
Advanced Studies in Pure Mathematics 3, 1984 
Geometry of Geodesics and Related Topics 
pp. 93-95 

On Deformations of the Cz-Metrics on Spheres 

Kazuyosbi Kiyobara 

1. This note is a summary of our recent result concerning the exist­
ence problem of deformations of the standard metric by C2 .. -metrics on 
the n-dimensional sphere S'''. By definition a riemannian metric g on a 
manifold M is called a Cz-metric if all of its geodesics are closed and 
have the common length 1. Let {gel be a one-parameter family of C2,,­

metrics on 8''' with go being the standard one, and put 

We call such a symmetric 2-form h an infinitesimal deformation. It is 
known that each infinitesimal deformation h satisfies the so-called zero­
energy condition, i.e., 

S:" h(t(s), t(s))ds=O 

for any geodesic r(s) of (sn, go) parametrized by arc-length (cf. [1] p. 151). 
In [3] we gave another necessary condition, the second order condition, 
for a symmetric 2-form to be an infinitesimal deformation, and showed 
that there are symmetric 2-forms which satisfy the zero-energy condition, 
but not satisfy the second order condition in the case of sn (n;;::::3). The 
present theorem is an extension of the result in [3]. We first review the 
second order condition, and then state the theorem. 

2. Let K2 be the vector space of symmetric 2-forms on sn which 
satisfy the zero-energy condition. Let # be the bundle isomorphism from 
the cotangent bundle T*sn to the tangent bundle Tsn obtained by the 
riemannian metric go. Define the function Ii on T*sn for a symmetric 
2-form h by 

Let s*sn be the unit cotangent bundle with respect to the metric go. We 
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denote by i12 the image of the map A, and by H2 the vector space of 
functions on s*sn which are the restrictions of functions in i12 to s*sn. 
Put Eo = (1j2)go· There is a homogeneous symplectic vector field X(h) on 
T*Sn-{O-section} such that X(h)Eo=h, provided hE K2. Let G be the 
linear operator on c=(s*sn) defined by 

where {';t} is the geodesic flow associated with go. Then we can define the 
symmetric bilinear map F: K2 x Kc*G(c=(s*sn» by 

F(f, h)=G(X(f)h), 

where X(f)h is considered as a function on s*sn by restriction. We say 
hE K2 satisfies the second order condition if F(h, h) E G(H2)' It can be 
seen that each infinitesimal deformation satisfies the second order condition 
(cf. [3] Theorem 1). 

3. We now assume that n>3. Consider sn as the unit sphere in 
Rn+l, and let t: sn--+Rn+l be the inclusion. Let x=(xu .. " x n+1) be the 
canonical coordinate system on Rn+l. Let R[x]m be the vector space of 
homogeneous polynomials of degree m in the variables x, and set 

It is easy to see that (t*f)go E K2 for any f E R[X]Od' 

Theorem. Let f E R[X]Od' Then (t*f)go satisfies the second order con­
dition if and only iff has one of the following forms: 

( i ) mod (1-L: xD, 
i 

(ii) mod (1-L: X~), 
i 

hi E R[X]I, h3 E R[X]3' C E R, A E O(n+ 1, R), and 

where the coefficients satisfy the conditions ~13 E R, r l3 E R-{O}, 
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(X =~r - 52 f'fa +~ f'~3 +45 
5 13 13 13z.43 .3 . r.~3 4 rl3 ' 

(X7=-~rI3-5 f'~3 -120, (X9=~rl3+~ f'~3 +210, 
13 rl3 13 4 rl3 

(Xli = __ I_r13-1- f'~3 -252, (X13=~ f'~a +210, 
13 2 rl3 4 rlS 

(X15=-120, (X17=45, (X19=-10, (XzI=I, 

0-- 25 r Q 
5- 13Z.6 131"'13, 
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Remark 1. In the case of SZ, it has been proved by Guillemin [2] 
that all elements of Kz are infinitesimal deformations. 

Remark 2. Let u be an odd polynomial in one variable, and put 
f=U(L.k akxk). Thenfbelongs to the class (i) in Theorem. We can see 
that (e*f)go is an infinitesimal deformation. In fact this corresponds to 
a family of C2~-metrics constructed by Zoll and Weinstein (cf. [1] p. 120). 

The details will be given in [4]. 
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