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Introduction 

This article is a survey of the Gromoll-Meyer theorem [l3] on the 
number of closed geodesics and some theorems related to their theorem. 
The following is the theorem Gromoll and Meyer proved in 1969. 

Theorem. Any compact I-connected riemannian manifold M has in­
finitely many closed geodesics if the sequence of the Betti numbers for the 
free loop space of M is unbounded. 

Though there is a long and rich history on closed geodesics on a 
compact riemannian manifold since Poincare [38], Lusternik and Schnirel­
mann [30], etc., our survey covers an only small portion of the history. 
However the author believes that it is worth while introducing their me­
thod of proving the Gromoll-Meyer theorem and how the theorem has 
given influence to some theorems of closed geodesics. Note that no sym­
metric spaces of rank one satisfy the hypothesis on the Betti numbers. 
But there are many manifolds satisfying the assumption. Note also that 
the assumption is a topological one. It would be interesting to estimate 
the number of closed geodesics on a compact riemannian manifold, the 
quantity of differential geometry in terms of topological properties of 
manifolds only. From this point of view, it should be referred that Lus­
ternik and Schnirelmann proved in 1929 that there exist at least three 
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closed geodesics without self-intersections on a I-connected compact sur­
face [30]. And it should be referred also that Fet and Lusternik proved 
in 1951 that there exists at least one closed geodesic on a compact rieman­
nian manifold [10]. Klingenberg claims that the hypothesis of the Betti 
numbers in the Gromoll-Meyer theorem can be removed, and he gave a 
proof of the claim in his lecture note [24]. But the proof is still incom­
plete. In Finsler manifolds case this hypothesis can not be removed. In 
fact Katok [23] constructed a Finsler metric on a 2-sphere which has only 
two closed geodesics. In 1980 Matthias proved that any Finsler manifold 
M has infinitely many closed geodesics if the sequence of the Betti numbers 
for the free loop space of M is unbounded [31]. In [12] Gromoll and 
Meyer defined local homological invariants, characteristic invariants and 
characteristic submanifolds for isolated critical points and they applied 
these invariants to prove their theorem [l3]. It is difficult to estimate the 
number of closed geodesics in case closed geodesics lie on degenerate 
critical orbits. In their proof the above invariants are very useful to 
handle degenerate critical orbits. A related but more general theory than 
that of closed geodesics is the one of isometry-invariant geodesics devel­
oped by Grove [15], [16]. A non-constant geodesic c: R-+M is said to 
be invariant under an isometry A on M if Ac(t)=c(t+I) for all t E R. 
Thus closed geodesics of period 1 are invariant under idM , the identity map 
on M. Grove and Tanaka extended the Gromoll-Meyer theorem by 
means of isometry-invariant geodesics [18], [42]. Local homological in­
variants play an important role to estimate the number of isometry-invari­
ant geodesics. From chapter I to III this article is written for those who 
are not familiar with infinite dimensional manifolds. Chapter I is oc­
cupied by theorems from functional analysis necessary for calculus on 
infinite dimensional manifolds. Chapter II is devoted to Morse theory 
on Hilbert manifolds developed by Palais [37]. In Chapter III various 
path-spaces are introduced and it is given the structures of Hilbert rieman­
nian manifolds to the path-spaces. As an application it will be given an 
outline of a proof of Fet-Lusternik theorem mentioned above. In Chapter 
IV, it will be stated an outline of the proof of the Gromoll-Meyer theorem 
and an outline of the proof of the generalized theorem by Grove and 
Tanaka. Some theorems related to the Gromoll-Meyer theorem are stated 
without proof. Our reference is not complete, cf. [24] for a complete 
reference. [11] and [24] are good textbooks to understand infinite dimen­
sional manifolds. 

Chapter I. Reviews from Analysis 

In this chapter all the theorems and propositions will be stated 
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without proofs. The proofs can be found in [9], [29], [43]. 

§ 1. The open map theorem and the spectral theory 

Let E j , E2, •• " Er and F be Banach spaces and let L(Ej , •• " Er; F) 
be the set of all bounded r-multilinear maps from E j X ... X Er into F. 
In particular when E j = ... =Er=E, VeE, F) will be used instead of 
L(E, .. " E; F). The operator norm II TIl of T e L(Ej , •• " Er; F) is de­
fined by 

Then L(Ej , •• " Er; F) becomes a complete normed space by the norm, 
i.e. a Banach space. 

Theorem 1.1 (open map theorem). If fe L(E, F) is surjective then f 
is an open map. 

Theorem 1.2. Let H be a real (resp. complex) Hilbert space with an 
inner product < ,). For each bounded real (resp. complex) valued linear 
map f, there exists a unique element a e H such that f(x)=<x, a) for all 
xeH. 

As corollaries we have 

Corollary 1.3. If A is an element of L(H, H), there exists a unique 
A* e L(H, H) satisfying IIA*II=IIAII and <Ax, y)=<x, A*y) for all x, y 
eH. 

Corollary 1.4. Let A, B be bounded linear maps on H and let z be a 
complex number. Then the following hold. 

(i) (A+B)*=A*+B* 
(ii) (zA)* = zA*, where z denotes the complex conjugate of z. 
(iii) (AB)* =B* A* 
(iv) (A*)*=A 
(v) IIA 0 A*II=IIAW. 

If a bounded linear map A satisfies A*=A then A is called self ad­
joint. A projection P is defined as the bounded linear map on H satisfy­
ing p 2=p=p*. Actually a projection P is the orthogonal projection 
onto P(H). Let L~(H, R) be the Banach space of all symmetric bilinear 
maps in D(H, R). 

Proposition 1.5. There exists a canonical linear isomorphism between 
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L~(H, R) and {A e L(H, H)IA*=A}. 

Let A be a bounded linear map on a Hilbert space H. The spectrum 
of A is defined by 

a(A)={A e CIA-AId does not have a continuous inverse}. 

Theorem 1.6. sup {I A II A e a(A)} ~ II A II· 

Let F(A) be the set of all complex-valued functions which are holo­
morphic on a neighborhood of a(A). For each fe F(A), f(A) is defined 
by the Dunford's integral (p. 225 in [43]). 

Theorem 1.7. If A is self adjoint then the spectrum of A is closed 
subset of R. 

Theorem 1.8. If f, g e F(A) then af+ f3g e F(A) for any complex 
numbers a, f3, (af+ f3g)(A) = af(A) + f3g(A),fg e F(A) and (fg)(A) = 
f(A)g(A). 

§ 2. Frechet derivatives and integrals 

Let U be an open subset of a Banach space E and let f be a map 
from U into a Banach space F. If there exists aTe L(E, F) satisfying 

lim IIf(p+x)-f(p)- T(x)lI/lIxll=O 
",-0 

then f is said to be differentiable at p e U. If T exists, it is unique. Hence 
T will be denoted by dfp. Let I be an open interval of R. If f: I ~ F is 
differentiable at tel, then d}; e L(R, F) andj(t) will denote d};(l). 

Proposition 2.1. If fe L(EI' E2 ; F) then f is differentiable at each 
point of E1 XE2 and dj(",,'V)(s, t)==f(x, t)+f(s, y). 

Proposition 2.2. Let A (resp. B) be an open subset of a Banach space 
E(resp. F). If a map f: A~F is differentiable at Xo e A and a map g: B~ 
G is differentiable at f(xo) e B, then go f is differentiable at Xo and d(g 0 f):r:o 
= dgf(:r:o)df:r:o' 

Suppose that a map f: A~F is differentiable at each point of the 
open subset A of a Banach space E. Then df is a map from A into 
L(E, F). If df is continuous' on A, then f is called of class C1• If df is 
differentiable at a point peA then d2Jp=d(df)p is an element of L(E, 
L(E, F). If we identify £1'+I(E, F) and L(E, VeE, F») for each positive 



Number of Closed Geodesics 5 

integer k, then d2J is a map from A into VeE, F). Inductively suppose 
that dlef: A~LIc(E, F) exists and differentiable at peA. Then d k+1fp is 
defined by d k+1fp=d(dkf)p. If dlc+1fp exists at each point peA and 
d lc +1f: A~Lk+I(E, F) is continuous then f is said to be of class CIc+I. If 
f is of class C Tc for every positive integer k, f is said to be of class C"". 
A continuous map will be called of class Co. 

Proposition 2.3. Suppose that f: A~F is of C 2• Then d2J: A~V(E, 
F) is symmetric at each point of A. 

Proposition 2.4. Suppose that f: A~F is of class C1 and that A is 
convex. Then the inequality 

IIf(z)-f(x)II~lIz-xll sup lIi(x+t(z-x»11 
0':;1':;1 

holds for each x, z e A. 

Theorem 2.5 (Inverse function theorem). Suppose that f: A~F is of 
class CTc (k~ 1) and that dfx. is a linear homeomorphism for a point Xo e A. 
Then there exists an open neighborhood V of xosuch that the map fl V: V~ 
f(V) is a C"-diffeomorphism. 

Proposition 2.6. Let Ut (i= 1,2, ... , n) be an open subset of a Banach 
space Ei and let f be a continuous map from U1 X ... X Un into F. f is of 
class C" if and only if dJ: U1 X ... X Un~L(Ei' F) is of class C Tc - 1 for 
any 1 ~ i ~ n. Here dJ denotes the partial derivative with respect to the ith 

component. 

Proposition 2.7. Let E and F be Banach spaces which are linear iso­
morphic. If GL(E, F) denotes the set of all linear isomorphisms of E onto 
F, then GL(E, F) is open in L(E, F) and a map u e GL(E, F)~U-I e 
GL(F, E) is of class C"". 

Let I be an interval of R whose end points a, b may be + 00 or - 00. 

A map f from I into a Banach space F is called a step function if there 
exist finite points x O=a<xl <x2<··· <xn=b such that fis constant on 
each open interval (Xi' Xi+!) (O~i~n-l). A map f: I~F is called a 
regulated function iff(x+O) (x*b) or f(x-O) (x*a) exists for any x e 1. 

Proposition 2.8. Suppose that I is a compact interval [a, b]. Then a 
map f: I~F is a regulated function if and only iff can be uniformly ap­
proximated by step functions. 

A continuous map g: I~Fis called a primitive function of a map f 
from I into F if g= f except for a countable subset of I. 
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Proposition 2.9. Let I be an interval of R. If a map f of I into F is 
regulated, then f has a primitive function. 

Definition of integrals. Let f be a regulated function from an interval 
[a, ,8] into F and let g be a primitive function off Then the integral of f 
from a to ,8 is defined by 

I>(t)dt=gGB)-g(a) . 

From Proposition 2.4 g(,8)- g(a) is independent of the choice of primitive 
functions. 

Proposition 2.10. Suppose that a map f is a regulated function of[a, ,8] 
into E and that u is a bounded linear map of E into F. Then 

I: u(f(t))dt=u(f:f(t)dt) 

holds. 

Proposition 2.11. Let f be a regulated function of[ a, ,8] into F. Then 

III: f(t)dt II ~ I: Ilf(t)lldt ~ (,8 - a) a~~rp IIf(t)11 

holds. 

Proposition 2.12. Let A be an open subset of E. Iff: [a,,8] XA~F 

is continuous, then g(z) = I:f(t, z)dt is a continuous map from A into F. 

Proposition 2.13. Under the same assumption as the above proposition, 

the function g is of class C 1 and dg.= I: dz/(t .• )dt if dz/ exists and it is con­

tinuous on [a, ,8] X A. 

Proposition 2.14. Let U be a convex open subset of E. If a map f of 
U into F is of class CP, then 

f(x+y) =f(y) + dfx(y)/l !+ ... +dp-1fiyP-l)/(p-l)! 

+ f: (1- t)P-1dPf:c+ty(yP)dt/(p-l)! 

where y~ stands for (y, .. " y) (k times). 
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§ 3. The existence and uniqueness theorems for differential equations on a 
Banach space 

Let U be an open subset·of a Banach space E and letfbe a CP(p~O) 
map from JX U into E, where J is an open interval containing 0 in R. 
By a local flow for f at a point Xo E U, we mean a mapping 

where Jo is an open subinterval of J containing 0 and where Uo is an open 
subset of U containing Xo such that for each x in Uo 

a",(t)=a(t, x) 

is an integral curve for fwith initial condition x. Here an integral curve 
for fwith initial condition x is a mapping [3 of an open subinterval Jo of 
J containing 0 into U such that 

fi(t)=f(t, [3(t), [3(O)=x. 

Theorem 3.1. Let J be an open interval of R containing 0 and let U 
be an open subset of a Banach space E. Suppose that a map f from Jx U 
into E is of class CP (p~ 1). Then there exists a unique local flow, which 
is of class CP+t, for f at each point Xo E U. 

Definition of a Banach manifold. Let X be a topological set. An 
atlas on X is a collection of pairs (Ut, CPt), i E I, satisfying the following 
condition: 

1. Each Ut is an open subset of X and Ut cover X. 
2. Each CPt is a homeomorphism of Ut onto an open subset CPt(Ut) 

of a Banach space E t • 

3. The map cPj 0 CPt!: CPtCut n Uj)--,>-cpj(Ut n Uj ) is of class C~ for 
each pair of i,j E I. 

A Hausdorff space X with a maximal atlas will be called a Banach 
manifold. r 

Each element (Ut, CPt) of the atlas will be called a chart and Ut (resp. 
CPt) will be called a coordinate neighborhood (resp. a coordinate function). 
Et will be called the target of CPt. On each connected component of X 
we may assume that the E/s are some fixed E, because the differential of 
CPJ 0 CPt! gives a topological linear isomorphism between Et and Ej when 
Ut and UJ have a common point. Let I be the set of all coordinate func­
tions at a point pin M. Let E denote the set IT9'Er E9' where E9' denotes 
the target of cP, and let 7C", be the natural projection of E onto E",. Then 
the tangent space Mp at p to M is defined by 
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Mp becomes a Banach space induced from the map trp I Mr Each element 
of Mp will be called a tangent vector at p. Let M and N be Banach 
manifolds and letfbe a continuous map from Minto N. If tofo<p-l is 
smooth (Coo) for any chart (U, <p) for M and any chart (V, t) for N with 
f(U)c V, then f will be called a smooth map. In case f is smooth the 
differential map dfp at p is defined by 

for any v E M p , where J denotes the set of all coordinate functions atf(p). 
Then dfp is a linear map of Mp into Nf(p). The tangent bundle TM of M 
is defined by the Banach manifold TM = Up EM Mp with the atlas induced 
from the atlas for M. Let X be a smooth vector field on M. An integral 
curve of X is defined by a smooth map a of an open interval into M such 
that dat(1)=Xq (t). In what follows dat(1) will be denoted by aCt) or by 
a'(t). 

Theorem 3.2. For each p E M there is an integral curve ap of X with 
a p(O) = p such that every integral curve of X with initial condition p is a 
restriction of ap. The integral curve ap will be called the (maximal) inte­
gral curve of X with initial condition p. 

The above theorem is proved by means of Theorem 3.1. 

Chapter II. Morse Theory on Hilbert riemannian Manifolds 

§ 1. The generalized Morse lemma 

Let M be a Banach manifold and let fbe a smooth function on M. 
If dfp *- 0 then p is called a regular point of f and otherwise p is called a 
critical point of f For a critical point p of j, a bilinear form H(f)p on 
Mp. which is called the Hessian off at p, is defined by 

where <p is a coordinate function at p. This definition is independent of 
the choice of <p and H(f)p is continuous and symmetric [Proposition 
2.3 in Chapter I]. If H(f)p is non-degenerate, i.e. the map v E Mp~ 

H(f)p(v, .) E L(Mp, R) is a linear isomorphism, p is called non-degenerate. 
Otherwise p is called degenerate. We define the index of p to be the 
supremum of the dimensions of subspaces W of Mp on which H(f)p is 
negative definite. The null space of p is defined by the vector space of all 
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tangent vectors v satisfying H(f)p(v, w)=O for any we Mp. The nullity 
of p is defined by the dimension of the null space. Let F be a smooth 
function on a Hilbert space (H, < , »). If the origin 0 of H is a critical 
point of F, a self adjoint operator A on H is determined by 

<Ax, y)=H(FMx, y) 

[Proposition 1.5 in Chapter I]. F will be called a Fredholm function at 0 
when A-Id is a compact operator. Hence the index of 0 is finite if F is a 
Fredholm function at O. The following lemma was proved by Palais [37] 
and Gromoll, Meyer [12]. 

Lemma 1.1. Let f be a Fredholm function at the origin defined in a 
convex neighborhood U of the origin in a Hilbert space (H, < , »). Then 
there exist an origin preseving diffeomorphism (fJ of some neighborhood of 0 
in H into H and an origin preserving smooth map h defined in some neigh­
borhood of 0 in N=ker H(f)o into E=NJ.., the orthogonal complement of 
N, such that 

fo (fJ(x, y)=IIPxW-II(Id-P)xW+f(h(y), y) 

with an orthogonal projection P: E~E. 

Proof Define cp: EffiN~EffiN by cp(x, y)=(PI(Vf(x,1I»)' y) where 
PI: H ~E denotes the orthogonal projection to E and where Vf(x,y) is the 
gradient vector off at (x, y), i.e. it is characterized by the property that 
<Vf(x,v), v) = df(x, v) (v) for any ve H [Theorem 1.2 in Chapter 1]. Since 
d(PI(vf))=PIA at the origin, the differential of cp at the origin has the 
form dcpo=PIAffiIdN • Here A denotes the self adjoint bounded linear 
operator determined from the Hessian off at the origin. Since A I E is a 
linear isomorphism of E onto itself, dcpo has a continuous inverse [Theo­
rem 1.1 in Chapter I]. From the inverse function theorem [Theorem 2.5 
in Chapter I], cp is locally invertible in a neighborhood of 0 in H and the 
equation cp-I(O, y)=(h(y), y) defines a function h: U~E in some neigh­
borhood U of 0 in N, h(O)=O. Observing (0, y)=cp(h(y), y) we obtain 
PIVf(h(y), y) =0, i.e. (h(y), y) is a critical point of fl Effiy. Set g(x, y)= 
f(x, y)-f(h(y), y) and ",(x, y)=(x-h(y), y). '" is a diffeomorphism, 
go ",-I(X, y) = f(x + hey), y) - f(h(y), y), go ",-1(0, y) = O. Furthermore 
(0, y) is a critical point of g 0 ",-II Effi y. Let dE denote the partial differ­
ential for functions on H with respect to the E-component. For (x, y) e 
EffiN, we define a continuous bilinear form Bxy on E by 

Bxy = J: (1-t)d~(g 0 ",-I)(tx,y)dt 
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and an operator Axy:E-+E by <AXyXl>X2)=Bxy(XI,X2), clearly 2Aoo= 
PIA I E is invertible. From Proposition 2.14 in Chapter I, we have 

Define Dxy=A;;';Aoo. Since the inversion is a smooth map of the open 
set of the invertible operators onto itself [Proposition 2.7 in Chapter I], 
D is a smooth map of some neighborhood of the origin into L(E, E) and 
each Dxy is invertible. Now Doo=IdE and since a square root function is 
defined in a neighborhood of IdE by a convergent power series with real 
coefficients we can define a smooth map C: U-+L(E, E) with each CXy 
invertible, if U is taken sufficiently small, by CXy =(DXy)1/2. Since Aoo and 
Axy are self adjoint we see easily from the definition of Dxy that D;yAxy= 
AxyD xy = Aoo and clearly the same relation then holds for any polynomial 
in Dxy hence for CXy which is a limit of such polynomials. Thus C~AxyCxy 
=Axy{CxyY=AxyDxy=Aoo. If we write 7Jf(x, y)=(C';ylX, y) then 7Jf is a 
local diffeomorphism, because d1p'o=COo I EBIdN =IdH • Hence we have 
go '1/1'-1 0 1p'-I(X, y)=<Aoox, x) andf 0 '1/1'-1 0 1p'-I(X, y)=<Aoox, x)+ f(h(y), y). 
Let T=IAool-1/2 so that Aoo T 2=P-(Id-P) where P=X(Aoo) and X the 
characteristic function of [0, 00) [Theorem 1.8 in Chapter I]. Then ([l de­
fined by ([l(x, y) = '1/1'-1 0 1p'-I(Tx, y) is the desired local diffeomorphism. 

Remark. In case ° is a non-degenerate critical point of f the above 
claim holds without the assumption on A [37]. 

Corollary 1.2. The index of f at the origin is the dimension of the 
range of Id - P. 

Proof The proof is easy to note that the Hessian of f(h(y), y) at 
the origin is completely vanishing and that Id - P is injective on any sub­
space on which the Hessian off is negative definite. 

§ 2. Hilbert riemannian manifolds 

Let M be a Hilbert manifold, i.e. M is a Banach manifold whose 
targets are separable Hilbert spaces and let (H, < , ») be a target of M. 
For eachp E M let < , )p be an admissible inner product in M p, i.e. a 
positive definite, symmetric, bilinear form on Mp such that the norm II v II 
=<v, V)~2 defines the topology of Mp' We will call the map p-+< , )p a 
riemannian structure for M if for any chart (D(ep), ep) the function GP(x), 
which is defined by <GP(x)u,v)=<dep;;l(u),dep;;1(v)x for u,vEH, is 
smooth on D(ep). A Hilbert manifold with a riemmannian structure will 
be called a Hilbert riemannian manifold. 
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If u: [a, b]--+M is a piecewise Cl-map then 

L(u) = s: Ila(t)lldt 

is well defined and is called the length of u. We can define a metric p in 
each connected component of M by defining p(x, y) to be the infimum of 
the lengths of all piecewise Cl-paths joining x and y. The topology given 
by this metric is the given topology of M [37]. Let f be a smooth real 
valued function on a Hilbert riemannian manifold M. Given P E M, dfp 
is a continuous linear functional on M p , hence there is a unique tangent 
vector Vfp E Mp such that dfvCv) = <v, Vfp)p for all v E Mp [Theorem 1.2 in 
Chapter I]. Vf: p E M --+Vfp E TM is called the gradient vector field of f 
Note that Vfis smooth [po 313 in 37]. 

Infinite dimensional manifolds are not locally compact. Therefore 
in order to develope Morse theory on such a manifold, we need assume 
the following condition which is called Palais-Smale Condition (C). 

(C) If S is any subset of M on whichfis bounded but on which IWfl1 
is not bounded away from zero, then there is a critical point off adherent 
to S. 

With Condition (C), analogous claims to the case of finite dimensional 
manifolds [33] can be concluded. Refer to [37] on the proofs of the 
claims in this section and the next one. 

Proposition 2.1. Suppose that f satisfies Condition (C) and that any 
critical point p off with a~f(p)~b are non-degenerate for real numbers 
a, b. Then there are at most a finite number of critical points p off with 
a~f(p)~b. 

Proposition 2.2. Suppose that M is complete and that f satisfies Con­
dition (C). If there is no critical point in the closed interval [a, b], then 
Ma={x E Mlf(x)~a} and Mb are diffeomorphic. 

If a smooth function f on M satisfies Condition (C) and all critical 
points off are non-degenerate, then f will be called a Morse function. 

Theorem 2.3. Let M be a complete Hilbert riemannian manifold, fa 
Morse function, c a critical value of J, PI' .. " Pn the critical points offinite 
index onf-l(c), and let di be the index of Pi' Ifc is the only critical value 
offin a closed interval [a, b], then Mb has the same homotopy type as Ma 
attached with cells of dimension dl, .. " dn • 

Remark. The critical points of infinite index on the level c is homo­
topically invisible since the unit sphere is a strong deformation retract of 
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the unit disc in a separable Hilbert space of infinite dimension. 

§ 3. Additional results and critical submanifolds 

In this section M will denote a Hilbert riemannian manifold and I 
will denote a smooth function on M satisfying Condition (C). Let K be 
the set of critical points of I and let It be the frontier of K. 

Theorem 3.1. I I It is proper, i.e. lor given real numbers a, b, It n 
I-I[a, b] is compact. 

Theorem 3.2. If I is bounded below on a connected component Mo 01 
a complete manifold M, then II Mo assumes its greatest lower bound. 

Corollary 3.3. If K has no interior point and if I is bounded below on 
M then I assumes its greatest lower bound. 

Let W be a connected submanifold of M. If each point of W is a 
critical point of J, then W is called a critical submanifold [7]. Moreover 
if the null space of the Hessian of I at each point p of W is included in 
W p , then W is called non-degenerate. The indexes of any points of W 
are constant if W is a non-degenerate critical submanifold [32]. In [7], 
[32] Morse theory for J, whose critical sets decompose non-degenerate 
critical submanifolds, were developed by Bott and Meyer. Morse theory 
for such a function will be useful to estimate the number of closed geo­
desics on finite dimensional riemannian manifolds. In fact closed geo­
desics will be characterized by nonzero valued critical points of the energy 
function on a certain path-space and such a critical point lies in a 1-
dimensional compact critical submanifold of the path-space. 

Chapter ID. Various Path-Spaces 

§ 1. Preliminaries 

A map (J of the unit interval J into R" is called absolutely continuous 
if either and hence both of the following two conditions are satisfied: 

(1) Given e>O there exists 0>0 such that if O~to<' .. <t2k+l~ 1 
and L:~~o I t21+1- tu I <0 then 

(2) There is age D(J, Rn) (the set of summable functions of J into 
Rn) such that 
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a(t) = a(O) + I g(s)ds. 

The equivalence of these two conditions is a classical theorem of 
Lebesgue. It follows from (2) that a'(t) exists for almost all tEl and that 
a' E V(I, Rn) and 

a(t) = a(O) + f: a'(t)dt. 

Let HoCI, Rn) be the set of measurable functions a of I into Rn such 
that 

<a, a)o= I Ila(t)Wdt <00. 

Then HoCI, Rn) is a I-Iilbert space with the inner product < ')0' We shall 
denote by HI(I, Rn) the set of absolutely continuous maps a: I-+Rn such 
that a' E Ho(I, Rn). Then HI(I, Rn) is a Hilbert space under the inner 
product« , » defined by «a, p»=<a(O), p(O) + <a', p')o' The proofs of 
the claims without proofs in this section will be found in [37]. 

Lemma 1.1. If a E HM, Rn) then 

II aCt) - a(s )11 ~ I t - s Ii/zil a' 110' 

We shall denote the set of continuous maps of !into Rn by COC!, Rn), 
considered as a Banach space with norm II . 1100 defined by 

Iialloo=max {lla(t)111 tEl}. 

Corollary 1.2. If a E H1(I, Rn) then 

Corollary 1.3. The inclusion maps of HlI, Rn) into CO(I, Rn) and 
Ho(I, Rn) are compact. 

Theorem 1.4. If cp: Rn-+RP is a Ck+Z-map then a I-'> cpa is a Ck-map 
ip: HM, Rn)-+HM, RP). Moreover ifl~m~k then 

§ 2. Hilbert manifolds of curves on manifolds 

If V is a finite dimensional manifold we define H 1(I, V) to be the set 
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of continuous maps q of I into V such that ep 0 q is absolutely continuous 
and II(ep 0 q),lllocally square summable for each coordinate function ep for 
V. For each q e HM, V) we define HI(I, V).={Xe HM, TV)IX(t) e 
V.(t) for all t e I}. If Nis a submanifold Vx V we define .QN(V)={q e 
H I(I,V)I(q(O),q(l»eN} and ifqe.QN(V) we define .QN(V).={Xe 
HM, V). I (X(O), X(I» e N(.(o),.(!))}. 

Theorem 2.1. If V is a closed submanifold of Rn and if N is a closed 
totally geodesic submanifold of Vx V, then .Q N(V) consists of all q e 
HI(I, Rn) such that q(I)c V and (q(O), q(l» e N and is a closed submanifold 
of the Hilbert space HI(I, Rn). If q e .Q N(V) then the tangent space to 
.Q N(V) at q (as a submanifold of HM, Rn» is just .Q N(V) •. 

Proof. The first claim is trivial. Since V and N are closed in Rn> 
Rn X Rn respectively, it follows that .Q N(V) is closed in CO(I, Rn), hence in 
HM, Rn) by Corollary 1.3. In the same way we see that .QN(V). is a 
closed subspace of HM, Rn). Since V is a closed submanifold of Rn, we 
can construct a riemannian metric for Rn such that V is a totally geodesic 
submanifold. Then let E: Rn X Rn---+Rn denote the corresponding expo­
nential map. For each q e .QN(V) define exp.: HM, Rn)---+HI(I, Rn) by 
exp.(X)=E(q, X). Then by Theorem 1.4, expo is smooth and exp.(O)= 
q. Moreover d(exp.)o(X)(t) = d2Eo(q(t), X(t» = X(t) by Theorem 1.4. 
From the inverse function theorem (Theorem 2.5 in Chapter I) expo maps 
a neighborhood of zero in HM, Rn) diffeomorphically onto a neighbor­
hood of q in HI(I, Rn). Since V and N are totally geodesic it follows that 
for X near zero in HM, Rn) expo X e .QN(V) if and only if X e .QN(V) •. 
Consequently exp;;-I restricted to a neighborhood of q in .QN(V) is a coor­
dinate function in .QN(V) which is the restriction of a coordinate function 
for HM, Rn), so .QN(V) is a closed submanifold of HI(I, Rn) and its tangent 
space at q is .QN(V) •. 

Remark. .QN(V) is a closed submanifold of HM, V)=.Qvxv(V) for 
any closed submanifold N of Vx V, because .QN(V) is the inverse image 
of the submersion defined by q e HtCI, V)o--+(q(O), q(l» e Vx V. But the 
restriction of exp;;-I to .QN(V) cannot be a coordinate function unless N is 
totally geodesic. 

Theorem 2.2. Let V and W be closed submanifolds of Rn and of Rm. 
respectively and let ep be a smooth map of V into W. Then ip: HI(I, V)-+ 
HI(I, W) defined by ip(q)=ep 0 q is a smooth map of HI(I, V) into HI(I, W). 
Moreover dip.: HM, V).---+HM, W)j3(q) is given by dip.(J..)(t) = dep.(t)(J..(t». 

Proof. Extend ep to a smooth map of Rn into Rm. Then Theorem 
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2.2 follows from Theorems 1.4 and 2.1. 
Let (M, g) be a finite dimensional riemannian manifold and letj be 

an imbedding of M as a closed submanifold of a Euclidean space Rn. 
Then from Theorem 2.2 the differential structure induced on HI(I, M) 
from the manifold HI(I,j(M» is independent of j. Moreover for a closed 
submanifold K of MX M, the differential structures induced on [) K(M) 
from [)jXj(K)(j(M» is independent ofj. Let J denote the distance function 
onj(M). For each a e HI(I,j(M» and a positive number e we define 

{c e HI(I,j(M» I J(c(t), O'(t»<e for any tel} 

(resp. {X e HtC/,j(M».lllIXIII<e for any tel}) 

by B';(O') (resp. 0';(0.». Byexp and exp we define the exponential maps 
of M andj(M) with the induced riemannian metric from Rn respectively. 

Proposition 2.3. For any 0' e HtC/,j(M» (B';(O'), exp;l) is a chart for 
a suffiCiently small positive e. Particularly (B';(a), exp,;l) is a chart for 
HtC/, M). 

Proof It follows from Corollary 1.2 that B';(a) is open in 
HtC/,j(M». Let Ut be an open neighborhood of aCt) such that its closure 
is contained in a normal convex neighborhood. Since a(I) is compact, 
there exist a finite covering Utl' •• " Utk of a(I). From the construction 
of Ut> there exists a positive e such that if d(p, q)<e and if p e Ut , for 
some i, I'::;;; i '::;;;k, then p and q are in a normal convex neighborhood. 
For such an e, exp,;1 maps B';(a) homeomorphica1ly, thus diffeomorphi­
cally onto O';(Oa)' If we take j as an isometric imbedding, then exp;lo 
eXPa is smooth. Note that the map dj of HtC/, M)a onto HtC/,j(M»ja is 
a continuous linear isomorphism, i.e. smooth. 

A canonical riemannian structure < , )1 of HI(I, M) is defined by 
means of the riemannian metric tensor g of M [11]. If we identify the 
tangent space to HI(I, M) at a with HI(I, M)a, then < , /1 is defined by 

where X', yl denote the covariant derivatives along a and where <X, Y)o 
; JI = 0 g(X(t), Y(t»dt. From now on we will define [)N(M) with the 

riemannian structure < , )1 by ANM. II· III (resp. II . II) will denote the 
norm induced from the inner product < , )1 (resp. g). We define d~ by 

d~(a, :) = max d(a(t), .. (t», 
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Lemma 2.4. Let a, r be elements of AMXM(M). Then 

where dl denotes the distance function on AMXM(M). 

Proof Let q; be any piecewise CI curve connecting a and r in 
AMXM(M). Then we can consider q; as a map !p of IX Iinto M by !pet, s) 
=q;(s)(t). Choose to E I such that d~(a, r)=d(a(to), r(to)). Then 

d~(a, r)=d\a(to), r(to))~(f: II ~~ (to, S)lIdsY 

~(f: m~x \I ~~ (t, s)l\ dsr ~2(f: II ~~ (stdsr 
=2L(q;)2 

for any piecewise smooth curve q;. Note that it follows from Lemma 1.1 
that 

for each fixed s. The above inequalities imply d~(a, r) ~ 1'2 dl(a, r). 

Theorem 2.5. If M is a complete riemannian manifold and N is a 
closed submanifold of M X M, then AN(M) is a complete Hilbert rieman­
nian manifold. 

Proof It is sufficient to prove the case when N = M X M, since 
AN(M) is a closed submanifold of AMXM(M). Let {cn} be a Cauchy se­
quence in AMXM(M). From Lemma 2.4 {cn} is a Cauchy sequence in 
(COC!, M), d~). Thus {cn } converges uniformly to c~ E COC!, M). Since 
AN(M) is dense in COC!, M), we can assume that for sufficiently large m, 
Cm is contained in a fixed natural chart (B';(c), exp;I). Put Xm=exp;l(cm) 
and let PI(t), .. " Pk(t) be an orthogonal parallel basis along c. Then 
we get Xm(t) = I:i X/"'(t)Pi(t) and xm=(X;" . ", X~) E HI(I, Rk). The 
sequence {xm} is a Cauchy sequence in (HM, R k), III . III), since 

<a, a)J3~((a, a))~3<a, a)I' 

Thus Xm converges to (fl, ... ,/k) and Xm converges to I:i fiP,. 

Let E be the energy function on AN(M), i.e. 

E(a) = 1/2 J: g(a, a)dt. 
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To check that E is smooth, embed M isometrically into a Euclidean 
space Rn [34]. Let Jbe the bounded symmetric bilinear form on HM, Rn) 
defined by 

J(c)=lj2 f: Ile(t)Wdt. 

Clearly J is smooth, because 

dJcCJ0= f: <e(t), X(t»dt, 

d 2J.(X, Y)= J: <X(t), Y(t»dt, dkJc=O (k>3). 

If we denote the isometric embedding by j, E=J 0 j. Thus E is smooth. 

Proposition 2.6. For each c e AN(M), 

dE. (X) = f: g(e(t), X'(t»dt, X e AN(M)c· 

Proof Let lp be a smooth curve in AN(M) with lp(O)=c, ¢(O)=X. 
We have 

dE.(X) = ( ! ).=0 E(lp(s» 

= Ij2~(fl g( acp (t, s), acp (t, S»)ds) 
ds 0 at at .=0 

=fl g( acp (t, 0), ~ acp (t, O»)dt 
o at as at 

= f: g(e(t), X'(t»dt, 

where cp(t, s)=lp(s)(t) and Vjas denotes the covariant derivative along the 
curve cp(t, s), t=const. 

Let 11 be the diagonal of M. By AM, we denote the manifold, whose 
differential structure is induced from that of AdM, of all maps q from R 
into M withq 1[0, 1] e AdM and with q(t)=q(t+ 1). 

Theorem 2.7. c e AM is a critical point of the energy function if and 
only if c e AM is either a constant map or a periodic (or closed) geodesic. 

Proof Only if part is trivial. Suppose that c is a critical point. 
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Let Z be the parallel vector field in AM. satisfying Z(I)=A(l), where A(t) 
is the unique solution of the differential equation defined by 

A'(t)=c(t), A(O)=O. 

Since c is square summable, the solution AU) belongs to H I(!, M).. Put 
B(t)=A(t)-tZ(t). Then B(O)=Oc(o)' B(l)=O.(1) and B'(t)=c(t)-Z(t). 
Hence O=dEc(B)=<c,B')o=<c,c-Z)o and <Z,c-Z)o=<z,B')o= 

S: dldt <Z, B)dt=O. It follows from these two equations that c=Z. 

This implies that c is either a geodesic or a constant map. Thus for any 
XeAM., 

O=dE.(X)=<c, X')o=<c(l)-c(O), X(O». 

Since X(O) can be taken arbitrary, c(O)=c(I). Therefore c is periodic. 
The following two theorems may be proven by the similar way as 

above. 

Theorem 2.S. Let K and L denote closed submanifolds of M. Then 
c e AXXL(M) is a critical point of the energy function if and only if c is a 
constant map in Kn L or a geodesic which intersects orthogonally to Kat 
c(O) and to L at c(I). 

Let A be an isometry on M and let G(A) be the graph of A. We 
shall define {a: R~Mlal[O, 1] e AG('A.)(M), Aa(t)=a(t+ I)} by A(M, A). 
A(M, A) can be introduced the differential structure and the riemannian 
one by AGw(M). A geodesic c of R into M is called A-invariant if Ac(t) 
=c(t+ 1) [15], [40]. Note that a closed geodesic is an idM-invariant 
geodesic. 

Theorem 2.9. c e A(M, A) is a critical point of the energy function if 
and only if c is a constant map in the fixed point set of A or an A-invariant 
geodesic. 

If M is non-compact, the energy function on ANM does not satisfy 
Palais-Smale Condition (C) in general. But the energy function in the 
following case satisfies Condition (C). 

Theorem 2.10. Suppose that M is a complete riemannian manifold 
and that N is a closed submanifold of MxM. If PI(N) or pz(N), where 
PI (resp. pz) denotes the projection of MxM to the first (resp. the second) 
component, is compact, then the energy function on ANM satisfies Condition 
(C). 

The above proof is given in [15]. A short proof in case N is totally 
geodesic is given in [22]. 
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Let C,?,(I, M) be the space with the compact-open topology of all 
continuous maps x of I into M with (x(O), x(I» e N. Then the following 
theorem is proved in [11], [15]. 

Theorem 2.11. The inclusion map of ANM into C,?,(I, M) has a homo­
topy inverse. Hence ANM and C,?,(I, M) are the same homotopy type. 

In what follows we will denote the energy function on A(M, A) by 
EA, where A is an isometry on M. 

Theorem 2.12. For any critical point c of EA, the Hessian of EA at c 
is given by 

D2E:(X, Y)= f: (g(X', Y')-g(R(X, c)c, Y»dt 

for X, Y E A(M, A)e, where R denotes the curvature tensor of(M, g). 

Proof Since D2E: is symmetric bilinear form [Proposition 2.3 in 
Chapter I], it is sufficient to prove the case where X = Y. Notice the 
equation 

2D2E:(X; Y)=D2E:(X+ Y, X+ Y)-D2E:(X, X)-D2E:(Y, Y). 

Let f{J be a smooth curve of (-e, e) into A(M, A) with f{J(O)=c, ¢(O)=X. 
Then 

D2E:(X, X)=~EA(f{J(t"»1 
at" .=0 

=- g _1 (t, t"), 1(t, t") dt a fl (J7 a- a- ) I 
at" 0 at" at at .=0 

= s: (g(X', X')-g(R(X, c)c, X»dt. 

For the above detail calculation, see [33]. 
A(M, A) has a natural RI-action, i.e. the translation of parameters of 

the curves in A(M, A). Clearly the action preserves the energy and it is 
an isometry. The following theorem was proved by Grove [16]. 

Theorem 2.13~ The RI -action on A(M, A) is continuous. 

Theorem 2.14. EA is a Fredholm function at each critical point of EA. 

Proof Supposec is a critical point of EA. Let S denote the opera­
tor defined by (SX, Y)I=D2E:(X, Y). Then «S-Id)X, Y)I=-(X, Y)o 
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-(R(X, c)c, Y)o. Thus there exists a positive constant K such that 
II(S-Id)XIII ~KIIXlio for any X e A(M, A)c. Suppose that {Xn} is a 
bounded sequence in A(M, A)c. It follows from Corollary 1.3 in III that 
the sequence has a convergent subsequence. Note that we can imbed 
A(M, A)c isometrically as a closed subspace of HI(I, Rn), n=dim M, by 
means of orthonormal parallel vector fields along c. Thus {(S - Id)Xn} 

has a Cauchy subsequence, hence a convergent subsequence in A(M, A)c. 

Lemma 2.15. Let U be an open subset of RP and let ep be a piecewise 
smooth map of Ux I into Rn in the following sense. There exist finite 
numbers O=to<tl< .. ·<tk =l such that ep is continuous on UXI and 
smooth on UX[tt, tHI] for each i, O~i~k-1. Then the induced map ip of 
U into HM, Rn) defined by ip(x)(O=ep(x, t) is smooth. Furthermore tM 
differential map of ip at x is given by 

r---.../ 

Proof. Since oep/OXt is piecewise smooth for each i, the map oep/OXt 
from U into HI(I, Rn) is defined. For a fixed x e U, let T denote the 

r--.../ 

bounded linear map of RP into HM, Rn), T(h) = L:t ht(oep/oXt)(x). Since 
lIep(x+h)-ep(x)-T(h)III/llhll tends to zero at IIhll goes to zero, ip is differ­
entiable at x and its derivative dip., is T. From the following inequality 

IIdip.,-dipvW~ max {SllIeplx, t)-epi(Y, t)Wdt 
l<;i<;p 0 

+ s: lIepit(X, t)-eptt(Y, t)Wdt} , 

where ept=Oep/OXi, eptt=02ep/OXiOt, dip., is continuous and hence ip is CI. 
Suppose that ip is Ck-I(k> 1) for any piecewise smooth map ep. Since 
dip.,(h) = L:i hiipi(x), dip., is C k - I and hence ip is Cr.. This implies ip is a 
smooth map of U into HI(I, Rn). 

As in [33] or in [41, AM can be approximated by finite dimensional 
manifolds. Q(to,"', tk ) denotes the set of all curves c e AM such that 
cl[t" ti+l] is a minimizing geodesic for each O~i~k-1. If we choose a 
sufficiently fine subdivision of [0, 1] for each real number a, Qa(to, .. " tr.) 
=E-I[O, a) n Q(to, .. " tr.) can be realized as an open submanifo1d of Mr.. 
We obtain the following theorem from the above lemma. 

Theorem 2.16. The inclusion map of Qa(to, .. " tr.) into AM is an 
embedding map. 
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Remark. V. Bangert kindly gave the author another proof of the 
above theorem. 

§ 3. Applications 

Theorem 3.1. If M is a compact, connected and non-simply connected 
riemannian manifold, then M has a closed geodesic. 

Proof. Since the connected component of C~(I, M) corresponds to 
the conjugate classes of ;'t'1(M), the fundamental group of M, C~(I, M) is 
not connected. Thus it follows from Theorem 2.11 that AM is not con­
nected. From Theorem 2.10, the energy function E=E1dx satisfies Condi­
tion (C). Hence it follows from Theorem 3.2 in II that E assumes a 
positive minimum on a connected component Ao of AM which has no 
common points with the set of all constant curves. The point which gives 
the minimum of EI Ao is a positive E-valued critical point, i.e. a closed 
geodesic. 

Any I-connected compact riemannian manifolds also have closed 
geodesics. The proof of this case is more difficult. The following lemma 
is useful to prove it [15]. 

Lemma 3.2. Suppose that A is an isometry on a compact riemannian 
manifold with fixed points. Then Fix (A) = (EA)-I(O) is a union of non­
degenerate critical submanifolds of A(M, A) and there exists a positive e 
such that Fix (A) is a strong deformation retract of A(M, A)< = (EA)-I[O, e]. 

Theorem 3.3. Any I-connected and compact riemannian manifolds 
have closed geodesics. 

The above theorem is generalized by means of isometry-invariant 
geodesics [15]: . 

Theorem 3.4. If an isometry A on a I-connected compact riemannian 
manifold M is homotopic to idx , then there exists an A-invariant geodesic 
onM. 

Chapter IV. The Gromoll-Meyer Theorem on Closed Geodesics 
and Some Theorems Related to their Theorem 

§ 1. An outline of the proof of the Gromoll-Meyer theorem and some 
related theorems about closed geodesics 

Among various problems about closed geodesics, one of the most 
prominent questions is whether or not there exist infinitely many closed 
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geodesics on an arbitrary compact riemannian manifold. The main inter­
est lies in the question of whether it is possible to estimate the number of 
closed geodesics in terms of topological properties of the manifold only. 
In 1969 Gromoll and Meyer succeeded to find such a criterion [13]. 
They obtained the following result: 

Theorem 1.1. Let M be a I-connected and compact riemannian mani­
fold. Then M has infinitely many closed geodesics if the Betti numbers for 
the space CO(S\ M) (= C~(I, M)) are unbounded. 

Let us note that any symmetric space of rank one does not satisfy 
the above topological condition about the Betti numbers. In 1977, 
Sullivan and Vigue-Poirrier found the necessary and sufficient for AM to 
have a unbounded sequence of rational Betti numbers [39]. 

Theorem 1.2. Let M be a compact and I-connected manifold. The 
sequence of the rational Betti numbers for CO(S\ M) is unbounded if and 
only if the number of generators for rational cohomology of M is not less 
than two. 

As a corollary we get, 

Corollary 1.3. If a compact riemannian manifold M has the same 
homotopy type as the product manifold of two I-connected compact mani­
folds, then M has infinitely many closed geodesics. 

In 1977, Ziller calculated the Betti numbers for the free loop spaces 
of all compact symmetric spaces and he obtained [44]: 

Theorem 1.4. Let M be a compact and I-connected riemannian mani­
fold which has the same homotopy type as a compact symmetric space of 
non rank one. Then the sequence of the Betti numbers for CO(S\ M) is 
unbounded. Hence M has infinitely many closed geodesics. 

The RI-action on AM induces SI-action, because c(t+ I)=c(t) for 
any c E AM. Here SI=[O, I]/{O, I}. If SI·C is a non-degenerate critical 
submanifold (cf. p. 12) for any non-constant critical point c E AM, then the 
proof of Theorem 1.1 is much simpler. When SI·C is non-degenerate, 
the closed geodesic c will be called non-degenerate. In such a case 
Gromov proved the growth estimate for N(t), the number of geometrical 
different closed geodesics of length~t [14]. This result was improved by 
Ballmann and Ziller [5]. The following theorem gives another proof of 
Theorem 1.1 in the case where all closed geodesics are non-degenerate. 

Theorem 1.5. Let M be a compact and I-connected riemannian mani-
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fold all of whose closed geodesics are non-degenerate. Then there exist 
positive constants a, [3 depending on the riemannian metric such that 

N(t»a max dim Hk(AM, R) 
l:s.;;k';;;;fjt 

for any principal ideal domain R and all t sufficiently large. 
In Finsler metric case the assumption on the Betti numbers in Theo­

rem 1.1 can not be removed; Katok found an example of a 2-sphere with 
Finsler metric which has only two closed geodesics [23], [45]. 

A Katok example. Let S2 be the unit 2-sphere in R3 with center at 
the origin. Define cp, by the rotation of angle t around z-axis. Then cp, 
is a I-parameter of isometries such that CP,=CP'+2<' Let V be the vector 
field generated by cp,. Define Ho, Hi: T*S2---+R by Ho(x)=llxll* and 
H 1(x)=x(V) where II . 11* is the dual norm of the riemannian metric of S2. 
Let H a=Ho+aH1 for a real a. Then Na = HaL;; 1 defines a Finsler metric 
on S2, where La is the Legendre transformation of 1/2 H!. 

Theorem 1.6. If a is irrational and sufficiently small then the closed 
geodesics of Na are r+(t)=r«(1+a)2t) andL(t)=r(-(1-a)2t). The pe­
riods of r + and r _ are 27r/(I + a)2, 27r/(I- a)2 respectively and their lengths 
are 27r/I+a, 27r/I-a respectively. Here r(t) = (cos t, sin t, 0). 

Remark. The geodesics of Na are given by cpa' 0 r x(t/II X 11*), where r x 

is the great circle, i.e. the geodesic of the unit 2-sphere, with t x(O) = the 
dual tangent vector of x. 

In 1980 Matthias extended Theorem 1.1 by means of Finsler manifolds 
[31]. 

Theorem 1.7. Let M be a compact and I-connected Finsler manifold. 
Then there exist infinitely many closed geodesics if the sequence of the Betti 
numbers for CO(S\ M) is unbounded. 

Morse theory for the energy function E on AM is used to prove 
Theorem 1.1. Non-constant critical points of E correspond to closed 
geodesics on M, but the correspondence is not injective. Closed geodesics 
on M correspond to towers of critical orbits injectively. This makes it 
difficult to estimate the number of closed geodesics. Formulas for indexes 
and nullities of iterated closed geodesics are crucial to overcome the diffi­
culty. Let c be a non-constant closed geodesic and cm be the m times 
iterated closed geodesic of c, i.e. cm(t)=c(mt) for t E R. Then the follow­
ing formulas of indexes 2(cm) and nullities v(cm) of Sl. em were found by 
Bott [7]. 



24 M. Tanaka 

Theorem 1.8. There exist nonnegative integer valued functions N(z), 
A(z) on {z E Glllzll= I} such that 

2(cm)= L: A(z), v(cm)= L: N(z) 
zm=l zm=l 

for any positive integers m. 
From the above formulas we obtain 

Lemma 1.9. If 2(cm)::;t:O for some positive m, then there exist positive 
e, a such that 

for any positive integers ml~m2>O. 

In [12] Gromoll and Meyer defined a characteristic invariant for an 
isolated critical point, .no°(c), which has a very useful property. 

Lemma 1.10. Suppose that v(cm)=v(c) for some positive integer m 
and that SI. em is an isolated critical orbit. Then .no0( c) is isomorphic to 
.no°(cm). 

From Lemma 1.8 we can guarantee the assumption of the nullities in 
the above lemma: 

Lemma 1.11. There exist positive integers kl' .. " ks and sequences 
{m}}i>O' j= 1, .. " s of positive integers such that any positive integer m has 
a unique decomposition m=m;kj and 

Combining Lemmas 1.9, 1.10, 1.11 and Morse inequalities, we can 
prove the boundedness of dim Hk(AM) for any k~2 dim M if M has 
only finitely many closed geodesics. 

§ 2. Isometry-invariant geodesics 

In 1976 Grove and Tanaka proved the following theorem [18]. 

Theorem 2.1. Let M be a compact, I-connected riemannian manifold 
and letf: M~M be an isometry offinite order. Then there are infinitely 
many f-invariant geodesics on M if the sequence of the Betti numbers for the 
space A(M,f) is unbounded. 

Note. Any f-invariant geodesics are closed geodesics. The case f= 
idM in the above theorem is the Gromoll-Meyer theorem. 
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In 1981, Tanaka extended Theorem 2.1 [42] which is optimal. 

Theorem 2.2. Let M be a compact, I-connected riemannian manifold 
and let A: M ~M be an arbitrary isometry. Then there are infinitely many 
A-invariant geodesics on M if the sequence of the Betti numbers for the 
space A(M, A) is unbounded. 

In [19], a necessary and sufficient condition on A and on M for 
A(M, A) to have an unbounded sequence of rational Betti numbers was 
obtained by Grove, Halperin and Vigue-Poirrier. Recently Grove and 
Halperin found a sufficient condition on M for A(M, A) to have an 
unbounded sequence of rational Betti numbers for any isometry A [20]. 

Theorem 2.3. Let M be a I-connected and compact riemannian mani,. 
fold. Then the sequence of rational Betti numbers for A(M, A) is unbound­
edfor any isometry A if M is rationally hyperbolic. Thus there are infinitely 
many A-invariant geodesics for any isometry A on M. 

Note. M is called rationally hyperbolic if the integers pp = :L;q<;p 
dim 1t'iM)®Q grCiw exponentially in p. 

Let us sketch out a proof of Theorem 2.2. Suppose that A has only 
finitely many invariant geodesics. Then all A-invariant geodesics are 
closed. This fact was proved by Grove [16]. Let c be a nonconstant 
critical point for EA. Let a(> 1) denote the least period of c. Then for 
any nonnegative integers m, cma +! also is a critical point for EA, and the 
critical point lies in a critical orbit, orb (cma+!) = {T..{cma+!) I u E R}. Here 
T..{c)(t)=c(t+u). Let .:!(cma+!) and v(cma+!) denote the index and the 
nullity of orb (cma+!) respectively. Then we obtain the following formulas 
like Theorem 1.8. 

Proposition 2.4. There exist finitely many nonnegative integer valued 
functions A!(p), N!(p) defined on the unit circle {p E ell p I = I} and finitely 
many complex numbers z! of absolute value 1, i = 1, .. " p such that 

From Proposition 2.4 we have 

Lemma 2.5. If .:!(cma+!)::;i:O for a nonnegative integer m, then there 
exist positive numbers e, a such that 
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for any integers m1>m2 :?O. 

In case where A is of finite order, i.e. Ak=idM for some positive 
integer k, the iteration maps can be defined of A(M, A) into A(M, Am). 
There are only finitely many path-spaces A(M, Am), mE Z. In this case 
we can compare the characteristic invariants of cma + 1 by the iteration 
maps like in the case of the Gromoll-Meyer theorem. Hence the proof of 
our theorem in the case is similar to that of Gromoll-Meyer theorem. 
However we do not have any suitable iteration maps any more in an 
arbitrary isometry case. The action of A on an invariant closed geodesic 
is very complicated. If the least period of c is rational (resp. irrational) 
then we say A acts rationally (resp. irrationally) on c. {c ma +1 [m E Z+} will 
be called the rational tower (resp. irrational tower) of c if A acts rationally 
(resp. irrationally) on c. These terminologies were suggested by Grove. 
The characteristic invariants of a rational tower are reduced to those 
restricted to a totally geodesic submanifold Fix (A k). Hence the following 
lemma is proven by reducing to the case of a finite order isometry. 

Lemma 2.6. Let cma +1 be a rational tower. Then there are only 
finitely many characteristic invariants among all characteristic invariants of 
the tower if orb (c ma +1), mE Z+ are isolated critical orbits. 

In an irrational tower case we use a complete different method to 
prove that there are only finitely many characteristic invariants among all 
of them of an irrational tower. Roughly speaking the proof is done by 
approximations of EA by other energy functions in a topological sense. 
The nullity formulas in Proposition 2.4 tell us which energy functions are 
suitable approximations of EA. The following property of Jacobi fields 
are crucial in the approximations. 

Lemma 2.7. There exists a constant mo such that any Jacobi fields Y 
along c with A*Y(t)= Y(t+ma+ 1) are periodic if m is a greater integer 
than mo. 

Lemma 2.8. Let c ma +1, m E Z+ be an irrational tower. Then there 
are only finitely many characteristic invariants of the tower if orb (c ma + 1) 

are isolated critical orbits. 

Combining Lemmas 2.5,2.6,2.7,2.8 and Morse inequalities we can 
conclude the boundedness of dim Hk(A(M, A)) if A has only finitely many 
invariant geodesics. 



Number of Closed Geodesics 27 

References 

[ 1] BaUmann, W., Thorbergsson, G. and Ziller, W., Closed geodesics and the 
fundamental group, Duke Math. J., 48 (1981), 585-588. 

[ 2 ] --, On the existence of short closed geodesics and their stability properties, 
Preprint. 

[3] --, Some existence theorems for closed geodesics, Preprint. 
[ 4 ] --, Closed geodesics on positively curved manifolds I, II, Preprint. 
[ 5] BaUmann, W. and Ziller, W., On the number of closed geodesics on a com­

pact riemannian manifolds, Preprint. 
[ 6 ] Bangert, V., Klingenberg, W., Homology generated by iterated closed geo­

desics, to appear. 
[7] Bott, R., Nondegenerate critical manifolds, Ann. of Math., 60 (1954), 248-

261. 
[8] --, On the iteration of closed geodesics and the Sturm intersections theory, 

Comm. Pure Appl. Math., 9 (1956), 176-206. 
[ 9 ] Dieudonne, 1., Foundations of Modern Analysis, Acad. Press, New York, 

1960. 
[10] Fet, A. I. and Lusternik, L., Variational problems on closed manifolds, Dokl. 

Akad. Nauk SSSR (N.S.), 81 (1951), 17-18 [Russian]. 
[11] Flaschel, P. and Klingenberg, W., Riemansche Hilbert-mannigfaltigkeiten, 

Periodische Geodatische, Lecture Notes in Math, 282, Berlin-Heidelberg­
New York, Springer 1972. 

[12] Gromoll. D., Meyer, W., On differentiable functions with isolated critical 
points, Topology, 8 (1969), 361-369. 

[13] --, Periodic geodesics on compact Riemannian manifolds, 1. Differential. 
Geom., 3 (1969), 464-510. 

[14] Gromov, M., Homotopical Effects of Dilatation, J. Differential. Geom., 13 
(1978), 303-310. 

[15] Grove, K., Condition (C) for the energy integral on certain path-spaces and 
applications to the theory of geodesics, J. Differential. Geom., 8 (1973), 
207-223. 

[16] --, Isometry-invariant geodesics, Topology, 13 (1974),281-292. 
[17] --, Involution-invariant geodesics, Math. Scand., 36 (1975), 97-108. 
[18] Grove, K. and Tanaka, M., On the number of invariant closed geodesics, Acta 

Math.,140 (1978),33--48. 
[19] Grove, K., Halperin, S. and Vigue-Poirrier, M., The rational homotopy 

theory of certain path-spaces with applications to geodesics, Acta Math., 
140 (1978), 277-303. 

[20] Grove, K. and Halperin, S., Contributions of rational homotopy theory to 
global problems in geometry, Preprint. 

[21] Hingston, N., Equivariant Morse theory and closed geodesics, to appear. 
[22] Karcher, H., On the Hilbert Manifolds H, (S" M) of closed curves, Comm. 

Pure Appl. Math., 23 (1970),201-219. 
[23] Katok, A. B., Ergodic properties of degenerate integrable Hamiltonian sys­

tems, Izv. Akad. Nauk SSSR, 37 (1973) [Russian]; Math. USSR-Izv. 7 
(1973),535-571. 

[24] Klingenberg, W., Lectures on closed geodesics, Grundlehren der Mathemati­
schen Wissenschaften 230 Springer-Verlag, Berlin-Heidelberg-New York, 
1978. 

[25] Kurogi, T., Riemannian manifolds admitting some geodesic, Proc. Japan 
Acad., 50 (1974), 124-126. 

[26] --, Riemannian manifolds admitting some geodesic II, Proc. Japan Acad., 
52 (1976),7-9. 

[27] --,On some types of geodesics on Riemannian manifolds, Nagoya Math. J., 
81 (1981),27-43. 



28 M. Tanaka 

[28] --, Isometry invariant closed geodesics on a non-positively curved mani­
fold, to appear. 

[29] Lang, S., Introduction to Differential Manifolds. Interscience, New York, 
1962. 

[30] Lusternik, L. and Schnirelmann, L., Sur Ie probleme de trois geodesiques 
fermees sur les surfaces de genre 0., C.R. Acad. Sci. Paris, 189 (1929), 
269-271. 

[31] Matthias, H. H., Zwei Verallgemeinerungen eines Satzes von Gromoll-Meyer, 
Bonner Mathematische Schriften 126 (1980). 

[32] Meyer, W., Kritische Mannigfaltigkeiten in HilbertmannigfaItigkeiten, Math. 
Ann., 170 (1967),45-66. 

[33] Milnor, 1., Morse theory, Ann. Math. Studies No. 51, Princeton, N. J. Prince­
ton Univ. Press, 1963. 

[34] Nash, J., The imbedding problem for Riemannian manifolds, Ann. of Math., 
63 (1956),20-63. 

[35] Ozols, V., Critical point of the displacement function of an isometry, 1. Dif­
ferential Geom., 3 (1969),411-432. 

[36] --, Critical points of the length of a Killing vector field, J. Differential 
Geom., 7 (1972) 143-148. 

[37] Palais, R. S., Morse theory on Hilbert manifolds, Topology, 2 (1963),299-
340. 

[38] Poincare, H., Sur les !ignes geodesiques des surfaces convexes, Trans. Amer. 
Math. Soc., 6 (1905),237-274. 

[39] Sullivan, D. and Vigue-Poirrier, M., The homology theory of the closed 
geodesic problem, J. Differential Geom., 11 (1977), 633-644. 

[40] Tanaka, M., On invariant closed geodesics under isometries, Kodai Math. 
Sem. Rep., 28 (1977),262-277. 

[41] --, Invariant closed geodesics under isometries of prime power order, 
Kodai Math. Sem. Rep., 29 (1977), 120-129. 

[42] --, On the existence of infinitely many isometry-invariant geodesics, J. Dif­
ferential Geom., 17 (1982), 171-184. 

[43] Yoshida, K., Functional Analysis, Grundlehren der Mathematischen Wissen­
schaften 123, Springer-Verlag, Berlin-Heidelberg-New York 1978. 

[44] Ziller, W., The free loop space of globally symmetric spaces, Invent. Math., 
41 (1977) 1-22. 

[45] --, Geometry of the Katok examples, to appear. 

Tokai University 
Hiratsuka, Kanagawa 
259-12 Japan 


