On Fano 3-Folds with $B_{2} \geq 2$

Shigefumi Mori and Shigeru Mukai

This article is an introduction to the classification of Fano 3-folds, i.e., 3-dimensional smooth projective varieties with ample anticanonical bundles, whose second Betti numbers are not less than two. We shall show, with proof or by an example, the principle of "how to classify them" so that one will be able to do it. The complete classification will be published elsewhere.

After stating our main results in $\S 1$, we summarize the results of Iskovskih, Šokurov and Mori which are indispensable to our classification in $\S \S 2$ and $3 . \S 5$ is devoted to the classification of Fano 3-folds with B_{2} $=2$, especially, imprimitive ones. In $\S 6$, we investigate the properties of Fano conic bundles which play an essential role in the classification of imprimitive Fano 3 -folds with $B_{2} \geqq 3$ (§7), in the proof of Theorem 1.6 (§8) and in the proof of Theorem 1.2. (§9).

§ 0. Del Pezzo surface

We review here the theory of del Pezzo surfaces because it is useful for understanding the outline of the classification of Fano 3-folds.

Let S be a del Pezzo surface, i.e., a smooth surface with negative canonical bundle. The positive integer $\left(-K_{S}\right)^{2}$ is called the degree of S. By Serre duality, Kodaira's vanishing theorem and the Riemann-Roch theorem, we have

$$
\begin{equation*}
q=p_{g}=0, \quad \rho(S)=B_{2}(S), \quad \operatorname{dim}\left|-K_{S}\right|=\left(-K_{S}\right)^{2} . \tag{0.1}
\end{equation*}
$$

By Noether's formula $c_{1}^{2}+c_{2}=12 \chi\left(\mathcal{O}_{S}\right)$, We have

$$
\begin{equation*}
\left(-K_{S}\right)^{2}+\rho(S)=10 \tag{0.2}
\end{equation*}
$$

In particular, we have
Proposition 0.3. $\left(-K_{S}\right)^{2} \leq 9$ and $\rho(S) \leq 9$ for every del Pezzo surface S.
In the case of Fano 3-folds, we have $\left(-K_{X}\right)^{3} \leq 64$ and $\rho(X) \leq 10$. But
the proof is not so easy as the proposition above.
About the anticanonical system $\left|-K_{S}\right|$, we have
Proposition 0.4. (1) If $\left(-K_{S}\right)_{-}^{2} \geq 2$, then $\left|-K_{S}\right|$ is free, i.e., free from fixed components and base points.
(2) If $\left(-K_{S}\right)^{2} \geq 3$, then $\left|-K_{S}\right|$ is very ample.

In the case $d=\left(-K_{S}\right)^{2} \geq 3$, the surface S_{d} of degree d embedded into \boldsymbol{P}^{d} by the morphism φ attached to $\left|-K_{S}\right|$ is called the anticanonical model of S.

If $\rho(S)=1$, then by the Poincare duality, there is an ample divisor D with $\left(D^{2}\right)=1$. Since $\left(-K_{S}\right)^{2}=9,-K_{S}$ is numerically equivalent to $3 D$. It is easy to see that $\operatorname{dim}|D|=2$ and the map associated to $|D|$ is an isomorphism. Hence we have

Proposition 0.5. If $\rho(S)=1$, then $S \cong \boldsymbol{P}^{2}$.
(0.6) Extremal ray of a del Pezzo surface S (Theorem 2.1 [6])

Let $N E(S) \subset(\{$ divisors $\} / \approx) \otimes_{Z} \boldsymbol{R}$ be the cone generated by effective divisors on S modulo numerical equivalence. This cone is a closed polyhedral cone. If $\rho(S) \geq 2$, then an irreducible reduced curve C such that the equivalence class [C] lies on the edge of $N E(S)$ satisfies one of the following:

1) C is an exceptional curve of the first kind.
2) $\rho(S)=2, S$ has a \boldsymbol{P}^{1}-bundle structure and C is its fibre.

Proposition 0.7. If S is minimal, then $\rho(S)=1$ or $S \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.
Proof. Assume that $\rho(S)>1$. Since S has no exceptional curve of the first kind, $\rho(S)=2$ and S has a P^{1}-bundle structure by (0.6). Since $N E(S)$ has two edge, S has two P^{1}-bundle structures. Hence S is isomorphic to $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.
q.e.d.

Proposition 0.8. Let E be an exceptional curve of the first kind on S and $\alpha: S \rightarrow S^{\prime}$ the blowing down of E. Then S^{\prime} is a del Pezzo surface.

By these propositions, a del Pezzo surface S satisfies one of the following:

	$d=\left(-K_{S}\right)^{2}$	$\rho(S)$	S
1)	9	1	\boldsymbol{P}^{2}
2)	8	2	$\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$
3)	8	2	\boldsymbol{F}_{1}
4)	$1 \leq d \leq 7$	$10-d$	the blow-up of \boldsymbol{P}^{2} at $9-d$ points in
			"general position".

The meaning of "general position" in 4) is as follows.
Proposition 0.9. ([5]) The blow-up of \boldsymbol{P}^{2} at n points $x_{1}, \cdots, x_{n}(n \leq 8)$ is a del Pezzo surface if and only if no 3 of them lie on a line, no 6 on a conic, and for $n=8$ all eight do not lie on a cubic which is singular at one of x_{1}, \cdots, x_{8}.

By these propositions, we can conclude that the del Pezzo surfaces have exactly 10 deformation types.

§ 1. Main results

Our final result on Fano 3-folds is the following:
Theorem 1.1. There are exactly 87 types of Fano 3-folds with $B_{2} \geq 2$ up to deformations. (See [7] for the description of the 87 types.)

Theorem 1.2. A Fano 3-fold with $B_{2} \geq 6$ is isomorphic to $\boldsymbol{P}^{1} \times S_{11-B_{2}}$, where S_{d} is a del Pezzo surface of degree d. In particular, every Fano 3-fold has $B_{2} \leq 10$.

The number $N(b)$ of Fano 3-folds with $B_{2}=b$ up to deformations is as follows:

b	2	3	4	5	6	7	8	9	10	≥ 11
$N(b)$	36	31	12	3	1	1	1	1	1	0

We refer the reader to [4] for Fano 3-folds with $B_{2}=1$ which are called Fano 3-folds of the first species.

Definition 1.3. A Fano 3-fold is imprimitive if it is isomorphic to the blow-up of a Fano 3-fold along a smooth irreducible curve. A Fano 3fold is primitive if it is not imprimitive.

Example 1.4. A Fano 3-fold with $B_{2}=1$ is primitive. $\quad \boldsymbol{P}^{1} \times \boldsymbol{P}^{2}, \boldsymbol{P}^{1} \times$ $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and a divisor $W_{6} \subset \boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ of bidegree $(1,1)$ are primitive Fano 3folds. If a Fano 3-fold is a double cover of another primitive Fano 3fold with ample branch locus, then it is also primitive.

Example 1.5. Let C be a disjoint union of n smooth irreducible curves in P^{3} and assume that C is a scheme theoretic intersection of cubics. Then the blow-up X of \boldsymbol{P}^{3} along C is an imprimtive Fano 3-fold with $B_{2}=$ $n+1$.

Proof. It suffices to show that $-K_{X}$ is ample. Let $\alpha: X \rightarrow \boldsymbol{P}^{3}$ be the blowing up and $D=\alpha^{-1}(C)$ the exceptional divisor. Then we have $-K_{X}$
$\sim \alpha^{*}\left(-K_{P^{3}}\right)-D \sim 4 \alpha^{*} H-D$ for a plane H in \boldsymbol{P}^{3}. The linear system $\left|3 \alpha^{*} H-D\right|$ is free by our assumption and $\left|\alpha^{*} H\right|$ is also free. Hence $\left|-K_{X}\right|$ $=\left|\left(3 \alpha^{*} H-D\right)+\alpha^{*} H\right|$ is free. By Proposition 4.6. [2] it suffices to show that $\left(-K_{X} \cdot Z\right)>0$ for every irreducible reduced curve Z on X.

Case in which $\alpha(Z)$ is a point. Z is an exceptional line and $(D \cdot Z)$ $=-1$. Hence $\left(-K_{X} \cdot Z\right)=\left(4 \alpha^{*} H \cdot Z\right)-(D \cdot Z)=4\left(H \cdot \alpha_{*} Z\right)+1=1$.

Case in which $\alpha(Z)$ is not a point. Since $\left|3 \alpha^{*} H-D\right|$ is free and H is ample, we have

$$
\left(-K_{X} \cdot Z\right)=\left(\alpha^{*} H \cdot Z\right)+\left(3 \alpha^{*} H-D \cdot Z\right) \geq\left(H \cdot \alpha^{*} Z\right)>0 \quad \text { q.e.d. }
$$

The following is the first step of our classification and will be proved in § 8 .

Theorem 1.6. Let X be a primitive Fano 3-fold. Then we have
(1) $\quad B_{2}(X) \leq 3$,
(2) if $B_{2}(X)=2$, then X is a conic bundle over P^{2} and
(3) if $B_{2}(X)=3$, then X is a conic bundle over $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and has either a divisor $D \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ such that $\mathcal{O}_{D}(D) \cong \mathcal{O}(-1,-1)$ or another conic bundle structure over $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.

By (3) of the theorem, it is not hard, though we omit it here, to see that a primitive Fano 3-fold with $B_{2}=3$ satisfies one of the following:
(a) $\left(-K_{X}\right)^{3}=12 . \quad X$ is a double cover of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ whose branch locus is a smooth divisor of tridegree ($2,2,2$).
(b) $\quad\left(-K_{X}\right)^{3}=14 . \quad X$ is a smooth member of $\mid L^{\otimes_{2} \otimes \otimes \mathcal{O}_{P^{1} \times P_{1}} \mathcal{O}(2,3) \mid}$ on the \boldsymbol{P}^{2}-bundle $\boldsymbol{P}\left(\mathcal{O} \oplus \mathcal{O}(-1,-1)^{\oplus 2}\right)$ over $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ such that $X \cap Y$ is irreducible, where L is the tautological line bundle and Y is the unique member of $|L|$.
(c) $\left(-K_{X}\right)^{3}=48 . \quad X$ is isomorphic to $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.
(d) $\quad\left(-K_{X}\right)^{3}=52 . \quad X$ is isomorphic to the P^{1}-bundle $\boldsymbol{P}(\mathcal{O} \oplus \mathcal{O}(1,1))$ over $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.

The primitive Fano 3-folds with $B_{2}=2$ cannot be cassified only by (2) of Theorem 1.6. The following will be proved in $\S 5$.

Theorem 1.7. The primitive Fano 3-folds with $B_{2}=2$ have the following 9 deformation types:

	$\left.K_{X}\right)^{3}$	X	types of extremal rays
1)	6	a double cover of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{\mathbf{2}}$ whose branch locus is a divisor of bidegree (2.4)	$C_{1}-D_{1}$
2)	12	a double cover of W_{6}, see 6), whose branch locus is a member of $\left\|-K_{W_{6}}\right\|$ or a smooth divisor on $\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ of bidegree (2.2)	$C_{1}-C_{1}$

3) 14 a double cover of V_{7}, see 8), whose branch
$C_{1}-E_{3}$ or E_{4} locus is a member of $\left|-K_{V_{7}}\right|$
4) 24 a double cover of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}$ whose branch $C_{1}-D_{2}$ locus is a divisor of bidegree (2.2)
5) $30 \quad a$ smooth divisor on $\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ of bidegree $\quad C_{1}-C_{2}$ (1.2)
6) $48 \quad W_{6}$, a smooth divisor on $\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ of bidegree $\quad C_{2}-C_{2}$ (1.1)
7) $54 \quad \boldsymbol{P}^{1} \times \boldsymbol{P}^{2}$
8) $56 \quad V_{7}=\boldsymbol{P}(\mathcal{O} \oplus \mathcal{O}(1))$
$C_{2}-D_{3}$
9) $62 \quad \boldsymbol{P}(\mathcal{O} \oplus \mathcal{O}(2))$
$C_{2}-E_{2}$
$C_{2}-E_{5}$

§ 2. Known results

First we recall some known results on Fano 3-folds which are necessary for our classification.
O. Elementary facts. Let X be a Fano 3-fold. Then by Serre duality, the Riemann-Roch theorem and Kodaira's vanishing theorem, we have
i) $h^{i}\left(\mathcal{O}_{X}\right)=0$ for every $i>0$,
ii) $\left(-K_{X} \cdot c_{2}(X)\right)=24 \chi\left(\mathcal{O}_{X}\right)=24$,
iii) $\operatorname{dim}\left|-K_{X}\right|=(1 / 2)\left(-K_{X}\right)^{3}+2$ and
iv) Pic X is torsion-free.

In particular, the Picard number $\rho(X)$ is equal to the second Betti number $B_{2}(X)$ and is a topological invariant of X.
I. Fano 3-folds with index ≥ 2 ([3]). The largest integer r which divides $-K_{X}$ in Pic X is called the index of X. Fano 3-folds with index ≥ 2 are classified as follows:

index of X	$B_{2}(X)$	$\left(-K_{X}\right)^{3}$	X
4	1	64	\boldsymbol{P}^{3}
3	1	54	a smooth quadric Q in \boldsymbol{P}^{4}
2	1	$8 d$	$V_{d}, 1 \leq d \leq 5$
	2	48	W_{6}
	3	48	$\boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$
	2	56	V_{7}, see Theorem 1.7,

where 1) $\quad V_{1}$ is a double cover of the Veronese cone $W_{4} \subset \boldsymbol{P}^{6}$ whose branch locus is a smooth intersection of W_{4} and a cubic hypersurface not passing through the vertex of the cone,
2) $\quad V_{2}$ is a double cover of \boldsymbol{P}^{3} whose branch locus is a smooth quartic hypersurface,
3) V_{3} is a smooth cubic hypersurface of \boldsymbol{P}^{4},
4) V_{4} is a complete intersection of two quadrics in \boldsymbol{P}^{5},
5) V_{5} is a complete intersection of a linear subspace \boldsymbol{P}^{6} in \boldsymbol{P}^{9} and the Grassmann variety Grass ($\boldsymbol{P}^{4} \supset \boldsymbol{P}^{1}$) embedded in \boldsymbol{P}^{9} by the Plücker embedding, and
6) W_{6} is a smooth divisor on $\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ of bidegree (1.1). W_{6} is isomorphic to the \boldsymbol{P}^{1}-bundle $\boldsymbol{P}\left(T_{P^{2}}\right)$ over \boldsymbol{P}^{2}.
II. Fano 3 -folds whose anticanonical systems are not very ample ([3]). Let X be a Fano 3 -fold of index 1. Then we have

1) the anticanonical system $\left|-K_{X}\right|$ is free (i.e., free from fixed components and base points) except for the following two cases
(i) X is a isomorphic to the blow-up of V_{1} along a smooth elliptic curve which is a complete intersection of two members of $\left|-(1 / 2) K_{r_{1}}\right|$. One has $\left(-K_{X}\right)^{3}=4$.
(ii) X is isomorphic to $\boldsymbol{P}^{1} \times S_{1}$, where S_{1} is a del Pezzo surface of degree 1. One has $\left(-K_{X}\right)^{3}=6$.
2) Assume that $\left|-K_{X}\right|$ is free but not very ample. Such Fano 3folds are called hyperelliptic and classified as follows:

$B_{2}(X)$	$\left(-K_{X}\right)^{3}$	X
1	2	a double cover of \boldsymbol{P}^{3} whose branch locus is a smooth sextic.
1	4	a double cover of a quadric hypersurface $Q \subset \boldsymbol{P}^{4}$ whose branch locus is a smooth intersection of
2	6	Q and a quartic hypersurface a double cover of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}$ whose branch locus is
2	8	a smooth divisor on $\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}$ of bidegree (2.4) the blow-up of V_{2} along an elliptic curve which is a complete intersection of two members of
9	12	$1-(1 / 2) K_{V_{2}}$ a $\boldsymbol{P}^{1} \times S_{2}$, where S_{2} is a del Pezzo surface of degree 2.

III. Existence of lines ([8], [9]). Let X be a Fano 3-fold whose anticanonical system is very ample. Its anticanonical model, i.e., the image of X by the morphism attached to $\left|-K_{X}\right|$, is a subvariety of degree $2 g-2$ in \boldsymbol{P}^{g+1}, where $g=(1 / 2)\left(-K_{X}\right)^{3}+1$.

Theorem (Šokurov). If the index of X is equal to 1 and if $X \not \equiv \boldsymbol{P}^{1} \times \boldsymbol{P}^{2}$, then there exists a 1-dimensional family of lines on the anticanonical model $X_{2 g-2} \subset \boldsymbol{P}^{g+1}$.

§ 3. Extremal rays of Fano 3-folds

We apply the theory in [6] to Fano 3-folds. Let X be a Fano 3-fold with $B_{2} \geq 2$. Let $N_{z}(X)$ (resp. $N E_{z}(X)$) be the set of numerically equivalence classes of 1-cycles (resp. effective 1-cycles) on X. Let $N(X)=N_{Z}(X)$ $\otimes_{Z} \boldsymbol{R}$ and $N E(X)$ the cone in $N(X)$ generated by $N E_{Z}(X)$. By Theorem 1.2 [6], we have
$N E(X)$ is a closed polyhedral cone.
Let R be an extremal ray of X, i.e., a half line which is an edge of the polyhedral cone $N E(X)$. There exists a morphism $f: X \rightarrow Y$ to a normal projective variety such that (i) $f_{*} \mathcal{O}_{X} \cong \mathcal{O}_{Y}$ and (ii) for any irreducible reduced curve C on $X,[C] \in R$ if and only if $f(C)$ is a point. Such an f is unique up to an isomorphism, called the contraction of R and denoted by cont ${ }_{R}: X \rightarrow Y$ (Theorem 3.1 [6]).

Put $\mu(R)=\min \left\{\left(-K_{X} \cdot Z\right) \mid Z\right.$ is a rational curve such that $\left.[Z] \in R\right\}$ and let $l=l_{R}$ be a rational curve such that $[l] \in R$ and $\left(-K_{X} \cdot l\right)=\mu(R)$. Then there exists an exact sequence

$$
\begin{equation*}
0 \longrightarrow \operatorname{Pic} Y \xrightarrow{f^{*}} \operatorname{Pic} X \xrightarrow{(\cdot l)} Z \longrightarrow 0, \tag{3.2}
\end{equation*}
$$

where $(\cdot l)(D)=(D \cdot l)$ for $D \in \operatorname{Pic} X$. (Theorem 1.2 [6]. The surjectivity of $(\cdot l)$ is a consequence of classification of R and Corollary 3.6 below and not true in general if X is not a Fano 3-fold.) In particular, we have $\rho(X)$ $=\rho(Y)+1$.
R and $f=\operatorname{cont}_{R}$ are classified as follows:
Case $\operatorname{dim} Y=3$: There exists an irreducible reduced divisor D of X such that $\left.f\right|_{X-D}$ is an isomorphism and $\operatorname{dim} f(D) \leq 1$. Such D is uniquely determined by R and called the exceptional divisor of R. Moreover f is the blowing-up of Y by the ideal defining $f(D)$ (given the reduced structure). f and D satisfy one of the following ([6] Theorem 3.3 and Corollary 3.4)

type of R	f and D	$\mu(R)$	l
E_{1}	$f(D)$ is a smooth curve, Y is smooth and	1	exceptional
	$\left.f\right\|_{D}: D \rightarrow \phi(D)$ is a \boldsymbol{P}^{1}-bundle.		line
E_{2}	$f(D)$ is a point, Y is smooth, $D \cong \boldsymbol{P}^{2}$ and	2	line in
	$\mathcal{O}_{D}(D) \cong \mathcal{O}_{P}(-1)$.		$D \cong \boldsymbol{P}^{2}$
E_{3}	$f(D)$ is an ordinary double point. $D \cong \boldsymbol{P}^{1}$	1	$s \times \boldsymbol{P}^{1}$ or
	$\times \boldsymbol{P}^{1}, \mathcal{O}_{D}(D) \cong \mathcal{O}(-1,-1)$ and $s \times \boldsymbol{P}^{1}$ and		$\boldsymbol{P}^{1} \times t$ in D
	$\boldsymbol{P}^{1} \times t$ are numerically equivalent for every		
	$s, t \in \boldsymbol{P}^{1}$.		

E_{4}	$f(D)$ is a double point. D is an irreduci- ble reduced singular quadric surface in \boldsymbol{P}^{3},	generator of the cone
	$\mathcal{O}_{D}(D) \cong \mathcal{O}_{D} \otimes \mathcal{O}_{P}(-1)$.	D

$E_{5} \quad f(D)$ is a quadruple point of $Y, D \cong \boldsymbol{P}^{2}, 1$ line in and $\mathcal{O}_{D}(D) \cong \mathcal{O}_{P}(-2) . \quad D \cong P^{2}$

If R is of E_{1}-type, then either (1) Y is a Fano 3 -fold or (2) $D \cong \boldsymbol{P}^{1} \times$ \boldsymbol{P}^{1} and $\mathcal{O}_{D}(D) \cong \mathcal{O}(-1,-1)$ (Proposition 4.5).
R is called of $E_{1, a}$-type in the case (1) and of $E_{1, b}$-type in the case (2). If R is of $E_{1,0}$-type, then a horizontal section of $\left.f\right|_{D}: D \rightarrow C$ is not numerically equivalent to a fibre of $\left.f\right|_{D}$ (because Y is projective), and belongs to another extremal ray of $E_{1,0}$-type. If $B_{2}(X)=2$, then Y is always a Fano 3-fold because Y is projective and $\rho(Y)=1$. Moreover, Y is of index ≥ 2 (Proposition 4.10).

In the case R is of E_{2}-type, Y is a Fano 3 -fold. The proof is similar to and easier than Proposition 4.5.

If the ray R is of type E_{2}, E_{3}, E_{4} or E_{5}, then the exceptional divisor has the following property:
(3.3) Both $\mathcal{O}_{D}(D)$ and ω_{D} are negative, i.e., their inverses are ample. Every curve in D can move in D.
(3.4) D is mapped to a point by every morphism g from X onto a curve if there is any.

Proof. If R is of type E_{2}, E_{4} or E_{5}, then D has no nontrivial morphism onto a curve. If R is of type E_{3}, then $D \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. Hence either $g\left(s \times \boldsymbol{P}^{1}\right)$ or $g\left(\boldsymbol{P}^{1} \times t\right)$ is a point, or equivalently, the intersection number ($s \times \boldsymbol{P}^{1} \cdot g^{-1}$ (point)) or ($\boldsymbol{P}^{1} \times t \cdot g^{-1}$ (point)) is zero. Since $s \times \boldsymbol{P}^{1}$ and $\boldsymbol{P}^{1} \times t$ are numerically equivalent for every $s, t \in \boldsymbol{P}^{\mathbf{1}}$ by definition, both $g\left(s \times \boldsymbol{P}^{1}\right)$ and $g\left(\boldsymbol{P}^{1} \times t\right)$ are points. It follows that $g(D)$ is a point. q.e.d.

Case $\operatorname{dim} Y=2: Y$ is a smooth projective surface, $f: X \rightarrow Y$ is a conic bundle and $f^{-1}(C)$ is irreducible for every irreducible curve C on Y (Proposition 6.3). We have the following two cases:

type of R	f		
C_{1}	f has a singular	$\mu(R)$ fibre	an irreducible component of a reducible fibre or a reduced part of a multiple fibre
C_{2}	f is a \boldsymbol{P}^{1}-bundle	2	a fibre

Proposition 3.5. Y is rational.
Proof. Since $q(X)=0$ and f is surjective, $q(Y)=0$. By the formula
$-4 K_{Y} \approx f_{*}\left(-K_{X}\right)^{2}+\Delta_{f}$ (Proposition 6.2, (4)), $\left(K_{Y} \cdot A\right)$ is negative for every ample divisor A on Y. Hence all the plurigenera $P_{m}(Y)$ vanish. Therefore Y is rational by Castelnuovo's criterion.
q.e.d.

Corollary 3.6. If R is of C_{2}-type, then f is locally trivial for Zariski topology.

Case $\operatorname{dim} Y=1: \quad Y$ is a smooth curve and $\rho(X)=\rho(Y)+1=2$. Every fibre of f is irreducible and reduced and the generic fibre X_{η} is a del Pezzo surface. We have the following three cases:

type of R	f	$\mu(R)$
D_{1}	X_{η} is a del Pezzo surface of degree $d, 1 \leq d \leq 6$.	1
D_{2}	f is a quadric bundle, i.e., every fibre is iso-	2
	morphic to a normal quadric surface in P^{3}.	
D_{3}	f is a \boldsymbol{P}^{2}-bundle.	3

Since $q(X)=0$ and f is surjective, $q(Y)=0$. If follows that $Y \cong \boldsymbol{P}^{1}$.

§ 4. Blowing-up and blowing-down of Fano 3-folds

Let $f: X \rightarrow Y$ be the blowing-up of a smooth 3-dimensional variety Y along a smooth irreducible curve C on Y. We will keep the meaning of these symbols in this section. The following are easily verified:
(4.1) $-K_{X} \sim f^{*}\left(-K_{Y}\right)-D$ for the exceptional divisor D of f.
(4.2) $D \cong \boldsymbol{P}\left(N_{C / Y}^{*}\right)$ and $\mathcal{O}_{D}(-D)$ is the tautological line bundle, where $N_{C / Y}$ is the normal bundle of C and $N_{C / Y}^{*}$ is its dual vector bundle.

$$
\begin{align*}
& \left(D^{3}\right)=-\operatorname{deg} N_{C / Y}, \quad\left(D^{2} \cdot-K_{X}\right)=2 p_{a}(C)-2 \tag{4.3}\\
& \left(D \cdot\left(-K_{X}\right)^{2}\right)=\left(-K_{Y} \cdot C\right)+2-2 p_{a}(C) \quad \text { and } \\
& \left(-K_{X}\right)^{3}=\left(-K_{Y}\right)^{3}-2\left\{\left(-K_{Y} \cdot C\right)-p_{a}(C)+1\right\}
\end{align*}
$$

Lemma 4.4. Assume that X is a Fano 3-fold. Then we have
(1) $\left(-K_{Y} \cdot C\right)>2 p_{a}(C)-2$,
(2) $\left(-K_{Y} \cdot C\right) \geq 0$ if C is rational. The equality holds if and only if $N_{C / Y} \cong \mathcal{O}(-1)^{\oplus 2}$ or equivalently $D \cong P^{1} \times P^{1}$ and $\mathcal{O}_{D}(D) \cong \mathcal{O}(-1,-1)$, and
(3) $\left(-K_{Y} \cdot C\right)>p_{a}(C)-1$ and $\left(-K_{X}\right)^{3}<\left(-K_{Y}\right)^{3}$.

Proof. Since $-K_{X}$ is ample, $\left(\left(-K_{X}\right)^{2} \cdot D\right)$ is positive. Hence (1) follows from (4.3). Since $-K_{X}$ is ample, so is $\mathcal{O}_{D}\left(-K_{X}\right)$. Since $\mathcal{O}_{D}\left(-K_{X}\right)$ is a tautological line bundle of $\left.f\right|_{D}: D \rightarrow C$, the direct image $F=$ $\left(\left.f\right|_{D}\right)_{*} \mathcal{O}_{D}\left(-K_{X}\right)$ is ample. If $C \cong P^{1}$, every vector bundle on C is a direct
sum of line bundles. Hence $\left(\left(-K_{X}\right)^{2} \cdot D\right)=\operatorname{deg} F \geq 2$ and the equality holds if and only if $F \cong \mathcal{O}(1)^{\oplus 2}$. (2) follows from this and (4.3) because $F \cong N_{C / Y} \otimes \omega_{C}^{-1}$. (3) is an easy consequence of (1), (2) and (4.3). q.e.d.

Proposition 4.5. If X is a Fano 3-fold, then one of the following holds:
(1) Y is a Fano 3-fold, and
(2) $C \cong P^{1}$ and $N_{C / Y} \cong \mathcal{O}(-1)^{\oplus 2}$ or equivalently $D \cong P^{1} \times P^{1}$ and $\mathcal{O}_{D}(D) \cong \mathcal{O}(-1,-1) . \quad$ Even in the case $(2),\left|-n K_{Y}\right|$ is free for some $n>0$.

Proof. First we show
Claim: $\left|-n K_{Y}\right|$ is free for some $n>0$.
$\left|-m K_{X}\right|$ is free for some $m>0$. Therefore by (4.1), $\left|-m K_{Y}\right|$ has no fixed components or no base points outside of C. By Kodaira's vanishing theorem, the restriction map $H^{0}\left(\mathcal{O}_{Y}\left(-K_{Y}\right)\right) \cong H^{0}\left(\mathcal{O}_{X}\left(-K_{X}+D\right)\right) \rightarrow$ $H^{0}\left(\mathcal{O}_{D}\left(-K_{X}+D\right)\right) \cong H^{0}\left(\mathcal{O}_{C}\left(-K_{Y}\right)\right)$ is surjective. Since $h^{0}\left(\mathcal{O}_{C}\left(-K_{Y}\right)\right) \geq$ $\chi\left(\mathcal{O}_{C}\left(-K_{Y}\right)\right)=\left(-K_{Y} \cdot C\right)-p_{a}(C)+1>0$ by Lemma 4.4, $\left|-K_{Y}\right|$ has a member not containing C. Hence $\left|-m K_{Y}\right|$ has only a finite number of base points. By Zariski's Theorem, $\left|-m^{\prime} m K_{Y}\right|$ is free for some $m^{\prime}>0$.
$\left(-K_{Y} \cdot Z\right)>0$ for every irreducible curve $Z \neq C$ on Y, because $\left(-K_{Y} \cdot Z\right)=\left(f^{*}\left(-K_{Y}\right) \cdot Z^{\prime}\right)=\left(-K_{X} \cdot Z^{\prime}\right)+\left(D \cdot Z^{\prime}\right)>0$, where Z^{\prime} is the strict transform of Z. Hence, if $\left(-K_{Y} \cdot C\right)>0$, then Y is a Fano 3-fold by Proposition 4.6, [2]. If $\left(-K_{Y} \cdot C\right)=0$, then C and D satisfy (2) by Lemma 4.4.
q.e.d.

Corollary 4.6. Let V be the blow-up of a Fano 3-fold W along a disjoint union of two smooth curves C_{1} and C_{2} on W. If V is a Fano 3-fold, then the blow-up V_{i} of W along C_{i} is a Fano 3-fold for each $i=1,2$.

Next we consider a necessary condition for X to be a Fano 3-fold. The following is used very often in our classification.

Proposition 4.7. If X is a Fano 3-fold, then C does not meet any curve Z with $\left(-K_{Y} \cdot Z\right)=1$ in a zero-dimensional set.

Proof. Assume that C meets a curve Z with $\left(-K_{Y} \cdot Z\right)=1$ in a zero dimensional set. Let Z^{\prime} be the strict transform of Z by f. Then, by (4.1), we have $\left(-K_{X} \cdot Z^{\prime}\right)=\left(f^{*}\left(-K_{Y}\right) \cdot Z^{\prime}\right)-\left(D \cdot Z^{\prime}\right)=\left(-K_{Y} \cdot f_{*} Z^{\prime}\right)-\left(D \cdot Z^{\prime}\right)=1$ $-\left(D \cdot Z^{\prime}\right)$. By our assumption $\left(D \cdot Z^{\prime}\right)$ is positive. Hence $\left(-K_{X} \cdot Z\right)$ is nonpositive and $-K_{X}$ is not ample.
q.e.d.

Corollary 4.8. Assume that Y is isomorphic to the blow-up of Y^{\prime}. If X is a Fano 3-fold, then either C is disjoint from the exceptional divisor of Y / Y^{\prime} or C is an exceptional line of Y / Y^{\prime} (i.e., an irreducible reduced curve on Y which is mapped to a point of Y^{\prime}).

Proposition 4.9. Assume that $C \cong \boldsymbol{P}^{1}$ and $\left(-K_{r} \cdot C\right)=1$. If X is a Fano 3-fold, then $N_{C / Y} \cong \mathcal{O}_{P} \oplus \mathcal{O}_{P}(-1)$.

Proof. Since $\operatorname{deg} N_{C / Y}=\left(-K_{r} \cdot C\right)+\operatorname{deg} K_{C}=-1, \quad N_{C / Y} \cong \mathcal{O}_{P}(n) \oplus$ $\mathcal{O}(-1-n)$ for some $n \geq 0$. Let s be the section of \boldsymbol{P}^{1}-bundle $D=\boldsymbol{P}\left(N_{C / Y}^{*}\right)$ $\rightarrow C$ corresponding to the exact sequence

$$
0 \longrightarrow O(n+1) \longrightarrow N_{\text {C/T }}^{*} \longrightarrow O(-n) \longrightarrow 0 .
$$

By (4.1) and (4.2), we have $\left(-K_{X} \cdot s\right)=\left(f^{*}\left(-K_{Y}\right) \cdot s\right)-(D \cdot s)=\left(-K_{Y} \cdot f_{*} s\right)$ $+\left(\mathcal{O}_{D}(-D) \cdot s\right)_{D}=1-n$. Therefore if X is a Fano 3-fold, we have $n=0$.

> q.e.d.

The following proposition shows that, in order to classify imprimitive Fano 3-folds, it is not necessary to consider the blowing-up of Fano 3-folds of the first species. Its proof is heavily due to Šokurov's result.

Proposition 4.10. If Y is a Fano 3-fold of the first species, i.e., with $B_{2}=1$ and of index 1, then X is not a Fano 3-fold.

Proof. Case 1. $\left|-K_{Y}\right|$ is not very ample. By II of $\S 2,\left(-K_{Y}\right)^{3}=2$ or 4. If X were a Fano 3 -fold, $\left(-K_{X}\right)^{3}$ would be equal to 2 by (4.3). Since X is of index 1 and $B_{2}(X) \geq 2,\left|-K_{X}\right|$ would be very ample through II of $\S 2$ and hence $X \cong \boldsymbol{P}^{3}$ by the anticanonical map, which is a contradiction.

Case 2. $\left|-K_{Y}\right|$ is very ample. By III of $\S 2, Y$ has a 1-dimensional family of rational curves Z with $\left(-K_{Y} \cdot Z\right)=1$. Let S be the union of such Z 's. Since $\rho(Y)=1, S$ is ample. Hence C meets a rational curve Z with $\left(-K_{Y} \cdot Z\right)=1$. If $C \cap Z$ is 0 -dimensional, then X is not a Fano 3-fold by Proposition 4.7. If $C=Z$ and $N_{Z / Y} \not \equiv \mathcal{O} \oplus \mathcal{O}(-1)$, then X is not a Fano 3-fold by Proposition 4.9. If $C=Z$ and $N_{Z / Y} \cong \mathcal{O} \oplus \mathcal{O}(-1)$, then we can show that C meets other $d+1$ rational curves Z^{\prime} (counted with multiplicity) with $\left(-K_{Y} \cdot Z^{\prime}\right)=1$, where d is the degree of the surface which is the union of all the deformations of Z. Hence X is not a Fano 3-fold by Proposition 4.7.

§ 5. Classification of Fano 3-folds with $B_{2}=2$

Let X be a Fano 3 -fold with $B_{2}=2$. Since $N(X) \cong \boldsymbol{R}^{2}, N E(X)$ has just two edges, i.e., extremal rays R_{1} and R_{2} by (3.1). Set $f_{i}=\operatorname{cont}_{R_{i}}: X \rightarrow$ $Y_{i}, \mu_{i}=\mu\left(R_{i}\right)$ and $l_{i}=l_{R_{i}}$ for $i=1,2$. Let L_{i} be an ample generator of Pic Y_{i} and put $H_{i}=f_{i}^{*} L_{i}$. The proof of the following is one of the essential parts of the classification of Fano 3-folds with $B_{2}=2$.

Theorem 5.1. (1) Pic X is the direct sum of $f_{1}^{*} \operatorname{Pic} Y_{1}$ and $f_{2}^{*} \operatorname{Pic} Y_{2}$. $\left\{H_{1}, H_{2}\right\}$ is a basis of Pic X and $\left\{l_{2}, l_{1}\right\}$ is the dual basis of $N_{Z}(X)$. Moreover, $-K_{X} \approx \mu_{2} H_{1}+\mu_{1} H_{2}$.
(2) If R_{2} is of type E_{2}, E_{3}, E_{4} or E_{5}, then $\left(D_{2} \cdot l_{1}\right)=1$, where D_{2} is the exceptional divisor of R_{2}.

Proof of (1) (mainly in the case X is primitive).
If R_{1} or R_{2} is of D_{3}-type, then X is a Fano P^{2}-bundle over \boldsymbol{P}^{1} and we know that X is isomorphic to $\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}$ or the blow-up of \boldsymbol{P}^{3} along a line. For these X, (1) is easily checked. Hence we may assume that neither R_{1} nor R_{2} is of D_{3}-type.

By (3.2), we have two exact sequences

$$
0 \longrightarrow \operatorname{Pic} Y_{i} \xrightarrow{f_{i}^{*}} \operatorname{Pic} X \xrightarrow{\left(\cdot l_{i}\right)} Z \longrightarrow 0 \quad i=1,2 .
$$

By the definition of $f_{i}=\operatorname{cont}_{R_{i}}$, it is obvious that $f_{1}^{*} \operatorname{Pic} Y_{1} \cap f_{2}^{*} \operatorname{Pic} Y_{2}=\{0\}$. Let a be the order of the quotient group Pic $X / \sum_{i=1,2} f_{i}^{*}$ Pic Y_{i}. By the above exact sequences, both $\left(H_{1} \cdot l_{2}\right)$ and $\left(H_{2} \cdot l_{1}\right)$ are equal to a. Since $\left(H_{i} \cdot l_{i}\right)=0$ and $\left(-K_{X} \cdot l_{i}\right)=\mu_{i}$ for $i=1,2$, we have

$$
\begin{equation*}
a\left(-K_{X}\right) \approx \mu_{2} H_{1}+\mu_{1} H_{2} . \tag{5.2}
\end{equation*}
$$

Hence it suffices to show that $a=1$. We will deduce it from the equality

$$
\begin{equation*}
24 a=a\left(-K_{X} \cdot c_{2}(X)\right)=\mu_{2}\left(H_{1} \cdot c_{2}(X)\right)+\mu_{1}\left(H_{2} \cdot c(X)\right) \tag{5.3}
\end{equation*}
$$

and an estimation of $\left(c_{2}(X) \cdot H_{i}\right)$.
By the Riemann-Roch Theorem, we have
Lemma 5.4. Let D be an effective divisor on X, then $\left(c_{2}(X) \cdot D\right)=$ $6 \chi\left(\mathcal{O}_{D}\right)+6 \chi\left(\mathcal{O}_{D}(D)\right)-2\left(D^{3}\right)-\left(\left(-K_{X}\right)^{2} \cdot D\right)$.

By the lemma, we have

$$
\begin{array}{c|llcl}
\text { type of } R & E_{1}=E_{1, a} & E_{2} & E_{3} \text { or } E_{4} & E_{5} \tag{5.5}\\
\hline\left(c_{2}(X) \cdot H\right) & 24 / r+\operatorname{deg} C & 24 / r & 24 / r & 45 / r \\
C_{1} & C_{2} & D_{1} & D_{2} & D_{3} \\
\hline \operatorname{deg} \Delta+6 & 6 & 12-\left(K_{X_{\eta}}\right)^{2} & 4 & 3
\end{array}
$$

where r is the largest number which devides $-K_{X}+D$ (resp. $-K_{X}+2 D$, $\left.2\left(-K_{X}\right)+D\right), D$ being the exceptional divisor of R, in Pic X if R is of type E_{1} or E_{3} or E_{4} (resp. E_{2}, E_{5}), C is the center of the blowing-up f and $\operatorname{deg} C$ is $(L \cdot C)$ if R is of E_{1}-type, Δ is the discriminant locus $\left\{y \in Y \mid X_{y}\right.$ is
not smooth\} of f if R is of C_{1}-type, where $Y \cong \boldsymbol{P}^{2}$ by Proposition 3.7, in the case R is of type C_{1} or C_{2}, and X_{η} is the generic fibre of f if f is of D_{1} type.

For example, in the case R is of type E_{3} or E_{4}, applying the lemma to the exceptional divisor D, we have $\left(c_{2}(X) \cdot D\right)=6+0-4-2=0$. Since $-K_{X}+D \approx r H,\left(c_{2}(X) \cdot H\right)$ is equal to $(1 / r)\left\{\left(c_{2}(X) \cdot-K_{X}\right)+\left(c_{2}(X) \cdot D\right)\right\}=$ 24/r.

If R is of type C_{1}, then $Y \cong P^{2}$ and by the formula $\Delta \approx-4 K_{P^{2}}-$ $f_{*}\left(-K_{X}\right)^{2}$ (Proposition 6.2), we have $\operatorname{deg} \Delta<12$. It follows that

$$
\begin{equation*}
7 \leq\left(c_{2}(X) \cdot H\right) \leq 17 \quad \text { if } R \text { is of } C_{1} \text {-type. } \tag{5.6}
\end{equation*}
$$

If R is of type D_{1}, then $1 \leq\left(K_{X_{\eta}}\right)^{2} \leq 6$ by the classification of extremal rays. Hence we have

$$
\begin{equation*}
6 \leq\left(c_{2}(X) \cdot H\right) \leq 11 \quad \text { if } R \text { is of } D_{1} \text {-type. } \tag{5.7}
\end{equation*}
$$

We consider the case in which X is primitive. By Theorem 1.6, at least one of R_{1} and R_{2} (say R_{1}) is of type C_{1} or $C_{2} . \quad R_{2}$ is not E_{1}-type since X is primitive. Hence by (5.5), (5.6) and (5.7), we have

$$
\begin{equation*}
\left(c_{2}(X) \cdot H_{2}\right) \leq 24 \quad \text { or } \quad=45 \tag{5.8}
\end{equation*}
$$

Case 1. R_{1} is of C_{1}-type
i) $\mu_{2}=1 . \quad a\left(-K_{X}\right) \approx H_{1}+H_{2}$. If $\left(c_{2}(X) \cdot H_{2}\right)=45$, then we have by (5.3) and (5.6), $51=7+45 \leq 24 \mathrm{a} \leq 17+45=62$, which is a contradiction. Hence $\left(c_{2}(X) \cdot H_{2}\right) \leq 24$ by (5.8) and we have $24 a=\left(c_{2}(X) \cdot H_{1}\right)+\left(c_{2}(X) \cdot H_{2}\right)$ $\leq 17+24=41$. It follows that $a=1$.
ii) $\mu_{2}=2 . \quad a\left(-K_{X}\right) \approx 2 H_{1}+H_{2}$. If a were even, then H_{2} would be divisible by 2 in Pic X, which contradicts to our choice of H_{2}. Hence a is odd. Since R_{2} is of type E_{2} or C_{2} or $D_{2}($ see $\S 3),\left(c_{2}(X) \cdot H_{2}\right) \leq 24$ by (5.5). Hence we have $24 a \leq 2 \cdot 17+24=58$ by (5.3) and (5.6). It follows that $a=1$.

Case 2. $\quad R_{1}$ is of C_{2}-type
i) $\mu_{2}=1 . \quad a\left(-K_{X}\right) \approx H_{1}+2 H_{2}$. By the same reason as above, a is odd. By (5.3) and (5.5), we have $12 a=3+\left(c_{2}(X) \cdot H_{2}\right) . \quad$ By (5.8), we have $a=1$.
ii) $\mu_{2}=2$. $\quad a\left(-K_{X}\right) \approx 2 H_{1}+2 H_{2}$. By (5.3), $12 a=6+\left(c_{2}(X) \cdot H_{2}\right)$. In the case R_{2} is of E_{2}-type, from the equality $12 a=6+(24 / r)$, we obtain $a=1$ and $r=4$. If R_{2} is not of E_{2}-type, then $\left(c_{2}(X) \cdot H_{2}\right) \leq 6$ and we have $a=1$.

In the case X is imprimitive, (1) can be proved in a way quite similar to the primitive case by Lemma 5.9 below. Since X is imprimitive, R_{1} or R_{2} is of E_{1}-type.

Lemma 5.9. If R_{1} is of E_{1}-type, we have
(1) $\operatorname{deg} C_{1} \leq\left(r_{1}-\left(\mu_{2} / a\right)\right)^{2} d_{1}$, where C_{1} is the center of $f_{1}=\operatorname{cont}_{R_{1}}$ and $d_{1}=\left(L_{1}^{3}\right)$.
(2) $\quad\left(c_{2}(X) \cdot H_{1}\right) \leq 31$.
(3) $\left(c_{2}(X) \cdot H_{1}\right) \leq 25$ if $a \leq 3, \leq 23$ if $a \leq 2$ and ≤ 17 if $a=1$.
(4) $\left(c_{2}(X) \cdot H_{1}\right) \leq 20$ if $a \leq 3$ and $\mu_{2}=2$.

Proof. (1) Since both H_{1} and H_{2} are numerically effective, $\left(H_{1} \cdot H_{2}^{2}\right)$ ≥ 0 (cf. [2]). On the other hand, by (4.2) and $-K_{X} \approx r_{1} H_{1}-D_{1}$, we have

$$
\begin{aligned}
0 \leq \mu_{1}^{2}\left(H_{1} \cdot H_{2}^{2}\right) & =\left(H_{1} \cdot\left(a\left(-K_{X}\right)-\mu_{2} H_{1}\right)^{2}\right) \\
& =\left(H_{1} \cdot\left(\left(a r_{1}-\mu_{2}\right) H_{1}-a D_{1}\right)^{2}\right) \\
& =\left(a r_{1}-\mu_{2}\right)^{2}\left(H_{1}^{3}\right)+a^{2}\left(H_{1} \cdot D_{1}^{2}\right) .
\end{aligned}
$$

Since $\left(H_{1} \cdot D_{1}^{2}\right)=-\operatorname{deg} C_{1}$ and $\left(H_{1}^{3}\right)=\left(L_{1}^{3}\right)=d_{1}$, we have our assertion.
(2) By Proposition 4.10, the index r_{1} of the Fano 3-fold Y_{1} is greater than 1 . Hence by I in $\S 2$, the possibility of the pair $\left(r_{1}, d_{1}\right)$ is limited to $(4,1),(3,2)$ and $\left(2, d_{1}\right), 1 \leq d_{1} \leq 5$. Hence by (1), we have $\left(c_{2}(X) \cdot H_{1}\right)=$ $\left(24 / r_{1}\right)+\operatorname{deg} C_{1} \leq \max _{\left(r_{1}, d_{1}\right)}\left[\left(24 / r_{1}\right)+\left(r_{1}-(1 / a)\right)^{2} d_{1}\right]=31$, where $[\quad]$ is the Gauss symbol. This shows (2). (3) and (4) are proved in a similar way.
q.e.d.

Proof of (2) in Theorem 5.1. Here we only prove (2) in the case X is primitive.

Case 1. R_{1} is of C_{1}-type. By (1) of Theorem 5.1, $-K_{X} \approx \mu_{2} H_{1}+H_{2}$. Since $H_{2} \cdot D_{2} \approx 0$ and $H_{1}^{2} \approx 2 l_{1}$, we have $2\left(l_{1} \cdot D_{2}\right)=\left(H_{1}^{2} \cdot D_{2}\right)=\left(1 / \mu_{2}^{2}\right)\left(\left(-K_{X}\right)^{2}\right.$. $\left.D_{2}\right)=1$ if R_{2} is of type E_{2} or E_{5}, and $=2$ if R_{2} is of type E_{3} or E_{4}. Hence R_{2} is of type E_{3} or E_{4} and $\left(l_{1} \cdot D_{2}\right)=1$.

Case 2. R_{1} is of type C_{2}. By (1) of Theorem 5.1, $-K_{X} \approx \mu_{2} H_{1}+2 H_{2}$. R_{2} is not of type E_{3} or E_{4}, because $24=\left(c_{2}(X) \cdot H_{1}\right)+2\left(c_{2}(X) \cdot H_{2}\right)=6+$ $(48 / r)$ has no integral solution. Hence R_{2} is of type E_{2} or E_{5} and we have $\left(l_{1} \cdot D_{2}\right)=\left(H_{1}^{2} \cdot D_{2}\right)=\left(1 / \mu_{2}^{2}\right)\left(\left(-K_{X}\right)^{2} \cdot D_{2}\right)=1$.
q.e.d.

Now we classify the primitive Fano 3-folds with $B_{2}=2$ by using Theorem 5.1. We denote by (*-**) the case in which the ray R_{1} is of *-type and R_{2} of $* *$-type. We may assume that R_{1} is of C_{1} or C_{2}-type.

Case 1. $\quad R_{2}$ is also of C_{1} or C_{2}-type. Both f_{1} and f_{2} are conic bundles over \boldsymbol{P}^{2}. Consider the morphism $f=\left(f_{1}, f_{2}\right): X \rightarrow \boldsymbol{P}^{2} \times \boldsymbol{P}^{2} . \quad$ By the definition of f_{i}, f is finite.

Claim. $f_{*} X$ is a divisor of bidegree $\left(2 / \mu_{2}, 2 / \mu_{1}\right)$.

Proof. Put $M_{i}=\pi_{i}^{*} \mathcal{O}_{\boldsymbol{P}^{2}}(1)$ for $i=1,2$, where $\pi_{i}: \boldsymbol{P}^{2} \times \boldsymbol{P}^{2} \rightarrow \boldsymbol{P}^{2}$ is the projection onto the i-th factor. Since $f^{*} M_{i} \approx H_{i}$ and $H_{i}^{2} \approx\left(2 / \mu_{i}\right) l_{i}$, we have

$$
\begin{gathered}
\left(f_{*} X \cdot \text { point } \times \text { line }\right)=\left(f_{*} X \cdot M_{1}^{2} \cdot M_{2}\right)=\left(f^{*} M_{1}^{2} \cdot f^{*} M_{2}\right) \\
=\left(H_{1}^{2} \cdot H_{2}\right)=\frac{2}{\mu_{1}}\left(l_{1} \cdot H_{2}\right)=\frac{2}{\mu_{1}}
\end{gathered}
$$

by Theorem 5.1. It follows that $f_{*} X \approx\left(2 / \mu_{2}\right) M_{1}+\left(2 / \mu_{1}\right) M_{2}$.
Claim. If the natural morphism $\alpha: X \rightarrow f(X)$ is birational, then it is an isomorphism.

Proof. Assume that α is birational. Since α is finite, we have $-K_{X}$ $\sim \alpha^{*}\left(-K_{f(X)}\right)+\Delta$ by the residue formula, where Δ is the zeros of the conductor ideal. Since $f(X)$ is of bidegree $\left(2 / \mu_{2}, 2 / \mu_{1}\right)$, we have

$$
\alpha^{*}\left(-K_{f(x)}\right) \approx f^{*}\left(3-\frac{2}{\mu_{2}}\right) M_{1}+f^{*}\left(3-\frac{2}{\mu_{1}}\right) M_{2} \approx \mu_{2} H_{1}+\mu_{1} H_{2}
$$

Hence by Theorem 5.1, Δ is empty, that is, $X \rightarrow f(X)$ is an isomorphism. q.e.d.
$\left(C_{1}-C_{1}\right) f$ is generically one-to-one or two-to-one. In the former case, f is an embedding and the image is a divisor of bidegree (2,2). In the latter case, X is double cover of $f(X) . \quad f(X) \subset \boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ is of bidegree $(1,1)$ and smooth because both $\left.\pi_{1}\right|_{f(X)}$ and $\left.\pi_{2}\right|_{f(X)}$ are equidimensional (type 2) in Theorem 1.7).
$\left(C_{1}-C_{2}\right) X$ is isomorphic to a smooth divisor on $\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ of bidegree $(1,2)$ (type 5) in Theorem 1.7).
$\left(C_{2}-C_{2}\right) X$ is isomorphic to W_{6}, a smooth divisor on $\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ of bidegree (1, 1) (type 6) in Theorem 1.7).

Case 2. R_{2} is of D_{1}, D_{2} or D_{3}-type. Consider the morphism $f=$ $\left(f_{1}, f_{2}\right): X \rightarrow \boldsymbol{P}^{2} \times \boldsymbol{P}^{1}$. f is finite and surjective. By Theorem 5.1, we have $\operatorname{deg} f=\left(H_{1}^{2} \cdot H_{2}\right)=\left(2 / \mu_{1}\right)\left(l_{1} \cdot H_{2}\right)=2 / \mu_{1}$. Therefore X is a double cover of $\boldsymbol{P}^{2} \times \boldsymbol{P}^{1}$ or isomorphic to $\boldsymbol{P}^{2} \times \boldsymbol{P}^{1}$ (type 1), 4) and 7) in Theorem 1.7).

Case 3. R_{2} is of E_{2}, E_{3}, E_{4} or E_{5}-type. By (2) of Theorem 5.1, the degree of $\left.f_{1}\right|_{D_{2}}: D_{2} \rightarrow \boldsymbol{P}^{2}$ is equal to $\left(H_{1}^{2} \cdot D_{2}\right)=\left(2 / \mu_{1}\right)\left(l_{1} \cdot D_{2}\right)=2 / \mu_{1}=1$ or 2 . Hence if $D_{2} \cong \boldsymbol{P}^{2}$, then $\mu_{1}=2$ and $\left.\operatorname{deg} f_{1}\right|_{D_{2}}=1$, that is, if R_{2} is of E_{2} or E_{5} type, then f_{1} is a \boldsymbol{P}^{1}-bundle and D_{2} is a section of f_{1}. Therefore X is isomorphic to $\boldsymbol{P}(\mathcal{O} \oplus \mathcal{O}(1))$ or $\boldsymbol{P}(\mathcal{O} \oplus \mathcal{O}(2))$ according as R_{2} is of E_{2}-type or E_{5}-type (type 8) or 9) in Theorem 1.7).

In the case R_{2} is of type E_{3} or E_{4}-type, then $\mu_{1}=1$ and $\left.\operatorname{deg} f_{1}\right|_{D_{2}}=2$. Since $\mathcal{O}_{F}\left(-K_{X}-D_{2}\right)$ is trivial for every fibre F of f_{1}, it is isomorphic to
$f_{1}^{*} \mathcal{O}_{P}(n)$ for some integer n. Since $\mathcal{O}_{D_{2}}\left(-K_{X}-D_{2}\right) \cong \mathcal{O}_{D_{2}}(2), n=2$. Since $\mathcal{O}_{D_{2}}\left(-K_{X}\right) \cong \mathcal{O}_{D_{2}}(1), \quad f_{1, *} \mathcal{O}_{D_{2}}\left(-K_{X}\right) \cong \mathcal{O}_{P} \oplus \mathcal{O}_{P}(1)$. Hence by the exact sequence $0 \rightarrow \mathcal{O}_{X}\left(-K_{X}-D_{2}\right) \rightarrow \mathcal{O}_{X}\left(-K_{X}\right) \rightarrow \mathcal{O}_{D_{2}}\left(-K_{X}\right) \rightarrow 0$, we have $0 \rightarrow$ $\mathcal{O}_{P}(2) \rightarrow f_{1, *} \mathcal{O}_{X}\left(-K_{X}\right) \rightarrow \mathcal{O}_{P} \oplus \mathcal{O}_{P}(1) \rightarrow 0$. Hence $f_{1, *} \mathcal{O}_{X}\left(-K_{X}\right)=\mathcal{O}_{P} \oplus \mathcal{O}_{P}(1)$ $\oplus \mathcal{O}_{P}(2)$. Since f_{2} is conic bundle, X is a divisor of $\boldsymbol{P}\left(\mathcal{O}_{P} \oplus \mathcal{O}_{P}(1) \oplus \mathcal{O}_{P}(2)\right)$. Since $-\left.K_{X} \sim L\right|_{X}, X$ is linearly equivalent to $2 L$, where L is the tautological line bundle. Let S be the section of $\boldsymbol{P}(\mathcal{O} \oplus \mathcal{O}(1) \oplus \mathcal{O}(2))$ corresponding to the exact sequence $0 \rightarrow \mathcal{O}(1) \oplus \mathcal{O}(2) \rightarrow \mathcal{O} \oplus \mathcal{O}(1) \oplus \mathcal{O}(2) \rightarrow \mathcal{O} \rightarrow 0$. Since $\left.L\right|_{S}$ is trivial and X is Fano, $X \cap S=\phi . \quad \boldsymbol{P}(\mathcal{O} \oplus \mathcal{O}(1) \oplus \mathcal{O}(2))-S$ is isomorphic to the line bundle $Z=V\left(\mathcal{O}_{V_{7}}\left((-1 / 2) K_{V_{7}}\right)\right)$ over V_{7}. It is easy to see the restriction of $Z \rightarrow V_{7}$ to X is a double covering. (type 3) in Theorem 1.7)

So we have proved that every primitive Fano 3-fold with $B_{2}=2$ belongs to a class in Theorem 1.7. It is easily verified that every class in Theorem 1.7 is a family of Fano 3-folds parametrized by an irreducible variety. Moreover every two different classes cannot be deformed to each other because they have different values of $\left(-K_{X}\right)^{3}$. Therefore the primitive Fano 3-folds with $B_{2}=2$ have exactly 9 deformation types as described in Theorem 1.7.

The imprimitive Fano 3-folds with $B_{2}=2$ are also classified by using Theorem 5.1. For example, we consider the case $\left(E_{1}-E_{1}\right)$. In this case, X is the graph of birational map between Y_{1} and Y_{2}. Let C_{i} be the center of the blowing-up f_{i}, r_{i} the index of Y_{i} and put $d_{i}=\left(L_{i}^{3}\right)$.

$$
\begin{align*}
& \operatorname{deg} C_{1}=\left(r_{1}-1\right)^{2} d_{1}-\left(r_{2}-1\right) d_{2} \tag{5.11}\\
& \left(-K_{X}\right)^{3}=\left(3 r_{1}-2\right) d_{1}+\left(3 r_{2}-2\right) d_{2}
\end{align*}
$$

Proof. $-K_{X} \sim f_{i}^{*}\left(-K_{Y_{i}}\right)-D_{i} \sim r_{i} H_{i}-D_{i}$ for $i=1,2$. On the other hand, $-K_{X} \approx H_{1}+H_{2}$ by Theorem 5.1. Hence $D_{1} \approx\left(r_{1}-1\right) H_{1}-H_{2}$ and D_{2} $\approx\left(r_{2}-1\right) H_{2}-H_{1}$. Since $\left(H_{i}^{2} \cdot D_{i}\right)=0$ for both $i=1,2$, we have $\left(H_{1}^{2} \cdot H_{2}\right)=$ $\left(r_{1}-1\right)\left(H_{1}^{3}\right)=\left(r_{1}-1\right) d_{1}$ and $\left(H_{1} \cdot H_{2}^{2}\right)=\left(r_{2}-1\right) d_{2}$. Therefore

$$
\begin{aligned}
\operatorname{deg} C_{1} & =-\left(H_{1} \cdot D_{1}^{2}\right)=-\left(H_{1} \cdot\left(\left(r_{1}-1\right) H_{1}-H_{2}\right)^{2}\right) \\
& =-\left(r_{1}-1\right)^{2}\left(H_{1}^{3}\right)+2\left(r_{1}-1\right)\left(H_{1}^{2} \cdot H_{2}\right)-\left(H_{1} \cdot H_{2}^{2}\right) \\
& =-\left(r_{1}-1\right)^{2} d_{1}+2\left(r_{1}-1\right)^{2} d_{1}-\left(r_{2}-1\right) d_{2} \\
& =\left(r_{1}-1\right)^{2} d_{1}-\left(r_{2}-1\right) d_{2} .
\end{aligned}
$$

The second equality is obtained in the same way. q.e.d.

By Proposition 4.10, both r_{1} and r_{2} are greater than 1. By (5.11),

$$
\operatorname{deg} C_{1}+\operatorname{deg} C_{2}=\left(r_{1}-1\right)\left(r_{1}-2\right) d_{1}+\left(r_{2}-1\right)\left(r_{2}-2\right) d_{2} .
$$

Hence either r_{1} or r_{2} is greater than 2. By I of $\S 2$, we can show that Fano

3-folds with $B_{2}=2$ of type $\left(E_{1}-E_{1}\right)$ have the following 6 deformation types:

	$\left(-K_{X}\right)^{3}$	Y_{1}	$\operatorname{deg} C_{1}$	$p_{a}\left(C_{1}\right)$	Y_{2}	$\operatorname{deg} C_{2}$	$p_{a}\left(C_{2}\right)$
1)	20	\boldsymbol{P}^{3}	6	3	\boldsymbol{P}^{3}	6	3
2)	24	\boldsymbol{P}^{3}	5	1	Q	5	1
3)	26	\boldsymbol{P}^{3}	5	2	V_{4}	1	0
4)	28	Q	4	0	Q	4	0
5)	30	\boldsymbol{P}^{3}	4	0	V_{5}	2	0
6)	34	Q	3	0	V_{5}	1	0

Here $p_{a}\left(C_{1}\right)$ can be computed by (4.3).
As a corollary of the classification, we have
Proposition 5.12. An imprimitive Fano 3-fold X with $B_{2}=2$ satisfies one of the following:
(a) X is isomorphic to the blow-up of \boldsymbol{P}^{3} along a smooth irreducible curve which is a scheme-theoretic intersection of cubics.
(b) X is isomorphic to the blow-up of $Q \subset \boldsymbol{P}^{4}$ along a smooth irreducible curve which is a scheme-theoretic intersection of members of $\left|\mathcal{O}_{Q}(2)\right|$.
(c) X is isomorphic to the blow-up of $V_{d}, 1 \leq d \leq 5$, along an elliptic or rational curve which is a scheme-theoretic intersection of members of $\left|-(1 / 2) K_{V_{d}}\right|$.

§ 6. Fano conic bundle

First we recall some general properties of a conic bundle $f: X \rightarrow S$.
Definition 6.1. A morphism $f: X \rightarrow S$ from a smooth variety X onto a smooth surface S is a conic bundle if every fibre is isomorphic to a conic, i.e., a scheme of zeros of a nonzero homogeneous form of degree 2 on \boldsymbol{P}^{2}. The set $\left\{s \in S \mid f^{-1}(s)\right.$ is not smooth $\}$ is called the discriminant locus of f and denoted by Δ_{f}.

Proposition 6.2. (1) f is flat and $f_{*} \omega_{X}^{-1}$ is a vector bundle of rank 3 and the natural map $X \rightarrow \boldsymbol{P}\left(f_{*} \omega_{X}^{-1}\right)$ is an embedding. In particular, X is projective if S is projective.
(2) If Δ_{f} is non-empty, then it is a curve with only ordinary double points and Sing $\Delta_{f}=\left\{s \in S \mid f^{-1}(s)\right.$ is non-reduced $\}$.
(3) If a smooth rational curve C is a connected component of Δ_{f}, then $f^{-1}(C)$ is reducible.
(4) $\Delta_{f} \approx-f_{*} K_{K / S}^{2} \approx-f_{*} K_{X}^{2}-4 K_{S}$.

Proof. For (1) and (2) see Chapter I [1]. Let C be a smooth rational curve which is a connected component of Δ_{f}. By (2), $f^{-1}(s)$ is a union of
two smooth rational curves, for every $s \in C . \quad$ Let $\tilde{C} \subset \operatorname{Hilb}_{x}$ be the parametrizing space of those rational curves. Since $C \cong P^{1}$ and \widetilde{C} is isomorphic to an étale double cover of C, \widetilde{C} is disconnected. Hence $f^{-1}(C)$ is reducible. This shows (3). Let C be a smooth curve on S intersecting Δ_{f} transversally and such that the surface $f^{-1}(C)$ is smooth. It is easy to see that rational equivalence classes of such curves generate Pic $S . \quad Y ;=f^{-1}(C)$ is isomorphic to the blow-up of a \boldsymbol{P}^{1}-bundle Y_{0} over C. Since $\left(K_{Y_{0} / C}\right)^{2} \sim 0$, $-K_{Y / C}^{2}$ is rationally equivalent to the sum of the singular points of fibres with all coefficients 1 . It follows that $-f_{*} K_{Y / C}^{2} \sim \Delta_{f} \cdot C$. Since $\omega_{Y / C}$ is canonically isomorphic to $\left.\omega_{X / S}\right|_{Y}$, we have $\Delta_{f} \cdot C \sim-f_{*} K_{Y / G}^{2} \sim-f_{*}\left(K_{X / S}^{2} \cdot Y\right)$ $\sim-f_{*}\left(K_{X / S}^{2} \cdot f^{*} C\right) \sim-\left(f_{*} K_{X / S}^{2}\right) \cdot C$. In particular, $\left(\Delta_{f} \cdot C\right)=-\left(f_{*} K_{X / S}^{2}\right.$. C), that is, $\Delta_{f} \approx-f_{*} K_{X / S}^{2}$. On the other hand, since $f_{*} K_{X} \sim-2 S$, we have $-f_{*} K_{X / S}^{2} \sim-f_{*}\left(K_{X}-f^{*} K_{S}\right)^{2} \sim-f_{*} K_{X}^{2}-4 K_{S}$, which shows (4). q.e.d.

Proposition 6.3. Let $f: X \rightarrow S$ be a conic bundle over a projective surface S. Then we have
(1) $\rho(X)-\rho(S)=1$ if and only if $f^{-1}(C)$ is irreducible for every irreducible curve C on S.
(2) Assume that $f^{-1}(C)$ is reducible for an irreducible curve C on S. Then i) C is smooth, ii) $f^{-1}(C)$ is a union of E_{1} and E_{2} such that $\left.f\right|_{E_{i}}: E_{i} \rightarrow$ C is a \boldsymbol{P}^{1}-bundle for $i=1,2$ and iii) there are a conic bundle $g_{i}: Y_{i} \rightarrow S$ and a morphism $\alpha_{i}: X \rightarrow Y_{i}$ which is the contraction of all fibres of $\left.f\right|_{E_{i}}$, such that $g_{i} \circ \alpha_{i}=f$ for both $i=1,2$. Moreover $\Delta_{g_{1}}=\Delta_{g_{2}}, \rho\left(Y_{1}\right)=\rho\left(Y_{2}\right), \Delta_{f}=\Delta_{g_{i}}$ $\amalg C$ and $\rho(X)=\rho\left(Y_{i}\right)+1$ for $i=1,2$.

By an induction on $\rho(X)-\rho(S)$, we have
Corollary 6.4. Δ_{f} has n connected components C_{1}, \cdots, C_{n} such that C_{i} is smooth and $f^{-1}\left(C_{i}\right)$ is reducible for $i=1, \cdots, n$, where $n=\rho(X)-\rho(S)$ -1 .

Proposition 6.5. Let the situation be the same as in (2) of Proposition 6.3 and assume, in addition, that X is a Fano 3-fold. Then we have
(1) If Y_{1} is not a Fano 3-fold, then $C \cong \boldsymbol{P}^{1}, E_{1} \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and $\mathcal{O}_{E_{1}}\left(E_{1}\right)$ $\cong \mathcal{O}(-1,-1)$.
(2) Either Y_{1} or Y_{2} is a Fano 3-fold.

Proof. (1) is an immediate consequence of Proposition 4.5. Assume that neither Y_{1} nor Y_{2} is a Fano 3-fold. Since every fibre of f is connected $s=E_{1} \cap E_{2}$ is not empty. Since $\mathcal{O}_{E_{1}}\left(E_{1}\right)$ is negative by (1), $\left(s . E_{1}\right)=\left(\left.s \cdot E_{1}\right|_{E_{1}}\right)_{E_{1}}$ is negative. On the other hand, since s moves in $E_{2} \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1},\left(s \cdot E_{1}\right)$ is non-negative, which is a contradiction.
q.e.d.

The following is another important property of Fano conic bundles.

Proposition 6.6. Let $f: X \rightarrow S$ be a conic bundle and assume that X is a Fano 3-fold. Let E be an irreducible reduced curve on S such that $\left(E^{2}\right)<0$ and $f^{-1}(E)$ is irreducible. Then we have
(1) E is an exceptional curve of the first kind.
(2) $\left.f\right|_{f-1(E)}$, is a trivial \boldsymbol{P}^{1}-bundle over E, and
(3) there are a Fano conic bundle $f^{\prime}: X^{\prime} \rightarrow S^{\prime}$ and $A: X \rightarrow X^{\prime}$, the contraction of the horizontal fibres of $\left.f\right|_{f-1(E)}$ such that $f^{\prime} \circ A=\alpha \circ f$, where $\alpha: S \rightarrow S^{\prime}$ is the blow down of E.

Proof. Let Z be a curve on X such that $f(Z)=E . \quad$ By (3.1), there are irreducible reduced curves $C_{i}, 1 \leq i \leq n$, such that [C_{i}] is on an edge of $N E(X)$ and that $Z \approx \sum_{i=1}^{n} a_{i} C_{i}$ for some positive numbers a_{i}. Since ($f_{*} Z \cdot E$) is negative, $\left(f_{*} C_{i} \cdot E\right)$ is negative for some i. It follows that there is an irreducible reduced curve C such that [C] belongs to an extremal ray R of X and $f(C)=E$. Since $\left(C \cdot f^{-1}(E)\right)$ is equal to ($f_{*} C \cdot E$) and negative, R is of type $E_{1}, E_{2}, E_{3}, E_{4}$ or E_{5} and $f^{-1}(E)$ is the exceptional divisor of R by the classification of extremal rays. Since $f^{-1}(E)$ has a morphism $\varphi=$ $\left.f\right|_{f-1(E)}$ onto $E \cong P^{1}$ which does not contract the curve C belonging to the ray R, and since C and the fibre of φ are not numerically equivalent, R is of E_{1}-type. Hence $f^{-1}(E)$ is smooth and has a P^{1}-bundle structure ψ : $f^{-1}(E) \rightarrow T$ over a smooth curve T which contracts C to a point. It is easy to see that the morphism $(\varphi, \psi): f^{-1}(E) \rightarrow E \times T$ is an isomorphism and both E and T are rational, which shows (2). By (2), C is a section of φ and we have $\left(E^{2}\right)=\left(f_{*} C \cdot E\right)=\left(C \cdot f^{-1}(E)\right)=-1$ from which (1) follows. Since $N_{f-1(E) / X}$ is isomorphic to $\varphi^{*} N_{E / S}$ and is not negative, the X^{\prime} in $A=$ $\operatorname{cont}_{R}: X \rightarrow X^{\prime}$, is a Fano 3-fold by Proposition 4.5. It will be clear that the morphism $f^{\prime}: X^{\prime} \rightarrow S$ is well defined and is a conic bundle. q.e.d.

Corollary 6.7. Let $f: X \rightarrow S$ be a Fano conic bundle. Then we have
(1) every irreducible curve E on S with $\left(E^{2}\right)<0$ is an exceptional curve of the first kind, and
(2) if E is an exceptional curve of the first kind, then Δ_{f} is disjoint from E or contains E as a connected component.

Proof. (1) follows from (1) of Proposition 6.6, (2) of Proposition 6.3 and (2) of Proposition 6.5. If $f^{-1}(E)$ is reducible then Δ_{f} contains E as a connected component by Proposition 6.3. If $f^{-1}(E)$ is irreducible, then Δ_{f} is disjoint from E by Proposition 6.6. Hence we have (2).
q.e.d.

For the classification of imprimitive Fano 3-folds with $B_{2} \geq 3$, it is necessary to classify the curves C on a Fano conic bundle Y such that the blow-up of Y along C is a Fano 3-fold. Propositions 6.8 and 6.10 give strong necessary conditions on $C \subset Y$.

Proposition 6.8. Let $g: Y \rightarrow S$ be a Fano conic bundle and C a smooth irreducible curve on Y. Assume that the blow-up X of Y along C is a Fano 3-fold. Then we have
(1) C does not meet any singular fibre of g; and (2) C is either (i) a smooth fibre of g or (ii) a subsection of g, i.e., $\left.g\right|_{C}$ is an embedding $C \hookrightarrow S$. In the case (i), X is a conic bundle over S^{\prime}, the blow-up of S at $g(C)$. In the case (ii), $f=g \circ \alpha$ is a conic bundle such that $\Delta_{f}=\Delta_{g} \amalg g(C)$, where $\alpha: X$ $\rightarrow Y$ is the blowing-up along C.

Proof. (1) Assume that C meets a singular fibre. Then C meets l, an irreducible component of a reducible fibre or the reduced part of a multiple fibre. In both cases, $\left(-K_{Y} \cdot l\right)=1$. Hence if $C \neq l$, then X is not a Fano 3-fold by Proposition 4.7. If $C=l$ and l is an irreducible component of a reducible fibre, C meets another component of the reducible fibre and hence X is not a Fano 3-fold. If $C=l$ and l is the reduced part of a multiple fibre, then $N_{C / Y} \cong \mathcal{O}(1) \oplus \mathcal{O}(-2)$ and hence X is not a Fano 3-fold by Proposition 4.9.
(2) If $g(C)$ is a point, then by (1), C is a smooth fibre of g. Assume that $g(C)$ is not a point and X is a Fano 3-fold. Let Z be the proper transform of a fibre $g^{-1}(s)$. Then we have $(D \cdot Z)=\left(\alpha^{*}\left(-K_{Y}\right)+K_{X} \cdot Z\right)=$ $\left(-K_{Y} \cdot \alpha_{*} Z\right)-\left(-K_{X} \cdot Z\right)<\left(-K_{Y} \cdot g^{-1}(s)\right)=2$, where D is the exceptional divisor of α. Hence, for every $s \in S, g^{-1}(s)$ is disjoint from C or intersect C transversally at one point. Therefore $\left.g\right|_{C}$ is an embedding. The latter part of (2) is almost clear.
q.e.d.

If C is a subsection of a conic bundle $g: Y \rightarrow S$ such that $g(C) \cap \Delta g=\phi$ and X is the blow-up of Y along C, then there are a conic bundle $g^{\prime}: Y^{\prime}$ $\rightarrow S$ (the elementary transform of g along C) and a morphism $\alpha^{\prime}: X \rightarrow Y^{\prime}$ such that $\Delta_{g^{\prime}}=\Delta_{g}, \rho(Y)=\rho\left(Y^{\prime}\right)$, satisfying the two conditions (a) $g \circ \alpha=$ $g^{\prime} \circ \alpha^{\prime}$ and (b) α^{\prime} is birational and an irreducible reduced curve Z on X is contracted to a point by α^{\prime} if and only if Z is the proper transform of a smooth fibre of g meeting C (Proposition 6.3).

$$
\begin{equation*}
\left(-K_{Y \prime}\right)^{3}=\left(-K_{Y}\right)^{3}+2\left(g(C)^{2}\right)_{S}-4\left(-K_{Y / S} \cdot C\right) \tag{6.9}
\end{equation*}
$$

Proof. Applying (4.3) to α and α^{\prime}, we have

$$
\begin{aligned}
\left(-K_{X}\right)^{3} & =\left(-K_{Y}\right)^{3}-2\left\{\left(-K_{Y} \cdot C\right)-p_{a}(C)+1\right\} \\
& =\left(-K_{Y^{\prime}}\right)^{3}-2\left\{\left(-K_{Y^{\prime}} \cdot C^{\prime}\right)-p_{a}\left(C^{\prime}\right)+1\right\}
\end{aligned}
$$

where C^{\prime} is the center of the blowing-up $\alpha^{\prime}: X \rightarrow Y^{\prime}$. Since $C \cong C^{\prime} \cong g(C)$ and $\left(g^{*} K_{S} \cdot C\right)=\left(g^{\prime *} K_{S} \cdot C^{\prime}\right)$, we have

$$
\left(-K_{Y^{\prime}}\right)^{3}=\left(-K_{Y}\right)^{3}-2\left(-K_{Y / S} \cdot C\right)+2\left(-K_{Y^{\prime} / S} \cdot C^{\prime}\right)
$$

Since C and C^{\prime} are subsections, $\left(-K_{Y / S} \cdot C\right)$ and $\left(-K_{Y^{\prime} / S} \cdot C^{\prime}\right)$ are equal to the self-intersection numbers $\left(C^{2}\right)_{g-1 g(C)}$ and $\left(C^{\prime 2}\right)_{g^{\prime}-1 g^{\prime}\left(C^{\prime}\right)}$, respectively. Hence our assertion follows from:

Claim. $\quad\left(C^{2}\right)_{g^{-1 g}(C)}+\left(C^{2}\right)_{g^{\prime-1} g^{\prime}(C)}=\left(g(C)^{2}\right)_{S^{\prime}}$.
Let E (resp. E^{\prime}) be the exceptional divisor of α (resp. α^{\prime}) and Γ the intersection of E and E^{\prime}. Since E^{\prime} is the strict transform of $g^{-1}(C)$, $\left(C^{2}\right)_{g-1 g(C)}$ is equal to $\left(\Gamma^{2}\right)_{E^{\prime}}$. In the same way, we have $\left(C^{\prime 2}\right)_{g^{\prime}-1 g^{\prime}(C)}=$ $\left(\Gamma^{2}\right)_{E}$. On the other hand, we have $\left(\Gamma^{2}\right)_{E}+\left(\Gamma^{2}\right)_{E^{\prime}}=\left(E^{\prime 2} \cdot E\right)+\left(E^{2} \cdot E^{\prime}\right)=$ $\left(E+E^{\prime} \cdot E \cdot E^{\prime}\right)=\left(f^{*} f_{*} \Gamma \cdot \Gamma\right)=\left(f_{*} \Gamma \cdot f_{*} \Gamma\right)_{S}=\left(g(C)^{2}\right)_{S}$, which shows the claim.
q.e.d.

Proposition 6.10. Let $g: Y \rightarrow S$ be a Fano conic bundle and C a smooth irreducible subsection of g. If the blow-up X of Y along C is a Fano 3-fold, then the elementary transform $g^{\prime}: Y^{\prime} \rightarrow S$ satisfies one of the following:
(1) Y^{\prime} is a Fano 3-fold, and
(2) $C \cong \boldsymbol{P}^{1},\left.g\right|_{g-1 g(C)}$ is a trivial \boldsymbol{P}^{1}-bundle and $\left(-K_{Y / S} \cdot C\right)=2\left\{\left(g(C)^{2}\right)_{S}\right.$ $+1\}$.

Proof. Applying Proposition 4.5 for α^{\prime}, we have $E^{\prime} \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and $\left(-K_{Y^{\prime}} \cdot C^{\prime}\right)=0$ if Y^{\prime} is not a Fano 3-fold. Hence $C \cong \boldsymbol{P}^{1}$ and $g^{-1} g(C)$ is a trivial P^{1}-bundle. By the claim in the proof of (6.9), $\left(-K_{Y / S} \cdot C\right)+$ $\left(-K_{Y^{\prime} / S} \cdot C^{\prime}\right)=\left(g(C)^{2}\right)_{S} . \quad$ Hence $\left(-K_{Y / S} \cdot C\right)=\left(g(C)^{2}\right)_{S}-\left(-K_{Y^{\prime} / S} \cdot C^{\prime}\right)=$ $\left(g(C)^{2}\right)-\left(g^{\prime *} K_{S} \cdot C^{\prime}\right)-\left(-K_{Y^{\prime}} \cdot C^{\prime}\right)=\left(g(C)^{2}\right)-\left(K_{S} \cdot g(C)\right)=2\left\{\left(g(C)^{2}\right)_{S}+1\right\}$.
q.e.d.

§ 7. Classification of imprimitive Fano 3-folds with $B_{2} \geq 3$

We show how to classify the imprimitive Fano 3-folds with $B_{2} \geq 3$.
Proposition 7.1. An imprimitive Fano 3-fold X with $B_{2}=3$ satisfies one of the following:
(1) X is isomorphic to the blow-up of a Fano conic bundle over \boldsymbol{P}^{2}, and
(2) X is isomorphic to the blow-up of \boldsymbol{P}^{3} or Q along a disjoint union of two smooth irreducible curves on it.

Proof. Since X is imprimitive, X is isomorphic to the blow-up of a Fano 3-fold Y with $B_{2}=2$ along a smooth irreducible curve C on Y. If Y has a conic bundle structure, then X satisfies (1). Hence by Theorem 1.6, we may assume that Y is imprimitive. By Proposition 5.12 lie have the following 3 cases:

Case in which Y is a blow-up of \boldsymbol{P}^{3} : Let $\alpha: Y \rightarrow \boldsymbol{P}^{3}$ be the blow-up. If C is disjoint from the exceptional divisor of α, then X satisfies (2). If C meets the exceptional divisor, then C is an exceptional line of α by Corollary 4.8. $\quad X$ is isomorphic to the blow-up of V_{7} by the proper transform of the center of α by β, where $\beta: V_{7} \rightarrow \boldsymbol{P}^{3}$ is the blow-up at the point $\alpha(C)$. Since V_{7} is a \boldsymbol{P}^{1}-bundle over \boldsymbol{P}^{2}, X satisfies (1).

Case in which Y is a blow-up of $Q:$ Let $\alpha: Y \rightarrow Q$ be the blow-up. If C is disjoint from the exceptional divisor of α, then X satisfies (2). If C is an exceptional line of α, then X is a blow-up of \widetilde{Q} along a curve, where \tilde{Q} is the blow up of Q at $\alpha(C)$. Since \widetilde{Q} is isomorphic to the blow-up of \boldsymbol{P}^{3} along a conic, X satisfies (1) or (2) by the consideration in the above case.

Case in which Y satisfies (c) in Proposition 5.12: We show that no blow-up of Y along a smooth irreducible curve is a Fano 3-fold. Let $\alpha: Y \rightarrow V_{d}$ be the blow-up. Y has a del Pezzo fibering $f: Y \rightarrow \boldsymbol{P}^{1}$, and a one-dimensional family of curves l with $\left(-K_{Y} \cdot l\right)=1$ and contained in fibres of f. Let S be the union of such l 's.

Assume that $C \cap S \neq \phi$. Then C meets an l with the above property. If $C \neq l$, then we have $\left(-K_{X} \cdot l^{\prime}\right) \leq 0$ for the proper transform l^{\prime} and X is not a Fano 3-fold. If $C=l$ and C is contained in a smooth fibre of f, then C meets another l^{\prime} with $\left(-K_{Y} \cdot l^{\prime}\right)=1$ and contained in the same fibre because the degree of the del Pezzo surface is equal to d and ≤ 5. Hence X is not a Fano 3-fold. In the case $C=l$ and C is contained in a singular fibre, we have a deformation of C whose general members C^{\prime} are contained in smooth fibres. Since the blow-up X^{\prime} along C^{\prime} is not a Fano 3-fold, X is not a Fano 3-fold because the ampleness of $-K_{X}$ is an open condition.

Assume that $C \cap S=\phi$. Since S is not contained in the exceptional divisor of α and $\rho\left(V_{d}\right)=1, \alpha(S)$ is an ample divisor of V_{d}. Hence C is an exceptional line of $\alpha . \quad X$ is isomorphic to the blow-up of V_{d}^{\prime} by the proper transform Z^{\prime} of Z by β, where $\beta: V_{d}^{\prime} \rightarrow V_{d}$ is the blowing up at $\alpha(C)$.

Since V_{d} is of index 2 and $-K_{V_{d}^{\prime}} \sim \beta^{*}\left(-K_{V_{d}}\right)-2 D$ for the exceptional divisor D of $\beta,-K_{V_{d}^{\prime}}$ is divisible by 2 in Pic V_{d}^{\prime}. By I of $\S 2, V_{d}^{\prime}$ is not a Fano 3-fold. Since $Z^{\prime} \cong Z$ is an elliptic curve and irrational X is not a Fano 3-fold by Proposition 4.5.
q.e.d.
X satisfying (1) in Proposition 7.1 are classified by Proposition 4.7, 6.8, 6.9 and 6.10 . $\quad X$ satisfying (2) are classified by Corollary 4.6 and Proposition 4.7.

Example 7.2. Let Y be a Fano 3-fold in 2) of Theorem 1.7. Then Y is terminal, i.e., the blow up of Y along no smooth irreducible curve is a Fano 3-fold.

Proof. $\quad Y$ has two conic bundle structures π and τ with ample discriminant locus. By Proposition 6.8, if the blow-up X of Y along C is a Fano 3-fold, then both $\pi(C)$ and $\tau(C)$ would be a point. But such a curve C does not exist. Hence Y is terminal. q.e.d.

Example 7.3. Let g be the \boldsymbol{P}^{1}-bundle $Y=\boldsymbol{P}(\mathcal{O} \oplus \mathcal{O}(2)) \rightarrow \boldsymbol{P}^{2}$ and D the negative section of f. If the blow-up X of Y along a smooth irreducible curve C is a Fano 3-fold, then we have
(1) C is a subsection disjoint from D, and
(2) $\operatorname{deg} g(C) \leq 4$

Proof. Assume that X is a Fano 3-fold. Since ($-K_{Y} \cdot l$) $=1$ for every line l in D, C is disjoint from D. Hence we have (1) by Proposition 6.8. Put $m=\operatorname{deg} g(C)$. Since $-K_{Y / P^{2}} \sim 2 D+g^{*} \mathcal{O}_{P}(2),\left(-K_{Y / P^{2}} \cdot C\right)$ is equal to $2 m$ by (1). Since $\left(-K_{Y / P^{2}} \cdot C\right)=2 m \neq 2\left(m^{2}+1\right)$, the elementary transform $g^{\prime}: Y^{\prime} \rightarrow \boldsymbol{P}^{2}$ is a Fano \boldsymbol{P}^{1}-bundle by Proposition 6.10 and $\left(-K_{Y^{\prime}}\right)^{3}=$ $\left(-K_{Y}\right)^{3}+2 m^{2}-8 m=62+2 m^{2}-8 m$ by (6.9). On the other hand by the classification of Fano 3-folds with $B_{2}=2$, for a Fano \boldsymbol{P}^{1}-bundle Z over \boldsymbol{P}^{2} we have $\left(-K_{Z}\right)^{3}=62,56,54,48,46,38$ or 30 (cf. the forthcoming paper). Therefore we have $m \leq 4$.
q.e.d.

For every C satisfying (1) and (2) of Example 7.3, the blow-up of Y along C is a Fano 3 -fold and we have

$\operatorname{deg} g(C)$	1	2	3	4
$\left(-K_{X}\right)^{3}$	50	40	32	26
Y^{\prime}	V_{7}	$\boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{2}$	V_{7}	$\boldsymbol{P}(\mathcal{O} \oplus \mathcal{O}(2))$

All Fano 3-folds with $B_{2} \geq 4$ are imprimitive. They can be classified by Propositions 4.7 and 6.8.

§ 8. Proof of Theorem 1.6.

Let X be a primitive Fano 3-fold with $B_{2} \geq 2$. By definition, X has no extremal ray of $E_{1, a}$-type.
(8.1) X has an extremal ray of type $C_{1}, C_{2}, D_{1}, D_{2}$ or D_{3}.

Proof. Let R_{1}, \cdots, R_{n} be the extremal rays of X of type $E_{1, b}, E_{2}, E_{3}$, E_{4} or E_{5} and D_{1}, \cdots, D_{n} their exceptional divisors.

Claim: $\quad D_{i} \cap D_{j}=\phi$ if $D_{i} \neq D_{j}$.
Assume that $s=D_{i} \cap D_{j}$ is not empty. Then $\left(s \cdot D_{i}\right)=\left(\left.s \cdot D_{i}\right|_{D_{i}}\right)_{D_{i}}$ is negative because $\mathcal{O}_{D_{i}}\left(D_{i}\right)$ is negative and $\left(s \cdot D_{i}\right)$ is nonnegative because s moves in D_{j}, which is a contradiction. Hence $D_{i} \cap D_{j}=\phi$.

Let Γ be the subcone of $N E(X)$ generated by R_{1}, \cdots, R_{n}.
Claim: $\quad\left(Z \cdot D_{i}\right) \leq 0$ for every $Z \in \Gamma$ and i.
We may assume that Z belongs to R_{j} for some j. If $D_{j}=D_{i}$, then $\left(Z \cdot D_{i}\right)=\left(Z \cdot D_{j}\right)<0$. If $D_{j} \neq D_{i}$, then $\left(Z \cdot D_{i}\right)=0$ because $D_{i} \cap D_{j}=\phi$.

By the claim, we have $\Gamma \neq N E(X)$, e.g. $\left(-K_{X}\right)^{2} \notin \Gamma$. Therefore, by (3.1), $N E(X)$ has an extremal ray not of type $E_{1, b}, E_{2}, E_{3}, E_{4}$ or E_{5}. q.e.d.
(8.2) If X has an extremal ray R of type D_{1}, D_{2} or D_{3}, then X has another one of type C_{1} or C_{2}.

Proof. By definition of D-type, $\rho(X)=2$. Let R^{\prime} be another extremal ray of X.

Claim: $\quad R^{\prime}$ is not of type E_{2}, E_{3}, E_{4} or E_{5}.
Assume to the contrary. By (3.4), the exceptional divisor D of R^{\prime} is mapped to a point by cont ${ }_{R}: X \rightarrow \boldsymbol{P}^{1}$. Since every fibre of cont $_{R}$ is irreducible, D is a fibre of cont_{R}, which contradicts (3.3).

Claim: $\quad R^{\prime}$ is not of type D_{1}, D_{2} or D_{3}.
Assume to the contrary. Since $R \neq R^{\prime}$, the morphism $\left(\operatorname{cont}_{R}, \operatorname{cont}_{R^{\prime}}\right): X \rightarrow \boldsymbol{P}^{1}$ $\times \boldsymbol{P}^{1}$ is surjective, which contradicts $\rho(X)=2$.

By the above two claims, R^{\prime} is of type C_{1} or C_{2}. q.e.d.
By (8.1) and (8.2), X has an extremal ray R of C_{1} or C_{2}-type. By definition of C-type, the conic bundle $f=\operatorname{cont}_{R}: X \rightarrow S$ satisfies
$\rho(X)=\rho(S)+1$ and $f^{-1}(C)$ is irreducible for every irreducible curve C on S.

$$
\begin{equation*}
S \cong \boldsymbol{P}^{2} \quad \text { or } \quad \boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \tag{8.4}
\end{equation*}
$$

Proof. By Proposition 3.5 and (3) of Proposition 6.6, S is a minimal rational surface. Hence S is isomorphic to \boldsymbol{P}^{2} or \boldsymbol{P}^{1}-bundle $\boldsymbol{F}_{n}=\boldsymbol{P}(\mathcal{O} \oplus$ $\mathcal{O}(n))$ over $\boldsymbol{P}^{1}(n \neq \pm 1)$. By (1) of Proposition 6.6, S is isomorphic to \boldsymbol{P}^{2} or $\boldsymbol{F}_{0} \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.
q.e.d.
(8.5) If $B_{2}=3, X$ has an extremal ray $R^{\prime} \neq R$ of type $E_{1, b}, C_{1}$, or C_{2}. Moreover if R^{\prime} is of type C_{1} or C_{2}, then cont ${R^{\prime}}^{\prime}$ is a conic bundle over $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.

Proof. Let R^{\prime} be an extremal ray $\neq R$. It suffices to show that R^{\prime} is not of type E_{2}, E_{3}, E_{4} or E_{5}. Assume to the contrary and let D be the exceptional divisor of R^{\prime}. By (3.4), D is mapped to a point by $f: X \rightarrow \boldsymbol{P}^{1} \times$ \boldsymbol{P}^{1}, which is a contradiction. The latter part follows from (8.4). q.e.d.

Theorem 1.6 follows from (8.3), (8.4) and (8.5).

\S 9. Fano 3-folds with $B_{2} \geq 6$

In this section, we prove Theorem 1.2. The following is the first step of the proof.
(9.1) An arbitrary Fano 3-fold Y with $B_{2}=3$ satisfies one of the following:
i) Y has a conic bundle structure.
ii) Y is isomorphic to the blow-up of \boldsymbol{P}^{3} along a disjoint union of a line and a conic.

Proof (Outline). By Propositions 7.1 and 6.8, we may assume that Y is isomorphic to the blow-up of $V=\boldsymbol{P}^{3}$ or Q along the disjoint union of two smooth curves C_{1} and C_{2}. Let Y_{i} be the blow-up of V along C_{i} for $i=1,2$. Since $\rho\left(Y_{i}\right)=2, Y_{i}$ has a unique extremal ray whose contraction f_{i} is not the above map $Y_{i} \rightarrow V$. We may assume that f_{i} is not a conic bundle by Proposition 6.8. If both f_{1} and f_{2} are morphisms onto \boldsymbol{P}^{1}, then Y has a morphism onto $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and hence Y is a conic bundle over $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. Hence we may assume that f_{1} is a birational morphism. Let D be the exceptional divisor of f_{1}. If D is not of E_{2}-type, then D is covered by curves Z with $\left(-K_{Y_{1}} \cdot Z\right)=1$. On the other hand, since the image $\bar{D} \subset V$ is ample, $\left(D \cdot C_{2}^{\prime}\right)>0$ for the proper transform C_{2}^{\prime} of C_{2}. Hence X is not a Fano 3-fold by Proposition 4.7, which contradicts our assumption. Hence D is of E_{2}-type. Then we have $\left(D \cdot C_{2}^{\prime}\right)=1$. For otherwise, there is a line in D which intersects C_{2}^{\prime} in at least 2 points. For the proper transform Z of the line, we have $\left(Z \cdot-K_{X}\right) \leq 0$ which contradicts our assumption. Hence V is isomorphic to \boldsymbol{P}^{3}, the image \bar{D} is a plane in V and C_{2}^{\prime} is the proper transform of a line C_{2} in V. Since $\mathcal{O}_{D}(D) \cong \mathcal{O}_{D}(-1)$ and $\mathcal{O}_{\bar{D}}(\bar{D}) \cong \mathcal{O}_{\bar{D}}(1), C_{1}$ is a conic in \bar{D}.
q.e.d.

By the following fact, we can apply the results in $\S 6$ to prove Theorem 1.2.
(9.2) A Fano 3-fold X with $B_{2}=4$ has a conic bundle structure.

Proof. By Theorem 1.6, X is imprimitive. Hence X is isomorphic to the blow-up of a Fano 3-fold Y with $B_{2}=3$ along a smooth irreducible curve C. If Y satisfies i) of (9.1), then X has a conic bundle structure by (2) of Proposition 6.8. Assume that Y satisfies ii) of (9.1) and let $\alpha: Y \rightarrow$ \boldsymbol{P}^{3} the blowing up along a disjoint union of a line L and a conic Q.

Claim: $\quad C$ is an exceptional line of α.
Assume to the contrary. Then by Corollary 4.8, C is disjoint from the exceptional divisor of α. Let Z be a line which meets L and $\alpha(C)$ and is contained in the plane containing Q. Since Z meets Q at two points counted with multiplicity, we have $\left(-K_{X} \cdot Z^{\prime}\right)=\left(\beta^{*} \mathcal{O}_{P}(4) \cdot Z^{\prime}\right)-\left(\beta^{-1}(Q)\right.$. $\left.Z^{\prime}\right)-\left(\beta^{-1}(L) \cdot Z^{\prime}\right)-\left(\beta^{-1}(\alpha(C)) \cdot Z^{\prime}\right) \leq 4-2-1-1=0$ for the proper transform Z^{\prime} of Z by β, where $\beta: X \rightarrow \boldsymbol{P}^{3}$ is the blowing-up along $Q \amalg L \coprod \alpha(C)$. This contradicts our assumption that X is a Fano 3-fold.

By the claim, X is isomorphic to the blow-up of V_{7}, the blow-up of \boldsymbol{P}^{3} at a point, along the proper transform of $L \amalg Q$. Since V_{7} is a \boldsymbol{P}^{1}-bundle over \boldsymbol{P}^{2}, X has a conic bundle structure by Proposition 6.8.
q.e.d.

We prepare the following two lemmas for the proof of (9.5), a stronger version of (9.2).

Lemma 9.3. Let $f: X \rightarrow S$ be a \boldsymbol{P}^{1}-bundle over S such that S has a P^{1} bundle structure $\pi: S \rightarrow \boldsymbol{P}^{1}$. If $\left.f\right|_{f-1(l)}$ is trivial for every fibre l of π, then X is isomorphic to $Z \times_{P^{1}} S$ for a \boldsymbol{P}^{1}-bundle Z over \boldsymbol{P}^{1}.

Proof. Let E be a vector bundle such that $\boldsymbol{P}(E) \cong X$. By assumption, twisting E by some line bundle, we may assume that $\left.E\right|_{l} \cong \mathcal{O}_{l}^{\oplus 2}$ for every fibre of π. By the base change theorem, we have $E \cong \pi^{*} \pi_{*} E$. It follows that $X \cong P\left(\pi_{*} E\right) \times{ }_{P^{1}} S$. q.e.d.

Lemma 9.4. Let $f: X \rightarrow S$ be a Fano P^{1}-bundle over S which has a \boldsymbol{P}^{1} bundle structure $\pi: S \rightarrow \boldsymbol{P}^{1}$. Then one of the following holds:
(a) $f^{-1}(l) \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ for every fibre l of π, and
(b) $f^{-1}(l) \cong \boldsymbol{F}_{1}$ for every fibre l of π.

Proof. The \boldsymbol{P}^{1}-bundle $f^{-1}(l)$ over l is a fibre of $\pi \circ f: X \rightarrow \boldsymbol{P}^{1}$ and hence a del Pezzo surface. Therefore $f^{-1}(l) \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ or \boldsymbol{F}_{1}. Since $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and F_{1} cannot be deformed to each other, we have either (a) or (b). q.e.d.
(9.5) An arbitrary Fano 3-fold with $\mathrm{B}_{2}=4$ has a conic bundle structure $f: X \rightarrow S$ satisfying one of the following:
(1) $S \nsubseteq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$, and
(2) $S \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and Δ_{f} is ample.

Proof. By (9.2), we may assume that X has a conic bundle structure $f: X \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ with Δ_{f} not ample. Δ_{f} is a disjoint union $\coprod_{i=1}^{n} s_{i} \times \boldsymbol{P}^{1}$ (or $\coprod_{i=1}^{n} \boldsymbol{P}^{1} \times s_{i}$) for $s_{1}, \cdots, s_{n} \in \boldsymbol{P}^{1}$. By (3) of Proposition 6.2 and Proposition 6.3, X is isomorphic to the blow-up of a Fano \boldsymbol{P}^{1}-bundle $g: Y \rightarrow \boldsymbol{P}^{1} \times$ \boldsymbol{P}^{1} along a disjoint union of subsections C_{i} over $s_{i} \times \boldsymbol{P}^{1}, i=1, \cdots, n$. Since $B_{2}(X)=4$, we have $n=1$. By Lemma 9.4, we have either (a) $g^{-1}\left(\boldsymbol{P}^{1} \times t\right) \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ for every $t \in \boldsymbol{P}^{1}$ or (b) $g^{-1}\left(\boldsymbol{P}^{1} \times t\right) \cong F_{1}$ for every $t \in \boldsymbol{P}^{1}$. C_{1} meets $g^{-1}\left(\boldsymbol{P}^{1} \times t\right)$ transversally at one point. Since X is a Fano 3-fold, the point does not lie on the exceptional curve of the first kind on F_{1} in the case (b). Let $g^{\prime}: Y^{\prime} \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ be the elementary transform of g with center $C_{1} . g^{\prime-1}\left(P^{1} \times t\right)$ is isomorphic to the elementary transform of $g^{-1}\left(\boldsymbol{P}^{1} \times t\right)$ with center $C_{1} \cap g^{-1}\left(\boldsymbol{P}^{1} \times t\right)$. Therefore in the case (b), $g^{\prime-1}\left(\boldsymbol{P}^{1} \times t\right) \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ for every $t \in \boldsymbol{P}^{1}$. Therefore by Lemma 9.3, $Y \cong \boldsymbol{P}^{1}$ $\times Z$ in the case (a) and $Y^{\prime} \cong P^{1} \times Z$ in the case (b) for a P^{1}-bundle Z over \boldsymbol{P}^{1}. In both cases, X is isomorphic to the blow-up of $\boldsymbol{P}^{1} \times Z$ along a smooth irreducible curve C.

Case $Z \not \equiv \boldsymbol{P}^{1} \times \boldsymbol{P}^{1} . \quad \boldsymbol{P}^{1} \times Z$ is a \boldsymbol{P}^{1}-bundle over Z. Hence X is isomorphic to a conic bundle over Z or the blow-up of Z at a point. Hence X satisfies (1).

Case $\quad Z \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1} . \quad X$ is isomorphic to the blow-up of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ along C. $\quad \boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ has three \boldsymbol{P}^{1}-bundle structure $\pi_{1}, \pi_{2}, \pi_{3}: \boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times$ $\boldsymbol{P}^{1} \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. It is easily seen that $\pi_{i}(C)$ is a point or an ample divisor for some $i=1,2$ or 3 . By Proposition 6.8 , if $\pi_{i}(C)$ is a point, then X satisfies (1) and if $\pi_{i}(C)$ is ample, then X satisfies (2). q.e.d.

Since a Fano 3-fold with $\mathrm{B}_{2} \geq 5$ is imprimitive, we have by Proposition 6.8 and (9.5):
(9.6) A Fano 3-fold X with $B_{2} \geq 5$ has a conic bundle structure $f: X \rightarrow S$ such that $S \nsubseteq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.

Let $f: X \rightarrow S$ be an arbitrary Fano conic bundle. By (1) of Corollary 6.7 and the classification of relatively minimal rational surface, we have

$$
\begin{equation*}
S \cong \boldsymbol{P}^{2}, \boldsymbol{F}_{1} \quad \text { or } \quad \boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \quad \text { if } \quad \rho(S) \leq 2 \quad \text { and } \tag{9.7}
\end{equation*}
$$

(9.8) there is a morphism $\alpha: S \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ which is a blowing-up at $\rho(S)-2$ points on $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ if $\rho(S) \geq 3$.

Lemma 9.9. If $\rho(S) \geq 3$, then f is a \boldsymbol{P}^{1}-bundle.
Proof. Let $z_{1}=\left(x_{1}, y_{1}\right), \cdots, z_{n}=\left(x_{n}, y_{n}\right) \in \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ be the center of α. Put $E_{i}=\alpha^{-1}\left(z_{i}\right)$ and let L_{i} and M_{i} be the proper transforms of $x_{i} \times \boldsymbol{P}^{1}$ and $\boldsymbol{P}^{1} \times y_{i}$ by α, respectively, for $i=1, \cdots, n$. Both L_{i} and M_{i} are exceptional curves of the first kind by (1) of Corollary 6.7.

Claim: Δ_{f} is disjoint from E_{i}, L_{i} and M_{i} for every i.
Assume that Δ_{f} meets E_{i}. Then by (2) of Corollary 6.7, Δ_{f} contains E_{i} as a connected component. Hence Δ_{f} meets L_{i}. But L_{i} is a connected component of neither E_{i} nor $\Delta_{f}-E_{i}$, which contradicts Corollary 6.7. It follows that $\Delta_{f} \cap E_{i}=\phi . \quad$ In the cases of L_{i} and M_{i}, the proof is the same.

By the calim, Δ_{f} is contained in $S-\cup E_{i}-\cup L_{i}-\cup M_{i}=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}-$ $\cup x_{i} \times \boldsymbol{P}^{1}-\cup \boldsymbol{P}^{1} \times y_{i}$. Since this surface is affine and Δ_{f} is complete, Δ_{f} is empty, which shows the lemma.
q.e.d.

The following is a key to the proof of Theorem 1.2.
Proposition 9.10. If $f: X \rightarrow S$ is a Fano conic bundle and $\rho(S) \geq 3$, then f is a trivial \boldsymbol{P}^{1}-bundle.

Proof. By Lemma 9.9 and (3) of Proposition 6.6, X is isomorphic to $Y \times{ }_{\alpha} S$ for a Fano \boldsymbol{P}^{1}-bundle $g: Y \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. Since both $\left.f\right|_{f-1\left(L_{1}\right)}$ and $\left.f\right|_{f-1\left(M_{1}\right)}$ are trivial \boldsymbol{P}^{1}-bundles, so are both $\left.g\right|_{g^{-1}\left(x_{1} \times P^{1}\right)}$ and $\left.g\right|_{f^{-1}\left(P^{1} \times y_{1}\right)}$. By Lemma 9.4, $\left.g\right|_{g_{-1\left(x \times P^{1}\right)}}$ is trivial for every $x \in P^{1}$. By Lemma $9.3, Y \cong Z$ $\times \boldsymbol{P}^{1}$ for a \boldsymbol{P}^{1}-bundle Z over \boldsymbol{P}^{1}. Since $Z \cong g^{-1}\left(\boldsymbol{P}^{1} \times y_{1}\right) \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}, g$ is trivial. It follows that f is a trivial \boldsymbol{P}^{1}-bundle. q.e.d.

Proof of Theorem 1.2. Let X be a Fano 3-fold with $B_{2} \geq 6$. By (9.6), X has a conic bundle structure $f: X \rightarrow S$ with $S \nsubseteq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.

Claim: $\quad \rho(S) \geq 3$.
Assume to the contrary. Then, by Corollary 6.4, the number of connected components of Δ_{f} is not less than $\rho(X)-\rho(S)-1 \geq 3$. Since every curve on \boldsymbol{P}^{2} is connected, $S \nsubseteq \boldsymbol{P}^{2}$. Since every curve on \boldsymbol{F}_{1} disjoint from the exceptional curve of the first kind is connected, $S \not \equiv \boldsymbol{F}_{1}$ by Corollary 6.7. This contradicts (9.7).

By the claim and Proposition 9.10, f is a trivial \boldsymbol{P}^{1}-bundle. Hence X is isomorphic to $P^{1} \times S$. Since X is a Fano 3-fold, S is a del Pezzo surface, which completes the proof of Theorem 1.2.

References

[1] A. Beauville, Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. École Norm. Sup., 10 (1977), 309-391.
[2] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Math., 56, Springer-Verlag, Berlin and New York, 1970.
[3] V. A. Iskovskih, Fano 3-folds I, Math. USSR-Izv., 11 (1977), 485-527.
[4] --, Fano 3-folds II, Math. USSR-Izv., 12 (1978), 469-506.
[5] -, Minimal models of rational surfaces over arbitrary fields, Math. USSRIzvestija, 14 (1980), 17-39.
[6] S. Mori, Threefolds whose canonical bundles are not numerically effective, to appear in Ann. of Math.
[7] S. Mori and S. Mukai, Classification of Fano 3-folds with $B_{2} \geq 2$, to appear in Manuscripta Math.
[8] M. Reid, Lines on Fano 3-folds according to Shokurov, preprint (Institute Mittag-Leffler).
[9] V. V. Šokurov. The existence of lines on Fano threefolds, Math. USSRIzv., 15 (1980), 173-209.

Department of Mathematics
Nagoya University
Chikusa-ku, Nagoya
Japan

