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Dynamical Systems on Closed Surfaces 
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§ 1. Introduction 

It is well-known that the geodesic flow on a closed surface with a 
negative curvature metric is ergodic. The geodesic flow can be regarded 
as the dynamical system describing the inertial motion of a particle on 
the surface with the metric. Since a closed surface with a negative cur­
vature metric cannot be isometrically embedded in the three dimensional 
Euclidean space E3, this type of ergodic motion itself cannot be realized 
on a surface in E3. On the other hand, in the address of A.N. Kolmo­
gorov [1] (see also Ya. G.Sinai [2]), he remarked that, around a closed 
surface of genus greater than one in E3, one can distribute a finite 
number of centers of attraction andrepulsion such that the motion of a 
particle on M under these external forces is equivalent to the inertial 
motion in a negative curvature metric on M. As this remark was stated 
intuitively and without proof, one can only guess the details. The pur­
pose of this note is to set up the situation in more detail and to prove a 
proposition which seems to be closely related to the remark. 

In Section 2, we prepare some concepts in the theory of classical 
dynamical systems and state our results. In Section 3, the proposition 
in Section 2 is proved, where only standard methods are used .. In Section 
4, relations between our results and the Kolmogolov's remark are dis­
cussed. 

The author wishes to express his hearty thanks to Professor I. Kubo 
for suggesting this problem and to Professors K. Shiohama, Y. Tashiro 
and H. Totoki for their helpful advice. 

§ 2. Preliminaries and results 

All manifolds and functions are assumed to be smooth in this paper. 
Let M be a manifold and TM (resp. T* M) the .tangent (resp. cotangent) 
bundle of M. Let x=(xi) be local coordinates on M and (x,p)=(Xi,Pi) 
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the canonical local coordinates on T* M. Let g be a metric on M and 
U a real-valued function on M. In this paper, we deal with only classical 
dynamical systems which are described as Hamiltonian systems whose 
Hamiltonian functions are of the following type. A real-valued function 
H on T* M is said to be the Hamiltonian function relative to (g, U) if it 
is defined by 

where gjk are the components of the inverse matrix of g=(gjk). The 
function U is said to be the potential. The Hamiltonian flow on T* M 
is defined by the so-called Hamiltonian equations 

dXi aH ij 
~-=~-=g Pj' 

dt api 

dpi = _ aH = _~(_a_gjk)p.Pk_~ U(x). 
dt ax' 2 axi J ax' 

By setting Vi = gij P j in this equation, the corresponding equations on TM 
are 

dXi . 
~-=v' 

dt ' 

dv i 
{ i } j k ij a U() --=- vv -g -- x, 

dt j k ax j 

where {/k} are the Christoffel's symbols. Note that the obtained flow 

on TM is the geodesic flow if U is constant over M. Since the Hamil­
tonian function is constant on each orbit of the Hamiltonian flow, this 
constant value is said to be the energy of the orbit. 

Now we state 

Proposition. Let M be a closed surface with a metric g on M. 
Assume that the Euler-Poincare characteristic X(M) is negative. Then 
there exist a function U on M and a negative curvature metric g on M such 
that the Hamiltonian flow orbits relative to (g, U) with energy 0 coincide 
with those relative to (g, 0) with energy 1/2. 

Corollary. Let A be a C 2-dense subset of all smooth functions on M. 
Then an element of A can be chosen as the function U in the above propo­
sition. 

Assuming that X(M»O (resp.=O) in Proposition, we get a positive 
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(resp. vanishing) curvature metric g instead of the negative curvature 
metric in the result. 

§ 3. Proof of Proposition 

We firstly prepare two lemmas. Let M be a manifold with a metric 
g, U and·U real-valued functions on M. 

Lemma 1. Let E (resp. E) be a constant real number satisfying E> 
U(x) (resp. E> U(x» and g= e2pg, where e2p (X): = (E - U(x»/(E - U(x». 
Then the Hamiltonian flow orbits relative to (g, U) with energy E coincide 
with those relative to (g, U) with energy E. 

Proof For a solution (x(t), pet»~ of the Hamiltonian equations 
relative to (g, U), reparametrize it by (x(s), p(s» = (x(t), pet»~ and s=cp(t), 
where cp(t) satisfies cj;(t): =dcp(t)/dt=e2P (X(t)). Then the Hamiltonian equ­
ations relative to (g, U) imply 

1 ( 0 -jk) - - -2P(( 0 ) jk + 0 u) = -- -_-g PjPk- e --p g pjPk --
2 ox£ ox£ ox£ 

The last term vanishes if the energy of the orbit (x(t), pet»~ equals to E. 
Let M be a closed surface with a metric g. Then we get 

Lemma 2. Assume that X(M) <0 (resp. >0, =0). Then there exists 
a function p on M such that K <0 (resp. >0, =0), where K is the Gaussian 
curvature of the metric g: = e2pg. 

Proof Take the orientable double covering for a non-orientable 
M. Let K be the Gaussian curvature of g. By applying the Gauss­
Bonnet formula, we have 

(1) 
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where *1 is the volume element with respect to g and K:=2rr:X(M)/ 
Vol(M). Then there exists a function p which satisfies the following 
equation 

(2) ilp=K-K, 

where il is the Laplace-Beltrami operator on functions. Set g=e2Pg, and 
we have 

(3) 

Note that the existence of the solution p of the equation (2) with 
the condition (1) is essentially due to the Riesz theorem. Referring to 
the well-known Hodge decomposition theorem, however, we can easily 
iind the solution. 

Put U=-(1/2)e2p , U=O and '£=1/2 in Lemma 1, where p is the 
function obtained in Lemma 2. Then we get the function and metric 
desired in Proposition. 

For the proof of Corollary, we assume that X(M) is not equal to 
zero. From the formula (3), we can prove that there exists e(>O) such 
that 

le2P'K' -Klo<IKI/2 and U'<O for I U- U'12<e, 

where p'=(1/2)log(-2U') and K' is the curvature of the metric e2p'g. 
Thus K' and K have the same signature. 

§ 4. Discussion 

The types of the external forces seem to be not clear in the Kolmo­
gorov's statement [1]. We can guess that they have central potential 
functions and the resultant force has a potential function in the form 

(1) 

where Vi is a central potential and qi E E3 for each i. Moreover we may 
assume that all central potential functions are of the same type, i.e., 
there exists a real valued function W on the set of all positive real 
numbers such that each Vi is represented by Ci W for a real constant 
number Ci E R. Then the function (1) is written in the form 

I 
(2) V(q) = :z= Ci W(lq-qi I). 

i=l 
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A natural example of such a potential function is the Coulomb potential 
caused by finite points qt E £8 with charges Ct , that is, 

(3) V(q) = ± __ l_ Ct 

£=1 4n- Iq-qtl 

As another example in physics, we have the Yukawa potential. 
Let M be a closed surface embedded in E 3 and C~(M) the space of 

all real-valued smooth functions on M. For potential functions V in the 
form (2), we define a subspace 

A:={U E C~(M); U= VIM for c, E R, q, E £8\M}. 

If A is C2-dense in C~(M), then the corollary to Proposition assures that 
the Kolmogorov's remark holds for potentials of this type. In the case 
of Coulomb potentials, for the function U which appeared in Proposition, 
there exists a smooth function C on E 3 with the compact support such that 

U(x) = __ 1_ f c(q) dq. 
4n- E3 Ix-ql 

We do not know if one can find a function which is in the form (3) and 
sufficiently near to U in C2-topology on C~(M). 
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