< j<i<n, be the functions defined in Section 3, and x{”
= p*(F{") be the pull-back of F{” by the moment map .

Theorem 4.2. The following functions on TG, (C) are functionally
independent :
), 1= <p,
w9, 2p<i<lm, 1< j<2p and
P, 1<i<2p, 1</ <i.

The number of these functions is

p+2p(q—p)+(2p—D+@p—2)+ - - - + 24+ 1)=2pg=dim, G, (C).
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The other s vanish identically. — 24§ is the function assigning to each
tangent vector the square of its length. Thus, the above functions provide
a complete system of first integrals in involution for the geodesic flow of
G,,{(O).

Proof. From Proposition 4.1 and the definition of D in Section 3,
we have that x{?=0 for 2p<i<n, p<j<i—p. Our assertion follows
easily from this. q.e.d.

In the following, (4" —2p§” is always the function assigning to
each tangent vector the square of its length, so we shall not state it one
by one.

(1) M=U®n)/0M), M=SUm)[SO(n)
Let J be the complex structure of the vector space C*=R*". Then
we have J?= —E,, and ‘J=—J. M is realized in (R),, as follows:

M={P ¢ (R),,|PJ+JP=0, P’=E,,, ‘P=P)}.
Hence, TM is realized in M X (R),, as follows:
TM ={(P, X) € M X (R),| XJ+JX=0, PX+XP=0, ‘X=X}.
The moment map g: TM—u(n) is given by p(P, X)=[P, X].
Proposition 4.3. .
Image (4 o p)=D.

Theorem 4.4. The functions p’ = p*(F), 1<j<i<n, on TM are
functionally independent. The number of these functions is d=n(n+1)/2=
dim M. On TM, (™ vanishes identically, and the other y$”s are inde-
pendent.  Thus, the geodesic flows of M and M are completely integrable.

(1) M =UQn)/Sp(n), M=SU(2n)/Sp(n)
Let J be the complex structure of the vector space C**=R*". Then
we have that J2= —E,, and *J=—J. M and TM are realized as follows:

M={P ¢ (R),,|"P+P=JP+PJ=0, P’=—E,},
TM={(P, X) € M X (R),,|!X+X=JX+XJ=PX+XP=0}.

The moment map g: TM—>u(n) is given by u(P, X)=PX.
Proposition 4.5.

Tmage (4 o ) ={(x{") & D|x2=xz, 1< j<n).
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Proof. For each (P, X)e TM, let A=—JPX. Then A is a sym-
metric matrix; *A=XPJ=A. It follows that the eigenvalues of 4 are real
numbers. Let g, be the maximal eigenvalue of 4 and v, € R*", |v,||=1,
be the corresponding eigenvector. Then {v,, Ju,, Pv,, JPv,} are ortho-
normal and span a vector space L over R. Since A commutes with J
and P, we have Av=a,v for all ve L, i.e., the eigenvalues of A on L
are a,, a,, a,, a,. If we consider L to be a 2-dimensional complex vector
space with respect to the action of C=R[J] and 4 to be a matrix of
complex coefficients, then the eigenvalues of 4 are a;, ;. The orthogonal
complement Lt of L is invariant under the actions of J, P and 4. We
can apply a similar arguments as above to LL. Consequently, we have
that the eigen-polynomial of A is given by (A—a)*(A—a,)*---(A—a,)
Conversely, for any a;e R, 1<i<n, and any orthonormal basis
{e,|]1<i<2n} of C** (= R*"), define P, X e (R),, by

Pey_ =ey, Xey_y=a,Jey,
Peyy=—ey_y, Xey=—aJey,;_,,
Pley_ = —Jey, XJey;_\=a,ey,
Pley=Jey;_,, XJey=—ae,;_,,

for 1<i<n. Here note that {e;, Je,|1<i<2n} is an orthonormal basis
of R**. Then we have (P, X) ¢ TM and

det(RE,, +(—1)2B) =] (A—a,)’,
i=1

where B=pu(P, X)=PX. q.e.d.

Lemma 1. Let Clx,, - - -, x,] be the ring of polynomials of variables
Xis 2005 Xy [fwe deﬁne Fi’ Gj € C[xl, ) xn]r lélézns léj_g_n’ by

143" Fai=T] (14x =4
=1 i=1
and
1437 Gai=]] (1+x.)=B,
i=1 i=1

then we have
C[Es o ’aFZn]:C[Fla t ',Fn]zc[Gla R Gn]

as subrings of C[x,, - - -, x,].
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Proof. Compairing the coefficients of 4 and B? we have

@.1) F= 3 G,G, 1<i<m,

p+q=1,p,q20

where G,=1, G,=0if p>n. It follows that F, e C[G,, - - -, G,], 1<i<2n.
Next, by the induction with respect to i, we show that G; € C[F,, - - -, F,],
1<i<n. Fori=1, we have G,=F,/2. Fix i, 1<i<n, and assume that
G,eC[F, ---,F,]for all 1<j<i—1. Then, by (4.1), we have

§—1
G¢=l<Fz_Z GpGi—p> € C[Fn ) Fn]
2 p=1

q.e.d.
The following lemma is proved similarly as above.

Lemma 2. Let C[x,, - -+, X,, Y1, *  +» V] be the ring of polynomials
of variables Xy, - -+, Xy, Y1, <+ +5 Y. If we define F,, G;, H, € C[x,, - - -, x,,,
Vs *® ',ym]a 1§l§n9 1§]§m9 lékén-i_m’ by

1+ 3 Fa= (1+xa,
1+ }”jl Gizi=ifj1 (4.2 and
3 HA=T] 0+ [] (42,
then we have
C[Fl’ .. .,Fm Gl’ cen, Gm]=C[F1, s, Fm Hl, .. .’Hm_m]

as subrings of C[Xy, - -+, Xp Y15+ + *» V-

Theorem 4.6. The following functions on TM are functionally inde-
pendent:

pe, 1<i<n,
p D 1<j<n—1 and
pP, 1<5i<2n—2, 1< <0

The number of these functions is
n+m—1)+(@Qn—2)+Q2n—3)+ - - - +24+1)=n2n—1)=dim M.

The other p$’s are polynomial functions of the above functions. On TM,
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* vanishes identically, and the other functions stated above are independent.

Proof. We identify u{” = p*(F$) with a function on D=4 o y(TM’)
CD. The restrictions of the coordinate functions x{ of D onto D are
also denoted by x{?. By proposmon 4.5, we have x{ 2")—x<272 D= x{m >
xéZn-l) gxézn) =x;2n 1) __x(2n) > >x(2n 1) >x§121n_) _x(2n -1) __x(Zn) Hence,
we can choose x&;, 1 <iZn, x<2” b 1<j<n—1, and x"’ 1<i<2n-2,
1<j<i, as a system of (mdependent) coordinate functlons on D. If we
define functions 4;, 1<i<n, and g;, 1<j<n—1, on D by

1437 =1 (+x2)
and
n-1 n—
145 g M =T] (1402,
i=1 j=1

then 4;, 1 <i<n, 85 1=j=n—1,and 159, 1< j<i<n-—2, are functionally
1ndependent of D. Now, by Lemmas 1 and 2, we have C[hl, ceo by, g,
ey By (1S SIS —D)] = Cpf™, - - -, &, pr=o, .+, ,uif"l D,y
(1£j<i<n—2)]. Then our assertion follows. g.e.d.

IV) M=G, (R)=SOm)/S(O(p)x 0(q)) 1=<p=q, n=p+q)

M={Xe (R),|'’X=X, X*=X, tr X=p},
TM={(X,Y) e MX(R),|'Y=Y, XY+ YX=7Y}.

The moment map p: TM—3o(n) is given by u(X, Y)=[X, Y].
Proposition 4.7.
Image (4 o ) ={(x{?) € D|x{" =0, p<j<[n/2]}.

Theorem 4.8. The following functions on TG, (R) are functionally
independent :

1P, 2p<i<n, 1<j<p and
w7, 2=i<2p, 1< <[if2].
The number of these functions is
p@—p+D+2A(p—D+(P—2)+ - - +2+1)=pg=dim G, (R).

The other p$?’s vanish identically.
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(V) M=0@n)|U(m), M=S02n)/U(n)
M is realized in (R),, as follows:
M={P¢c(R),,|'P+P=0, P’=—E,}.
M is a connected component of #. Hence, we have
TM={(P, X) e M X(R),,|'X+X=0, PX+XP=0}.
The moment map yp: TM—50(2n) is given by u(P, X)=PX.
Proposition 4.9,

{(x) e D|xfP =X, 1<j<n/2} (n; even)

Image (Ao p)=
ge(4=10 {{(x§-”)eDlx§§~"_’1=xé§">, 1< j<n/2], x =0}  (n; odd)

Theorem 4.10. The following functions on TM are functionally inde-
pendent:

e, 1< <Inf2),
0, 1<j<[(n—1)2] and
(9, 2<i<m—2, 1</ <if2].

The number of these functions is

[#/2]+[(n— D2l +n—1+2A(n—2)+(n—3)+ - - - +2+1)
=nn—1)=dim M.
(V) M=U(n), M=SU(n)
M={Xe(C),|XX*=E,},
TM={(X, Y) e MX(C),|XY*+4YX*=0}.

If we define an action ¢ of the group U(n) X U(n) on M by o((X,, Xy), Xy)
=X, X,X;'. Then the moment map p: TM—u(n)Xu(n) is given by
H(X, Y)Z(YX_1, —X_IY)'

Proposition 4.11.
Image ((AXA)op: TM—>D X D)
={(x{, ") € DXD|x{+y2;,,=0, | < j<n}.

Let define y,: TM—u(n), r=1, 2, by p(X, Y)=(u(X, Y), u(X, Y))
and put p(=p*(FP).
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Theorem 4.12. The following functions on T. M are functionally inde-
pendent:
w, 1<j<n and
p, 1Zisn—1, 12j<i, r=1, 2,
The number of these functions is
n+2(n—D+@—2)+ - - - +2+1)=n*=dim M.

On TM, 1", vanishes identically, and the others stated above are independent.

(VII) M=S0(n)
Since the arguments are quite similar as in (VI), we state only the
conclusions.

Proposition 4.13.

Image (A X A) o p: TM——>D X D)
{(x$", ¥{?) e DX D|xP =y, 1= j<I[n/2]} (n; odd)
{(x§7, ¥) € DX D|x{P =y, 1< j<nf2, x{jh= —yip} (n; even)

Theorem 4.14. The following functions on TM are functionally inde-
pendent:

3, 17 <nf2)  and
ph, 2<i<n, 1< j<[if2), r=1, 2.

The number of these functions is

[7/2]+ 2([(n—1)/21+[(n—2)/2]+ - - - +[2/2D=n(n—1)/2=dim M.

Appendix. The convex polyhedral domain D and joint representations of G;

We note certain relations which are seen between the image of the
map A o u: TM—>g—D studied in Section 4 and joint representations of
Gry Gu_yy +++, Gy on C=(M). We denote GF the set of finite-dimensional
irreducible representations of G,. For the sake of simplicity, we state
only for the case G,=U(n). The complexification g€=gl(n, C) of un)
is identified with the set (C), of all complex matrices of degree n. Define
H, e g,, 1Zi<n, and subalgebras o/ and ¥ of g by H;=E,;, &/ = ».,CH,
and A=3 1.2 CE,;, where E,; is the matrix unit of (C),. Then &/ +%U
is a maximal solvable subalgebra of g,. For any p e G}, V, denotes a
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module of the irreducible representation p. The highest weight subspace
is given by Vy={ve V|X.v=0 for all Xe¥U}. Note that dim V¥=1.
Define a multi-index k;,=k{(p) of p by H,uv=k,v for all ve VY. The
following is well-known.

Proposition A.1. k,, ---, k, are integers and
(A-l) klgkzg e gkn'

Conversely, for any integers k,, - - -, k, which satisfy (A.1), there exists a
unique p € G} such that

k(o) =k, 1<i<n.

For p e G¥ and p’ € G}_,, the multiplicity of p’ in p is denoted by
lo: ¢l

Proposition A.2 (cf. [7]). For any pe G} and p’ e Gf,, we have
[p: o'1£1. Moreover, [p: p'l=1 if and only if

(A2) K"(0)zk{" (o) =k (0= k" P (p) =z - - - Zk5P(0) Z ki (p)-

The condition (A.2) is similar to the condition in the definition of the
convex polyhedral domain D in (3.9). If we define a subset D in ['=G¥*
X G X -+ - X G by

52{((771: A Y pl) € I’I[pz' pi—l]zl, 2§l§n}a
then, by Proposition A.2, we have
Proposition A.3.

B={(ow) & TIKP(0) =k (0, Z k() Z ks (0, )= - - -
= k{50 (0,-) 2k (00, 2<i<n).

Proposition A.3 suggests that there exists a natural inclusion of D
into D. This conjecture becomes more detailed if we consider a decompo-
sition of C=(M) under the action of G,, - - -, G, into one-dimensional sub-
spaces. As an example, we consider the case of M=G, (C). For any
(0s)=(0n> -+ -, p) € D, CZ (M) denotes the subspace of all functions
fe C=(M) such that G, o f is isomorphic to V,, as a Gy-module, 1<i<n,
where G, o fis a G;-module generated by f under the action of G,.

Theorem Ad. For any (p,) e D, dim CZ (M)=1, and LX(M) is
orthogonally decomposed into the sum of these subspaces. Moreover,
dim C¢ (M)=1 if and only if

(px)
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k(o) + k210 =k (0,)=0, 1<i< p, p<j<n—p.

If we compair Theorem A.4 with Proposition 4.1, then it is easily
seen that there exists a correspondence between a lattice in the image of
Aoy and the one-dimensional subspaces C¢ (). Similar correspond-
ences are observed for all symmetric spaces stated in Section 4.
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