
CHAPTER 2

Spaces, Functions, and Groups

Acting on Spaces

This chapter is divided into three sections. In Section 2.1 notions
are introduced that do not involve the concept of continuity. Topology-
is introduced in Section 2.2 and, among other things, proper mappings
are defined. The most interesting questions deal with the interaction
between algebra and topology, and these are treated in Section 2.3.
For simplicity of notation in this and several subsequent chapters, we
shall denote spaces by symbols X, F, etc., instead of X, ̂ , etc. From
Chapter 8 on we shall revert to the latter notation and reserve X, Y",
etc. for random variables, as in Chapter 1.

2.1. Spaces, functions, groups, and group action. Let X
and Y be two arbitrary spaces and / a function X —> Y. Instead of
"function" the names mapping or map are also used. The range of
/ is range / = {f(x) # £ X}- If range / = y, / is said to be onto,
or surjective. If /(a^) = /(a^) i m P ^ e s χ\ = : χ2 ^ o r a ^ X\->X2 ^ ^->
then / is called one-to-one (or 1-1), or injective. In that case Z""1

is defined as a function on range / onto X. If / is both 1-1 and onto,
it is also called bijective. In that case there is a 1-1 correspondence
between X and F, and / - 1 is defined on all of Y. For arbitrary
/ : X —* F, Z" 1 is always defined as a set function: for B C Y,
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§2.1 SPACES, FUNCTIONS, AND GROUP ACTION 13

/-* (B) = {x e X : f(x) G B}. If Z is a third space and g : Y -> Z,
then the composition of / and g is the function g o / : X —> Z
defined by (g o f)(x) = g(f(x)). The identity function, or identity
map, on X is the function iχ : X —> X given by iχ(x) = x for every

xex.
If X and Y are two spaces, their product, denoted X x y, is the

set of all (x,y) with x G X, y G Y. The space I x F i s also called
a product space. A product set A x B C X x Y, with A c l ,
B C y, is the set of all (:r,y) with x G A, y G B. The projection of
I x F onto X, denoted pr l 9 is the function pr1(x,y) = x. Similarly,
pr2(z,y) = y. If Z is a third space and /j : Z —> X, /2 : Z —> F
two functions, then (/1? /2) denotes the function Z -+ X xY defined
by (/nΛX^O = (fi(z)-> f2(z)) I n contrast, if i2 is the real line and
/χ : X —> Λ, f2 : y —> i?, then fλ®f2 denotes the function X x y —> R
defined by (/j ® /2)(^,y) = ΛWΛd/)- Finally, if for i = 1,2, there
are spaces J\Γj, Ŷ  and functions /t : X^ —> l^ , then /2 X /2 is the
function Xλ x X2 —>Yιx Y2 that maps (^1,α;2) to ( / i ^ i ) , / ^ ^ ) ) -

A linear space (or vector space) over the real numbers R is
a space X on which is defined addition x + y and multiplication ex,
for #,y G X, c G Jϊ. These operations have to satisfy certain axioms,
such as associativity and commutativity of addition, distributivity of
multiplication, existence of a neutral element 0, and others, For a
complete list of axioms, see, e.g., Taylor (1965, 1985), Section 3-12,
or Dunford and Schwartz (1958), Section 1-11. In this context the
real numbers are often called scalars. A 1-1 correspondence between
two linear spaces is called a linear isomorphism if it preserves the
linear operations.

A normed linear space is a linear space X on which is defined a
real valued function, called norm and denoted || ||, with the following
properties: ||x|| > 0 for every x G X, and = 0 if and only if x = 0;
||ca;|| = |c| | |#| | for c G R; \\x + y\\ < \\x\\ + \\y\\. In words, the norm
is a nonnegative function on X (and actually positive on X — {0})
that is positively homogenous and satisfies the triangle inequality. A
semi-norm or pseudo-norm satisfies all the conditions of a norm
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except that \\x\\ = 0 need not imply x — 0. If || || is a norm on X,
then d(x,y) = ||x — y|| is a distance function on X x X so that a
normed linear space is a special case of a metric space. In Rn with
points x = ( # ! , . . . ,xn) the Euclidean norm is ||a:|| = (]Γ)#?)* If
X and Y are linear spaces, then a function / : X —* Y is called linear
if f(c1xι + C2J:2) = C j / ^ ) + c2f(x2) for #,- G X, c2 G R. lϊ Y = R,
then a linear function X —> i2 is often called a linear functional on
X.

A group G is a set (also denoted G) together with a binary op-
eration that assigns to each ordered pair of elements of G another
element of G. The binary operation is usually written as a multipli-
cation and is then called group multiplication: gxg2 = <73, where
the g± are elements of G. This group multiplication is required to be
associative: ^(fl^S^) = (^1^2)^3! there must be an identity ele-
ment e G G that has the property eg = ge •=• g for very g G G\ and
each g G G must have an inverse 5" 1, for which gg~ι = g~ιg = e
holds. In general, gλg2 need not be equal to g2gλ for all g1,g2 6 G,
but if it is, then G is called commutative or abelian. A sub-
group, say Cr0, of G is a subset of G that is also a group if it inherits
the group multiplication from G. If G and H are two groups, then
a function φ : G —> H is called a homomorphism if it preserves
group multiplication: φ(g1g2) = ^(^1)^(^2)5 #i>#2 ^ ^ This implies
φ(eG) = eH (where eG, eH are the identities in G, if, respectively)
and φ(g~λ) = (φ(g))~1. Further group notions will be introduced as
the need arises.

A simple example of an abelian group is the real line R with
0 removed, where group multiplication is ordinary multiplication of
real numbers. Then e = 1 and g~λ — - for every g G R — {0}.
This group possesses the subgroup R+, the set of all positive reals
under multiplication. Another abelian group that appears often in
applications is R under addition; i.e., group multiplication is ordinary
addition of real numbers. Here e = 0 and g~~ι = —g. The set of
all integers forms a subgroup and so does the set of all rationale. A
typical example of a non-abelian group is the general linear group
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GL(n), which is the set of all real nonsingular n xn matrices (n > 2)
with group multiplication = matrix multiplication. There are several
interesting subgroups, also non-abelian, e.g., the group 0{n) of n X n
orthogonal matrices encountered in Chapter 1. Also the group UT(n)
of n x n upper triangular matrices with positive diagonal elements;
similarly the lower triangular matrices LT(n). An example of an
abelian subgroup of GL(n) is all n x n diagonal matrices non of whose
diagonal elements are 0. The identity in GL(n) and in all of its
subgroups is e = In = diag(l,... ,1), i.e., the n x n identity matrix.
An example of the kind of group that falls outside the scope of this
monograph (because the group is not locally compact) is the set of
all functions that map R 1-1 onto i2, with group multiplication =
composition of functions.

Throughout this monograph groups will usually be denoted by
the symbols G, H, or K. The identity element of a group G is written
e or eG. Let G be a group and X an arbitrary space. An action of G
on X to the left (or: an action of G on the left of X) is any function
a : G x X —> X with the following properties: (i) for every g £ G,
a(g, ) : X —> X is bijective; (ii) α(e,x) = x for every x G X; (iii)
a(92ia(9nx)) = a(929i,x) for every gλ,g2 G G, x G X. If on the
right-hand side of (iii) g2gλ is replaced by gλg2 > then we say that G
acts on X to the right. It is customary, for simplicity of notation,
to suppress the symbol for the function α, and write simply gx for
a(g,x) if the action is to the left. In that notation the three defining
properties of left action read

(i) for every g G G, the function x —> gx is bijective;

(ii) ex — x for every x G l ;

0") 92(9ix) = (929ι)x for every gλ,g2 G G, x G X.

If the action is to the right one writes xg\ then (iii) above changes
to {xgι)g2 = x(gιg2)- From (i)-(iii) it follows that the action of any
g G G followed by the action of g~Ύ produces the identity transforma-
tion ix on X. If gx — x for every g G G, x G X, then the action of
G is said to be trivial. At the other extreme, G is said to act freely
if every g G G except g = e moves every x G X', i.e., gx φ x unless
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g = e. In the majority of applications the action is somewhere in
between, i.e., for each x £ X there are some group elements g other
than e that leave x fixed. It will often be convenient to state the
action in the form x —> gx, with gx replaced by an explicit formula.

2.1.1. EXAMPLE. An example of a group action that occurs
often in statistics consists of X = Rn, and G = GL(n) or one of
its subgroups. The group action (to ihe left of X) is defined in the
obvious way: if x £ X, considered as an n x 1 column vector, and
g = C £ G, then with gx is meant Cx (matrix multiplication). Thus,
the action of a single C is a nonsingular linear transformation of X.
The validity of requirement (i) above follows from the fact that the
equation Cx = y has the unique solution x = C~1y. The validity of
(ii) and (iii) is immediate. If G = {e}, i.e., G consists of the trivial
group that has only one element /n, then the action of G is of course
trivial. In all other cases the action is not trivial for there is always
some point x that is moved to another position by some g £ G. On the
other hand, the action is usually not free. For instance, if G = GL(n)
and x = (1,0,... ,0)', then for any C £ G whose first column equals
x we have Cx = x. D

2.1.2. EXAMPLE. Let X = Rn as in Example 2.1.1 but now take
G = R under addition, so that e = 0. Choose an arbitrary fixed
nonzero vector v £ X and define the action of G on X by x —> x + bv,
b £ R. Thus, the action of a single g = b is a translation of X which
moves every point unless 6 = 0, i.e., g = e. Therefore, this G acts
freely. The example can easily be extended to G = Rm (m < n) under
vector addition, with action x —> x + £ ^ δ ^ , where all bi are £ R
and the vi £ X are linearly independent. If m = n, we have a case
where G = X and the action is vector addition: x —* # + v, v £ G.
D

For any arbitrary space X and group (7 one can always define
the action to be trivial: gx = x for every x E X, g £ G. This may
not seem very interesting, and by itself it is not useful. But it does
find application in the context of product spaces. For instance, if
X x Y is a product space and the action of G is defined on X in some
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natural way, then we may want to extend this action to X x Y by
(a?,y) —> (gx,y). This corresponds to defining the action of G on Y
to be trivial. For an example of this see Section 7.5.

For a given action of G on X the orbit of x £ X is defined
as Gx = {gx : g £ G}. If there is another group H acting on X,
then we shall have to distinguish between G-orbits and i7-orbits. For
x,y6 X, either Gx = Gy or Gx and Gy are disjoint. Thus, the orbits
furnish a partitioning of X and the property of two points lying on
the same orbit is an equivalence relation. If X contains only one orbit,
the action is said to be transitive, or G is transitive over X. In
that case, for any #,y £ X there exists g £ G such that y = gx.

2.1.3. EXAMPLE. The simplest example of a transitive group ac-
tion is G = X = Rn with action = translation, as in the special case
m = n of Example 2.1.2. On the other hand, if G = Rn with m < n,
then the action is not transitive. Take, for instance, m = 1 and the
action x —> x + bv, b £ i2, v £ X fixed, nonzero. The orbit of x con-
sists of all points x + 6v, —oo < b < oo, i.e., the straight line through
x in the direction υ. D

2.1.4. EXAMPLE. Consider now the kind of group and action of
Example 2.1.1 and suppose first that G = GL(n). It is almost, but
not quite, true that the action of G on X = Rn is transitive. The
origin 0 plays a special role: it is its own orbit. However, when the
origin is deleted, the remaining set Rn — {0} is invariant under G and
the action of G is transitive. To see this, suppose that x and y are
both arbitrary nonzero n x 1 vectors. Then there exist matrices Cλ

and C2 in G with first columns x, y, respectively. Take C = C2C{~1,
then Cx = y so that x and y are on the same orbit. For the kind of
statistical applications in this monograph it is usually permissible to
remove from the sample space a set of Lebesgue measure zero without
changing the distributions. In the present example we would simply
redefine X = Rn — {0}, and then G is transitive over X, A similar
phenomenon exists if G = LT(n) or UT(n). For instance, G = LT(n)
acts transitively on X if X is formed from Rn by removing the set of
vectors x with first coordinate xλ = 0 . Such removal of sets of zero
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Lebesgue measure to make the action of the group on the remaining

space simpler will often occur in later applications. D

2.1.5. EXAMPLE. A typical example of nontransitive action, de-

rived from Example 2.1.1, consists of X = i?n, or even X = Rn — {0},

and G = O(n). Then the orbit of a point x £ X is the set of all y £ X

for which ||y|| = ||a;||, i.e., the sphere about 0 with radius ||x||. Here

the partitioning of X furnished by the G-orbits consists of all spheres

concentric with the origin. D

2.1.6. EXAMPLE. Here is another example of nontransitive ac-

tion that occurs often in applications. Let X = Rn — {0} and G = R+

with action x —> α , a; G I , c > 0 (this may be considered a special

case of Example 2.1.1 if to c > 0 corresponds the matrix cln £ GL(n)).

The orbit of x £ X is the ray emanating from 0 through x, and X is

partitioned by all these rays. D

2.1.7. EXAMPLE. Another action that occurs very often in sta-

tistical application, especially multivariate analysis, consists of X =

PD(n) — all n x n positive definite matrices, G = GL(n) or one

of its subgroups, and the action defined by S —> CSC1 for S £ X,

C £ G. The action is transitive if G = GL(n) or even LT(n) or

UT(n). However, if G = O(n), then the action is not transitive and

the orbit of S consists of all positive definite matrices that have the

same characteristic roots as 5, including multiplicities. D

The abstract space whose points are the G-orbits is called the

orbit space (under G) and denoted X/G. The orbit projection

π : X —* X/G assigns to each x £ X its orbit, i.e.,

(2.1.1) π(x) = Gx, xe X,

where the right-hand side of (2.1.1) should be considered a point of

X/G rather than a subset of X. If A C X and g £ G, then with

gA is meant the set {gx : x £ A}. This is sometimes called the g-

translate of A. The set GA — {gA : g £ G} is called the saturation

of A. It may be conceived in two ways: as the union over all g £ G
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of the (/-translates of A, or as the union of all orbits that meet A. A

set A C X such that gA = A for all g G G is called invariant. It

coincides with its saturation.

Let H be a subgroup of G, then the left coset of g G G modulo

H is the subset gH — {gh : h G H} C G. These cosets are the orbits

under the action of H on G to the right (why right rather than left

action is chosen will soon become clear). The abstract space whose

points are the left cosets is denoted G/H. It is known as a homoge-

neous space or coset space. The point of G/H corresponding to

the coset gH will often also be denoted gH, or by [g]. The coset pro-

jection π is defined as in (2.1.1), but now as a function π : G —> G/H:

(2.1.2)

There is a natural transitive action of G on G/H defined by

(2.1.3) gi(gH) = (gig)H, g,9leG.

The right cosets Hg are similarly defined. The subgroup H is called

normal if gHg"1 = H for every g £ G. In that case the cosets

are preserved under multiplication and G/H is a group, called the

quotient of G and H. Furthermore, the left cosets gH coincide with

the right cosets Hg.

2.1.8. EXAMPLE. Let G = LT(2) and write the elements of G

as Γ = ((ίjj)) so that t12 = 0 and t u > 0, t22 > 0. There are several

interesting subgroups H. First, let H be all T £ G with t n = 1. It is

easily checked that for any Tx G H and T2 6 G we have T2TλT2

ι G H

(actually, it suffices to verify this for T2 of the form diag(α, 1) with

a > 0, because this type of matrices together with H generates G).

Therefore, H is normal in G. The left (= right) coset of Γ G G

consists of all U G G with uu = < n . A similar example results from

taking H to be all Γ G G with ί22 = 1. Also normal is the subgroup

H consisting of all T G G with t u = t22 = 1. Then each coset consists

of all T G G with a fixed value of ί21. A subgroup that is not normal,

and where consequently the left and right cosets do not coincide, is
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obtained by taking H as all Γ £ G with ί21 = 0, i.e., all diagonal

matrices in G. It is easily verified that any left coset consists of all

T £ G with a fixed value of <2iΛn ( a n d *2i/*22 f°Γ a τιΦ*> coset). D

2.1.9. EXAMPLE. Another frequently occurring combination

of group and subgroup in statistical applications is G = O(n) and

H all matrices of the form diag(Γ1,Γ2) with Γf £ O(nt ), i = 1,2,

nj -f n 2 = n. That is, the matrices in H are block-diagonal, and each

block is orthogonal. Such an H is not normal. We may further restrict

I\ to range over a subgroup of 0{n^). Of special importance is the case

where Oin^ is replaced by the trivial group {Jn }. Take for instance

n1 = 1, n 2 = n — 1 and H all matrices diag(l,Γ2), Γ2 £ 0{n — 1).

Then the left coset of any Γ £ G consists of all orthogonal matrices

with the same first column that Γ has. D

If G acts on the left of X, then the subgroups H in which we

shall be most interested are those that leave points of X fixed. For

arbitrary x £ X define

(2.1.4) Gx = {geG:gx = x}.

It is easily checked that Gx is a group. It is called the isotropy

subgroup (or stability subgroup) of G at x. There is a natural

correspondence between the points of the orbit Gx of x and the left

cosets of Gx: to gx £ Gx corresponds gGx £ G/Gx. It is easily

verified that gλx = g2x if and only if gλ and g2 are in the same coset:

92l9\ £ Gx' Formally, let φx : G/Gx —» Gx represent this bijection:

(2.1.5) ψx(gGx) = gx.

2.1.10. EXAMPLE. Let X and G be as in Example 2.1.5 and

take x = (1,0,... ,0)'. Then Gx consists of all matrices of the form

diag(l,Γ2) with Γ2 £ O(n — 1); i.e., Gx here is H of the special

case in Example 2.1.9. Take any y £ X with \\y\\ = 1 so that y £

Gx, by Example 2.1.5. The equation Tx = y, Γ £ G, is equivalent

with the requirement that the first column of Γ be y. According to

Example 2.1.9, all such Γ constitute a coset of G modulo H. Thus, the

function φx of (2.1.5) can be described simply as follows: φx assigns

to an n x n orthogonal matrix its first column. D
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Still keeping x 6 X fixed there is another function of interest.

Define ax : G -> X by

(2.1.6) ax(g) = gx.

In (2.1.2) replace H by Gx and write the coset projection as πx : G —>

G/Gx, defined by

(2.1.7) 7i

Then comparing (2.1.5), (2.1.6), and (2.1.7) we see that

(2.1.8) ax = φχoπx.

Equation (2.1.8) together with the fact that πx is onto results in the

following two equations:

(2.1.9) Ψ7X(A) = π^α-^A)), A C Gx,

(2.1.10) ψx(B) = ax(πx\B)), B C G/Gx.

(These two equations are true even without the injective nature oΐφχ.)

If G acts freely, then Gx is trivial, i.e., Gx = {e}, and the functions

φx and θix coincide. In that case there is a 1-1 correspondence between

the points gx of the orbit Gx and the elements g of G.

Suppose that besides G and X there is another space Y and

a function / : X —> Y. For the time being suppose G does not

act on Y. For g 6 G the g-translate of /, written #/, is defined

by (#/)(#) = f(g~~lχ) f°r all or G X (this definition arises from

(gf)(gx) = /(#))• If gf = / for every g 6 G, then / is called in-

variant (under the left action of G on X). An invariant function can

also be characterized as a function that is constant on each orbit. If

an invariant function assumes different values on distinct orbits, it is

called maximal invariant.
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2.1.11. EXAMPLES. There are many examples of maximal in-
variants in Lehmann (1986, Chapter 6). Here follow two simple ones.
In the situation of Example 2.1.5, we can take Y = R and f(x) = ||x||
since / is constant on each orbit, and different orbits have different
values of /. Any other 1-1 function of ||x|| will do just as well for /;
for instance, f(x) = | | # | | 2 . In Example 2.1.6, each orbit is character-
ized by a direction, which may be taken as a point on the (n — 1)-
dimensional unit sphere X)"#f = 1. Therefore, the mathematically
most natural choice for Y is this unit sphere. In practice, however,
Euclidean spaces are more convenient and one usually resorts to the
removal from X of a set of n-dimensional Lebesgue measure 0 in or-
der to make it possible to choose Y Euclidean. For instance, one can
redefine X to be all x £ Rn with xλ φΰ. Then one can take Y to be
two copies of i 2 n - 1 , and f{x) = (sgnx1?x2l%\<>... ,x n /x ι ) . D

Now suppose G acts both on x and on Y to the left. The result
of the action of g £ G on y £ Y will also be denoted gy as long as it is
clear from the context that the action takes place in Y rather than in
X. A function / : X —* Y is called equivariant if g(f(x)) = f(gx)
for every g £ G, x £ X. It is seen that if the action of G is trivial,
then equivariance reduces to invariance.

2.1.12. EXAMPLE. A simple example of an equivariant function
is any linear function / : Rn —> Rm with G and action of G on both
spaces as in Example 2.1.6. Then f(cx) = cf(x\ c > 0. D

2.1.13. EXAMPLE. A more sophisticated example is provided by
the example in Chapter 1 related to the Wishart distribution. Let X
be the space of all n X p matrices x with linearly independent columns
(x was denoted X in Chapter 1) and Y the space of all n x p matrices
U with orthonormal columns. The action of G = O(n) on X and Y
is the obvious one: x —> Γx, U —> TU (matrix multiplication), Γ £ G.
The Gram-Schmidt decomposition x = UT, T £ UT{p) is unique and
we put U = /(#). Then f(Tx) = TU so that / is equivariant. D

2.1.14. EXAMPLE. Let G be any group and H a subgroup.
Put X = G, Y = G/H; let G act on itself to the left and on G/H
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as defined by (2.1.3). Then the function π of (2.1.2) is seen to be

equivariant, for (2.1.3) can be put in the form 7r(g1g) = g17r(g) for

every gλ,g G G. D

2.2. Topological spaces. Continuous and proper func-
tions. For general information on this topic, see, e.g., Kelley (1955)
and Bourbaki (1966b). For local compactness see also Halmos (1950),
Chapter X. Since the reference to Bourbaki (1966b) occurs rather of-
ten in this section and the next, we shall often abbreviate it by the
letter "B."

A topological space (X,T) consists of a space X together with
a family 7 of subsets of X with the property that X £ 7 and 7 is
closed under finite intersections and arbitrary unions. The members of
7 are called open and 7 is called the topology of X. The coarsest
topology of X, also called the trivial topology, consists of only X
and the empty set. The finest topology, also called the discrete
topology, consists of all subsets of X; in particular, every singleton
is open. A familiar example of a topology is the so-called usual
topology of Euclidean n-space i?n, which consists of the sets in Rn

that are common called open.
A subset A of X is called closed if its complement Ac is open.

The interior of a set A C X, denoted Λ°, is the union of all open sets
contained in A. The closure of A C X, written A, is the smallest
closed set containing A. The boundary of A is the set dA = Ϊ Π Ϊ ^ .
A set A is dense in X if A = X.

If A C X and 7A = {UnA : U £ 7}, then (A, 7A) is a topological
space and A is said to receive the relative topology of X. Then A is
said to be a subspace of X. A topological space is called connected
if it cannot be written as a disjoint union of two nonempty open sets.
(If it can be so written, then those open sets are closed as well.) For
instance, an interval of i2, in the relative topology of 72, is connected,
but the union of two disjoint open intervals is not. The component
of a point x £ X is the largest connected subset of X containing x.
It is necessarily closed (B, I §11.5, Propos. 9).

If (Xj, Tz ), i = 1,2, are two topological spaces, then on the prod-
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uct space Xλ xX2 we shall always put the product topology 7X XT2>
which is defined as the coarsest topology containing the product sets
A1 xA 2, Ai G Jj For instance, the usual topology of R2 = R x R is
the product topology generated by the usual topology of R.

A neighborhood of x G X is any V C X with the property
x £ A CV for some A G T. A base 3 of a topology 7 is any subfamily
of T with the property that for every x £ X and neighborhood V of
a; there exists 5 6 ! B such that :r G B C V. The topological space
(X, T) is said to satisfy the second axiom of countability, or simply to
be second countable, if 7 has a countable base 23. For instance, the
usual topology of R has a base consisting of all open intervals with
rational endpoints.

A topological space is called Hausdorff if every two distinct
points have disjoint neighborhoods. This is a desirable feature that
we usually want our spaces to have. For instance, it prevents the
possibility of a sequence of points converging to two distinct points. In
a Hausdorff space the complement of a single point is open; therefore,
every singleton is closed.

A cover of a set A C X is a family ίF of subsets of X whose union
contains A; it is an open cover if the sets in JF are open. If 31 C 9" and
Jλ is also a cover, then 3r

1 is called a subcover. If the number of sets
in 3r

1 is finite, SFj is called finite. If X is Hausdorff, a subset A is called
compact if every open cover of A has a finite subcover. (We follow
Bourbaki here in restricting the definition of compactness to Hausdorff
spaces; other standard books such as Kelley (1955) or Halmos (1950)
do not impose that restriction.) A closed subset of a compact set
is compact and the continuous image into a Hausdorff space of a
compact set is compact (continuous functions will be defined later in
this section). A space is called σ-compact if it is a countable union of
compact subsets. (For instance, 72 is the union of the intervals [n, n +
1], n = 0, ±1, ) A topological space is called locally compact if it
is Hausdorff and if every point has a compact neighborhood (again we
follow Bourbaki by including Hausdorff in the definition). Since the
property of local compactness occurs so frequently in this monograph,
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we shall consistently abbreviate it by I.e. If X and Y are both I.e.,
then so is X x Y. In a I.e. space the compact sets form a base for
the topology. A closed subset of a I.e. space is I.e. as a subspace.
The real line R is I.e. since each point has a compact neighborhood
[x — a,x + α], with any a > 0. Similarly, Rn is I.e. By-and-large the
spaces to be considered in this monograph are I.e.

Let X and Y be topological spaces and / a mapping X —> F,
then / is said to be continuous if f~1(B) is open for every open
B C Y- It follows immediately that for / continuous f~x(B) is closed
for every closed B C Y. It also follows from the definition that the
composition of two continuous functions is continuous. If f(A) is
open for every open A C X, then / is called an open mapping, or
simply open. Similarly, / is closed if f(A) is closed for every closed
A C X' If Xλ x X2 is a product topological space, then the projection
prf : X± x l 2 —* Xi-> i'' = 1?2, is both continuous and open, but not
closed. For instance, in R2 the curve C = {(#i,£2)

 : x i x 2 = 1} ι s

closed but prx(C) = R — {0} is not closed.
The following concept is relevant to real valued functions on a

topological space and will play an important role in this monograph:
the support of / : X —> i2, written supp/, is the smallest closed
subset of X outside of which / vanishes. A function / such that
supp/ is compact is called a function with compact support. The
family of all real valued continuous functions on X with compact
support will be denoted %{X).

A metric space X with a distance function d is made into a topo-
logical space by taking as a base for the neighborhoods system of
x G X the open balls { y £ l : d(x,y) < r} for all r £ i?+. Equiva-
lently, r may be restricted to be positive rational, which shows that in
a metric space the neighborhoods system of a point has a countable
base. I.e., X is first countable (but not necessarily second count-
able). A Cauchy sequence in the metric space X is a sequence
xn G X (n = 1,2,...) such that d(xm,xn) —> 0 as m,n —> oo. If
for each Cauchy sequence {xn} there is x G X such that xn —> x,
then X is called complete. This can be applied in particular to a



26 GROUPS ACTING ON SPACES 2

normed linear space. A linear topological space is a linear space in
which addition and scalar multiplication are continuous in the pair.
A Banach space is a complete normed linear topological space. A
familiar example is Rn with he Euclidean norm. Other examples will
appear in Chapter 6 as spaces of functions. If X and Y are normed
linear topological spaces (not necessarily complete) and / : X —> Y
linear, then / is called bounded if there exists 0 < M < oo such
that | |/(^) | | < Af||x|| for every x 6 X. It is easy to prove that a lin-
ear function / is continuous if and only if it is bounded (Dunford and
Schwartz, 1958, II.3.4). This applies in particular to linear functionals
onX.

A real valued function / on a topological space X is called lower
semicontinuous (l.s.c.) if for every x £ -X, liminf x f(y) > /(#),
and upper semicontinuous (u.s.c.) if limsup x /(y) < f(x).
Thus, / is u.s.c. if and only if —/ is l.s.c. An equivalent definition of
/ being l.s.c. is that for every c £ R, {x : f(x) > c] is open. The
supremum of an arbitrary family of l.s.c. functions is l.s.c. For proofs
of these and other properties, see Taylor (1965, 1985), Section 6-9.

Two topological spaces X and Y are said to be homeomorphic
if there exists / : X —» Y such that / is bijective and both / and
f~λ are continuous. It amounts to the same to say that / is bijective,
continuous, and open.

If / : .X" —> HausdorfF Y is continuous and A C X is compact,
then f{A) is compact (B, I §9.4). The converse is false in general: if
B C Y is compact, then f"1(B) may fail to be compact. Yet, it is a
very desirable property for / to possess, for instance if one wants to
induce a measure on Y from a measure on X. This has led Bourbaki
to the notion of proper mapping (B, I §10).

2.2.1 . DEFINITION. Let X and Y be topological spaces and f a

function X —> Y. Then f is said to be proper if f is continuous and

for every topological space Z the function fxiz:XxZ-^YxZis

closed.

An obvious example of a proper function / is a homeomorphism,
since then / x iz is a homeomorphism. Furthermore, by taking Z to
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be a space consisting of a single point one has immediately

2.2.2. COROLLARY. Every proper mapping is closed.

Definition 2.2.1 is not very intuitive and it is only through its

consequences that it becomes meaningful. For instance, if X and

Y are I.e., then the previously mentioned property of compactness

of inverse images of compact sets emerges. In fact, this becomes an

equivalent definition. This is stated in the next theorem; for the proof

the reader is referred to B, I §10.3, Propos. 7.

2.2.3. THEOREM. Let X and Y be I.e. spaces and f \ X -> Y

continuous. Then f is proper if and only if /~ 1 ( i ί ) is compact for

every compact K C Y.

One of the important consequences of a function / : X —> Y

to be proper is that the image of a measure μ on X under / is a

measure on Y (the induced measure), denoted f(μ) or μf~λ (see

Section 6.3). This is not true in general for an arbitrary continuous /

(unless μ is finite). For instance, take X = R2 with μ = 2-dimensional

Lebesgue measure, Y — i?, and / = prα (i.e., f(xι^x2) = X\) > and put

v = μ/"1. Take B = [α,δ] with a < 6, then u(B) = μ(B X R) = oo

since B x R is a vertical strip with infinite area. Then v cannot be

a measure in the Bourbaki sense since it is supposed to be finite on

compact sets (Section 6.3). Indeed, in this example / is not proper: B

is compact, but f~λ(B) is not. By changing the example and letting

/ : R2 —> R be defined by f(xi,x2) = x2 + x2 one obtains a proper

/, and /(μ) equals π times Lebesgue measure on R+.

2.3. Continuous and proper actions of topological groups.
For later applications the most important result in this section is

Theorem 2.3.13. In order to arrive there we shall develop along the

way in small steps a host of other interesting and useful results.

A topological group is a group G that is at the same time

a topological space in which group multiplication and inversion are

continuous. More precisely, the function G x G —> G defined by
λ ^s required to be continuous, from which it is easy to
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prove that (<71?flf2) ""*" 9i92 a n ( ^ 9 ~~* 9~l a r e both continuous. A sub-
group of a topological group will always tacitly be understood to be
a subspace in the topological sense, i.e., receive the relative topology.
The component (Section 2.2) of G containing the identity element e
of G is called the identity component of G. It is a closed (and nor-
mal) subgroup of G (Cohn, 1957, Theorem 2.4.1). A neighborhood
of e is also called a nucleus. The elements of a connected nucleus
generate the identity component of G, i.e., the latter is the smallest
connected subgroup containing the given nucleus (Cohn, 1957, Theo-
rem 2.4.3). Equivalently, every element of the identity component is
a finite product of elements of the nucleus.

A very simple example of a topological group is G = R under
addition, with the usual topology of R. Then e = 0 and an open
interval about 0 can serve as nucleus. In this example, the identity
component is the whole of G. Another example is G = R— {0} under
multiplication. Now e = 1 and the identity component is i2+; the
other component of G is R_.

Let a topological group G act on a topological space X to the
left. The action is said to be continuous if the function G X X —* X
defined by the action (g,x) —> gx is continuous. In particular, for
each fixed j 6 G, the transformation x —> gx is a homeomorphism
X —> X. Continuity of the action will be understood throughout.
The orbit space X/G is made into a topological space by providing
it with the quotient topology, which specifies the open sets to be
those subsets B of X/G for which π~1(B) is open in X, where π is
the orbit projection defined in (2.1.1). With this topology on X/G,
π is continuous and open. To show that π is open take open A C X,
then τr(A) = π(GA) and GA is open (as a union of open sets gA)
and invariant, so that by definition of the quotient topology π(GA) is
open. (The quotient topology coincides with the finest topology that
makes π continuous.) If for x G X the singleton {x} is closed (e.g.,
if X is Hausdorff), then the isotropy subgroup Gx is closed since it is
the inverse image of {x} under the continuous function g —> gx.

As a particular case, that will come up frequently, of a group
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acting on a space consider a topological group G and a subgroup H

acting on G to the right, as in Section 2.1. The action of G on G/H

was defined in (2.1.3).

2.3.1. PROPOSITION (B, III §2.5, Propos. 12). Let H be a sub-

group of a topological group G, then the action of G on G/H is con-

tinuous.

PROOF. Recall the definitions of π and [g] from (2.1.1) and

(2.1.2). We have to show that the function f :Gx G/H -• G/H given

by f(giΛ92]) = 9i[92\ i s continuous. Observe that gλ[g2) = [gxg2]

by (2.1.3). Define h : G x G -> G by h(g1,g2) = gλg2. The function

G x G —> G/H given by (g1^g2) —> [flΊfl̂ ] c a n be obtained as the

composition of two functions in two different ways: (a) (flf1?flf2) ""*

9i92 -* [tfiflbh a n d ( b ) (#1^2) -* (0i Jflbl) ~> [tfiflbl T h i s y i e l d s t h e

equation π o h = f o (iG x π). (The proof is followed easier if one

draws a commuting diagram.) Take an arbitrary open subset U of

G/H, then we have to show that /""1(ί7) is open in G x G/H. Put

V = (πo/ι)""1(i7), then V is open in GxG since π and h are continuous.

Now zG x 7Γ is onto, which enables one to write /~ 1(ί7) = (iG x τr)(V)

(with the same reasoning that led to (2.1.9)). Here both iG and π are

open, so that {iG x τr)(VΓ) is open. D

2.3.2. PROPOSITION (B, III §2.5, Propos. 13). If H is a subgroup

of a topological group G, then G/H is Hausdorff if and only if H is

closed in G.

PROOF. Let π be defined by (2.1.2), put Z = G/H, and z0 =

[e] = π(H) e Z. Then H = π^λ(z0). If Z is Hausdorff, then {zQ}

is closed so that π~1(zQ) is closed since π is continuous. Conversely,

assume that H is closed. If H = G, then G/H consists of the single

point z0 and there is nothing to prove. Therefore, assume that H is

properly contained in G so that Z has more than one point. Consider

the mapping πxπ:GxG-^ZxZ and define C = {(^,^2) €

G x G : gλ and g2 lie on the same orbit} = {(fiΊ,52) € G x G :

gϊλg2 £ H}. This is the inverse image under the continuous function

~> 9\λ92 °f *h e c l ° s e ( l s e t H', so that C is closed. Let zλ,z2 be
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any distinct points of Z and take any gλ,g2 £ G such that π ^ ) = z<?

i = 1,2. Since zλ φ z2, (fl^,^) & C Since G is closed, there is a
product neighborhood Aλ x A2 of (#i,<72)>

 w ί th ^i a neighborhood
of gfj , such that Aj x A2 is disjoint from G. This implies that the
two saturations GA{ are disjoint, and therefore π(Ai) and τr(A2) are
disjoint subsets of Z. Furthermore, π(At) is a neighborhood of zi

since zi G π(A?) C ^(A;), and π(A°) is open in Z because π is open.
D

For example, if G = R under addition and H is the set of integers
(so that H is closed in G), then G/H is the unit circle with its usual
topology, which is Hausdorff. In contrast, if H consists of all rationals,
then H is dense in Gand not closed. Let B be an arbitrary nonempty
open subset of G/ff, then π~1(B) is both open in G and saturated
under the right action of H on G. Since H is dense, π~1(jB) must be
all of G so that B = G/H. In other words, G/H receives the trivial
topology and is therefore not Hausdorff.

2.3.3. PROPOSITION (B, I §10.4, Propos. 10). Let the topological
group G act continuously on the I.e. space X in such a way that X/G
is Hausdorff. Then (i) X/G is I.e., and (ii) if K1 is any compact subset
of X/G, then there exists a compact set K C X such that π(K) = K1.

PROOF, (i) For z e X/G choose any x G X such that τr(x) =
z. Take a compact neighborhood V of #, then π(V) is a compact
neighborhood of z as in the proof of Proposition 2.3.2. (ii) For each
x G π~1(K!) choose a compact neighborhood V(x). Then {π(V(x)°) :
x G π~1(/if/)} is an open cover of K1'. Since K' is compact, there is
a finite subcover {π(V(x)°) : x = xλ,... ,# n } with the xi G π~1(/iι'/).
Put Kx = V(xx) U U V(xn), then Kλ is compact and π(Kx) D K1.
Since π is continuous, π~1(Kl) is closed so that A^ Ππ~1(A"') = K is
compact. Then observe that π(K) = K1. Ώ

2.3.4. COROLLARY. Let H be a closed subgroup of a he. group
G. Then G/H is I.e. and for any compact K1 C G/H there exists a
compact K C G such that π(K) = K1.

PROOF. In Proposition 2.3.3 take X = G, G = H and observe
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that G/H is Hausdorff by Proposition 2.3.2. D

2.3.5. PROPOSITION (B, III §4.1, Cor. 2 to Propos. 1). Let H be

a compact subgroup of a I.e. group G. Then π of (2.1.2) is proper.

PROOF. By Corollary 2.3.4 G/H is I.e. Take Kf C G/H arbi-

trary. We have to show that π " 1 (K1) is compact, using Theorem 2.2.3.

By Corollary 2.3.4 there is a compact set K C G such that π(K) = K'.

Then π^(K') = {gH : g G K] = KH. Let / : G x G -+ G be the

function f(g1^g2) = 9ι92-> t ^ i e n KH = f(K x H). Since K x H is

compact and / is continuous, KH is compact. D

The example in Chapter 1 of the irrational flow on the torus

shows that the action of G on J can be so bad that X/G fails to be

HausdorfF even if G and X are I.e. Therefore, some regularity of the

action has to be imposed. One way of doing this is to introduce the

notion of a proper action (B, III §4.1, Definition 1). First introduce

the function θ : G x X —> X x X defined by

(2.3.1) θ(g,x) = (gx,x).

(Note that in Bourbaki the definition is θ(g,x) = (x,gx).)

2.3.6. DEFINITION. The action of the topological group G on the

topological space X is said to be proper if the function θ defined

in (2.S.I) is proper.

If an action is proper, then it is certainly continuous since the

function (g, x) —•> gx is the composition of θ and prx. An easy example

of proper action is the left (and right) action of G on itself since

the function (fi^,^) ""* (#1^2'#2) ι s continuous and has a continuous

inverse so that it is a homeomorphism of G x G with itself. For

I.e. groups and spaces there is a very useful criterion, stated below

as Proposition 2.3.8, to decide whether an action is proper. The

following notation, taken from Palais (1961) will be introduced: for

any two subsets A, B of X define

(2.3.2) ((A, B)) =
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(this is denoted P(A,B) in B). It follows easily from (2.3.2) that

((J5, A)) = ((A, B))~*. Since g —> g"1 is a homeomorphism of G with

itself it follows that ((A, B)) and ((J3, A)) have the same topological

properties, such as being closed, compact, etc. The set on the right-

hand side of (2.3.2) is the projection prt of the set {(#,#) £ G x X :

x e A,gx e B} = {(g,x) G G x X : θ(g,x) G B x A}, using 0

of (2.3.1). Therefore,

(2.3.3) ((A,B)) = Wl(θ-\BxA)).

2.3.7. PROPOSITION (B, III §4.5, Theorem l(a)). Let the I.e.

group G act continuously on the I.e. space X. If A and B are two

subsets of X of which one is closed, the other compact, then ((A, B))

is closed.

PROOF. Suppose A is compact and B is closed. We show first

that ρrx : G x A —> G is proper. Let K C G be compact, then

pr^1(ϋί) = K x A which is compact. Therefore, prx is proper by-

Theorem 2.2.3. On the right-hand side of (2.3.3) the set θ'λ{B x A)

is closed since θ is continuous. Then use Corollary 2.2.2. D

2.3.8. PROPOSITION (B, III §4.5, Theorem l(b)(c)). // a I.e.

group G acts continuously on a I.e. space X, then the action is proper

if and only if for every pair of compact subsets A,B of X, ((A, B))

has compact closure.

PROOF. If the action is proper, then by Definition 2.3.6 and

Theorem 2.2.3 the set Θ"1(B x A) on the right-hand side of (2.3.3) is

compact. Hence the left-hand side is compact since prx is continuous.

Conversely, suppose ((A, B)) has compact closure so that there is a

compact K C G such that ((A, B)) C K. Put C = θ~ι(B x A), then

by (2.3.1), C cGxA. On the other hand, by (2.3.3), prx(C) C K so

that C C KxX. These two inclusions of C together show C C KxA.

Since K x A is compact and C is closed, it follows that C is compact.

Then use Theorem 2.2.3. D

2.3.9. REMARK. If ((A, B)) has compact closure, then it is in

fact compact since ((A, B)) is closed in any case (whether the action of
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G is proper or not) by Proposition 2.3.7. Therefore, Proposition 2.3.8

could have been stated simpler, with "has compact closure" replaced

by "is compact." However, in applications where one wants to estab-

lish the properness of the action it is sometimes a convenience to have

to show only that ((A, B)) is contained in a compact set. D

2.3.10. COROLLARY. IfG is a compact group acting continuously

on a I.e. space X, then the action is proper.

PROOF. This is trivial by Proposition 2.3.8 since ((A, B)) C G

which is compact. D

The conclusion of Corollary 2.3.10 remains true if X is HausdorfF

but not necessarily I.e. See B, III §4.1, Propos. 2.

2.3.11. PROPOSITION. If H is a compact subgroup of a I.e. group

G, then the action of G on G/H is proper.

PROOF. By Corollary 2.3.4 G/H is I.e., and by Proposition 2.3.1

the action of G on G/H is continuous. Take A, B compact C G/H and

put Aλ = π-^A) Bλ = π-χ(B) with π of (2.1.2). Then Aλ and Bx are

compact subsets of G by Proposition 2.3.5 and Theorem 2.2.3. From

the definition (2.1.3) of the action of G on G/H and (2.3.2) it follows

that ((A, B)) = ((A l9 Bx)). The latter is compact by Proposition 2.3.8

since the action of G on itself is proper. Thus, ((A, B)) is compact.

Apply Proposition 2.3.8 again, but in the other direction, and the

result follows. D

2.3.12. PROPOSITION (B, III §4.2, PROPOS. 3). If a topological

group G acts properly on a topological space X, then X/G is Haus-

dorff.

PROOF. Let C be the pairs of points in X that are on the

same orbit, i.e., C is the subset of X x X defined by C = {(gx,x) :

g e G, x e X} = Θ(G x X) with θ of (2.3.1). Since θ is proper

by hypothesis, it is closed (Corollary 2.2.2). Hence C is closed. The

remainder of the proof is identical to that of Proposition 2.3.2 with

G and H there being X and G here. D
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2.3.13. THEOREM (B, III §4.2, Propos. 4). Let G be a I.e. group

acting properly on a I.e. space X and let x be an arbitrary point of X.

Then

(a) XjG is I.e.;

(b) the mapping ax : G —> X defined by (2.1.6) is proper;

(c) Gx is compact;

(d) Gx is closed in X;

(e) the bisection φx : G/Gx —> Gx defined by (2.1.5) is a homeomor-

phism.

PROOF. Part (a) follows from Propositions 2.3.12 and 2.3.3(i).

For part (b) use the function θ defined by (2.3.1), then θ is proper

by hypothesis. Using Theorem 2.2.3 we have to prove that aχ

ι(K)

is compact for every compact K C X. Now K x {x} is a com-

pact subset of X x X and therefore θ~λ(K X {x}) = C is com-

pact by Theorem 2.2.3. From a^(K) = {g G G : gx G A"} and

C = {(g,x) G G x X : gx G K] it follows that a^(K) = pr^C).

Since C is compact and prα continuous, α~1(A") is compact. For

part (c) write Gx = «^"1({^}) and observe that {x} is compact. Then

use part (b) and Theorem 2.2.3. For part (d) write Gx = OLX(G) and

use part (b) and Corollary 2.2.2. For part (e) we use equations (2.1.9)

and (2.1.10). In (2.1.9) take A open in Gx, then a'1 (A) is open

since ax is continuous and then use the openness of πx to conclude

that φx

λ{A) is open. Therefore, φx is continuous. In (2.1.10) take B

closed in G/Gx, then π~1(B) is closed in G since πx is continuous.

Then observe that ax is closed by part (b) and Corollary 2.2.2, from

which it follows that φx(B) is closed. Hence φx

λ is continuous. D

2.3.14. REMARK. Parts (b)-(e) of Theorem 2.3.13 are valid

without assuming G and X to be I.e. See B, III §4.2, Propos. 4. D

2.3.15. COROLLARY. Let G be a I.e. group acting properly and

transitively on a I.e. space X and let x be an arbitrary point of X.

Then the bisection φx : G/Gx —> X is a homeomorphism.

PROOF. Apply Theorem 2.3.13(e), where now Gx = X. D
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It follows at once from Theorem 2.3.13(c) that the action of

GL(n) on Rn is not proper. For, take x = (1,0,... ,0)', then Gx

consists of all n x n nonsingular matrices whose first column is x,

and that group is not compact. The same holds for the action of

LT(n) or UT{n) on Rn. On the other hand, the action of O(n)

is proper, by Corollary 2.3.10, since O(n) is compact. An example

of Corollary 2.3.15 is the action of GL(n) on PD{n), as in Exam-

ple 2.1.7. Take x in Corollary 2.3.15 to be the identity matrix / n ,

then Gx = 0{n). Since the action is transitive, the conclusion of

Corollary 2.3.15 is that GL(n)/O{n) is homeomorphic to PD(n).

In some instances we may be interested only in whether φx in the

above corollary is a homeomorphism, but not whether G acts properly.

Such a homeomorphism is guaranteed by Lemme 2, Appendice I, of

Bourbaki (1963), which is reproduced as Lemma 2.3.17 below. Its

conditions are that G be second countable (Section 2.2) and that X

be a Baire space. For the definition of the latter one first defines a

subset A of a topological space to be nowhere dense if A has empty

interior. Then X is a Baire space if the complement of any countable

union of nowhere dense sets is dense in X. In particular, a Baire

space cannot be a countable union of nowhere dense sets. Therefore,

if a countable union of closed sets contains a Baire space, then one of

the sets must have a nonempty interior. For us the most important

example of a Baire space will be a I.e. space.

2.3.16. THEOREM. If a space is I.e., then it is a Baire space.

PROOF. Kelley (1955), Chapter 6, no. 34; or B, IX §5.3, Theo-

rem 1. D

2.3.17. LEMMA (Bourbaki). Let a second countable I.e. group

G act continuously and transitively on the left of a Baire space X.

Then for any x G X, the 1-1 correspondence φx : GjGx —> X is a

homeomorphism. In particular, the conclusion holds if G is a subspace

of Rn andX is I.e.

PROOF. The function ax of (2.1.6) is continuous (since G acts

continuously) and maps G onto X. We can write ax = φx o π with
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π of (2.1.1). If U is an open subset of X, so that α~1(ί7) is an open
subset of (?, then φ^iU) = ^ ( α j 1 ^ ) ) is an open subset of G/Gx

since π is open. Hence, φx is continuous. It remains to be shown
that φ"1 is continuous, or, equivalently, that φx is open. This is
equivalent to ax being open, for, if U is an open subset of G/Gx,
then φx(U) = «x(π~1(i7)). In order to show ax open it suffices to
show that for every g £ G and neighborhood V of #, ax(V) is a,
neighborhood of αx(g) (= ##) in X (since for open U C G each
point oix(g)i g £ 17, of c*x(ϊ7) has αx(l7) as a neighborhood). It is
sufficient to do this at g = e since for fixed g £ G the left translations
G —» G and X —> X with # are both homeomorphisms. Thus, it
remains to be shown that if V is a neighborhood of e in G, then
otx(V) = Vx, say, is a neighborhood of x in X. Since G is I.e. there is
a compact neighborhood K1 of e such that Kλ CV. By continuity of
the function (gι,g2) —> 9\λ92 oΐ G x G —* G and local compactness
of G x G there is in G x G a compact neighborhood K2 x ϋf3 of
(e, e) such that K^K^ C KΎ. Then if = K2 Π Jί3 is a compact
neighborhood of e in G such that K"1K C ϋfj C V. By assumption
the topology of G has a countable base 23. Let ίS>1 be the subfamily
of 23 consisting of the members of 23 that have compact support, and
let F l 5 F 2 , . . . be their supports. Then (J^° Fn = G because for each
g (Ξ G there is a compact neighborhood K and a member of 3, say
Ug, such that </ 6 Ug C A^, so that ?7y C 23 r By compactness each
Fn can be covered by a finite family of sets of the form gK, g £ Fn.
Thus, G has a countable cover by compact sets g1K, g2K-,..., <7, £ G.
By continuity of α^, αjp^if) = gj\x is compact in X, and since G
is transitive, g1Kx,g2Kx,... is a countable cover of X by compact,
therefore closed, sets. Since X is Baire, one of the g^Kx must have
nonempty interior; say gnkx is an interior point of gnKx, k £ K.
Then x is an interior point of k~ιKx C K~λKx C Vz so that Vx is
a neighborhood of x. Ώ

For later reference we list the following proposition, which is half

of Proposition 14 in B, III §2.5.

2.3.18. PROPOSITION. Let H be an open subgroup of a topological



§2.3 CONTINUOUS AND PROPER ACTIONS 37

group G. Then G/H is discrete.

PROOF. An arbitrary point of G/H is of the form π^j) with
gλ G G and π of (2.1.2). For fixed </1? the left translation g —» gxg
is a homeomorphism G —> G, so that g^if is open. Since π is open,

i s ° P e n Π

An open subgroup ί ί is also closed because it is the complement
of the union of all (open) cosets gH other than H itself. An open sub-
group is therefore a union of components. An example of such an H
is the component of the identity. An example of Proposition 2.3.18 is
G = R— {0} under multiplication and H = i?+ = identity component.
Then G/H consists of the two elements i?+ and R_.




