
Chapter 3. Random Walks on Groups

A. EXAMPLES

A fair number of real world problems lead to random walks on groups. This
section contains examples. It is followed by more explicit mathematical formula-
tions and computations.

1. RANDOM WALK ON THE CIRCLE AND RANDOM NUMBER GENERATION

Think of Zv (the integers mod p) as p points wrapped around a discrete
circle. The simplest random walk is a particle that moves left or right, each with
probability j . We can ask: how many steps does it take the particle to reach a
given site? How many steps does it take the particle to hit every site? After how
many steps is the distribution of the particle close to random? In Section C, we
show that the answer to all of these questions is about p2.

A class of related problems arises in computer generation of pseudo random
numbers based on the recurrence X^+i = aXk + 6(mod p) where p is a fixed
number (often 232 or the prime 23 1 - 1) and a and b are chosen so that the
sequence XQ = 0, Xι, Xi,..., has properties resembling a random sequence. An
extensive discussion of these matters is in Knuth (1981).

Of course, the sequence Xk is deterministic and exhibits many regular as-
pects. To increase randomness several different generators may be combined or
"shuffled." One way of shuffling is based on the recurrence X^+i = a>kXk + δ/e
(mod p) where (ak^bk) might be the output of another generator or might be the
result of a "true random" source as produced by electrical or radioactive noise.
We will study how a small amount of randomness for a and b spreads out to
randomness for the sequence Xk-

If CLk = 1 and bk takes values ±1 with probability j , we have a simple random
walk. If (ik φ 1 is fixed but nonrandom, the resulting process can be analyzed by
using Fourier analysis on Zp. In Section C we show that if a^ = 2, then about
log p loglog p steps are enough to force the distribution of Xk to be close to
uniform (with bk taking values 0, ±1 uniformly). This is a great deal faster than
the p2 steps required when α^ = 1. If dk = 3, then log p steps are enough.

What if dk is random? Then it is natural to study the problem as a random
walk on Ap - the affine group mod p. This is the set of pairs (α, b) with α, b G
Z p, α / 0 , gcd(a,)p) = 1. Multiplication is defined by

(α,6)(c,d) = (αc, ad + b).

Some results are in Example 4 of Section C, but many simple variants are unsolved.
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18 Chapter 3A

A different group arises when considering the second order recurrence Xk+ι =
dkXk + bkXk-i (mod p) with a and b random. It is natural to define Y^ = [^k ),
then

n « - ( ? »> ) n = [π ( « 6J ) ]y., with say y0 = Q .

This leads to considering a product of random matrices, and so to a random walk
on GL2(ZP). See Diaconis and Shahshahani (1986a) for some results.

2. CARD SHUFFLING

How many times must a deck of cards be shuffled until it is close to random?
Historically, this was a fairly early application of probability. Markov treated it
as one of his basic examples of a Markov chain (for years, the only other example
he had was the vowel/consonant patterns in Eugene Onegin). Poincare devoted
an appendix of his 1912 book on probability to the problem, developing methods
similar to those in Section C. The books by Doob (1935) and Feller (1968) each
discuss the problem and treat it by Markov chain techniques.

All of these authors show that any reasonable method of shuffling will eventu-
ally result in a random deck. The methods developed here allow explicit rates that
depend on the deck size. As will be explained, these are much more accurate than
the rates obtained by using bounds derived from the second largest eigenvalue of
the associated transition matrix.

Some examples of specific shuffles that will be treated below:
a) Random transpositions. Imagine n cards in a row on a table. The cards

start in order, card 1 at the left, card 2 next to it,..., and card n at the right of
the row. Pairs of cards are randomly transposed as follows: the left had touches
a random card, and the right hand touches a random card (so left = right with
probability ^ ) . The two cards touched are interchanged. A mathematical model
for this process is the following probability distribution on the symmetric group:

r(,d) = I
2

Γ(r) = — for r any transposition
it

T(π) = 0 otherwise.

Repeatedly transposing cards is equivalent to repeatedly convolving T with itself.
It will be shown that the deck is well mixed after \n log n + en shuffles.

Some variants will also be discussed: repeatedly transposing a random card
with the top card (la Librairie de la Marguerite), or repeatedly interchanging a
card with one of its neighbors.

b) BoreΓs shuffle. In a book on the mathematics of Bridge, Borel and Cheron
(1955) discuss the mathematics of shuffling cards at length. They suggest several
open problems; including the following shuffle: The top card of a deck is removed
and inserted at a random position, then the bottom card is removed and inserted
at a random position. This is repeated k times. We will analyze such procedures
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in Chapter 4, showing that k = n log n + en "moves" are enough. The same
techniques give similar rates for the shuffle that repeatedly puts a random card
on top, or the shuffle that repeatedly removes a card at random and replaces it
at random.

c) Riffle shuffles. This is the usual way that card players shuffle cards,
cutting off about half the pack and riffling the two packets together. In Chapter
4 we will analyze a model for such shuffles due to Gilbert, Shannon, and Reeds.
We will also analyze records of real riffle shuffles. The analysis suggests that 7
shuffles are required for 52 cards.

d) Overhand shuffles. This is another popular way of shuffling cards. The
following mathematical model seems reasonable: the deck starts face down in the
hand. Imagine random zeros and ones between every pair of cards with a zero
under the bottom card of the deck. Lift off all the cards up to the first zero and
place them on the table. Lift off all the cards up to the second zero and place this
packet on top of the first removed packet. Continue until no cards remain. This
is a single shuffle. It is to be repeated k times. Robin Pemantle (1988) has shown
that about 2500 shuffles are required for 52 cards.

3. RANDOM WALK ON THE d-cuBE Z$

Regard Z$ as the vertices of a cube in d dimensions. The usual random walk
starts at a point and moves to one of the d neighbors with probability j . This is
repeated k times. This is a nice problem on its own. It has a surprising connection
with a classical problem in statistical mechanics: in the Ehrenfest's urn model, d
balls are distributed in two urns. A ball is chosen at random and moved to the
other urn. This is repeated k times and the problem is to describe the limiting
distribution of the process. For a fascinating description of the classical approach
see M. Kac (1947). Kac derives the eigenvalues and eigenvectors of the associated
transition matrix by a tour de force. The following approach due to Siegert (1949)
suggests much further research:

Let the state of the system be described by a binary vector of length cf, with
a 1 in the ith place denoting that ball i is in the right hand urn. The transition
mechanism translates precisely to a random walk on the d cube! Indeed, the state
changes by picking a coordinate and changing to its opposite mod 2. This changes
the problem into analyzing the behavior of a random walk on an Abelian group.
As we will see, this is straightforward; Fourier analysis gives all the eigenvalues
and eigenvectors of the associated Markov chain.

Originally the state of the system in the Ehrenfest's urn was the number
of balls in the right hand urn. The problem was "lifted" to a random walk on
a group. That is, there was a group G (here Z§) and a probability P on G
(here move to the nearest neighbor) and a function L:G —» state space (here the
number of ones) such that the image law under L of the random walk was the
given Markov chain. There has been some study of the problem of when the image
of a Markov chain is Markov. Heller (1965) contains much of interest here. Mark
Kac was fascinated with this approach and asked: When can a Markov chain
be lifted to a random walk on a group? Diaconis and Shahshahani (1987b) give
results for "Gelfand Pairs." The following exercise comes out of discussions with
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Mehrdad Shahshahani.

EXERCISE 1. Let P be a probability on the symmetric group Sn. Think of the
random walk generated by P as the result of repeatedly mixing a deck of n cards.
For a permutation π, let L(π) = 7r(l). The values of L are the result of following
only the position of card 1. Show that the random walk induces a Markov chain
for L. Show that this chain has a doubly stochastic transition matrix. Conversely,
show that for any doubly stochastic matrix, there is a probability P on Sn which
yields the given matrix for L.

Remark. It would be of real interest to get analogs of this result more generally.
For example: find conditions on a Markov chain to lift to a random walk on an
Abelian group. Find conditions on a Markov chain to lift to a random walk with
a probability P that is constant on conjugacy classes. When can a Markov chain
on the ordinary sphere be lifted to a random walk on the orthogonal group 0 3?

Returning to the cube, David Aldous (1983b) has applied results from random
walk on the d cube to solve problems in the theory of algorithms. Eric Lander
(1986) gives a very clear class of problems in DNA gene mapping which really
involves this process. Diaconis and Smith (1986) develop much of the fluctuation
theory of coin-tossing for the cube. There is a lot going on, even in this simple
example.

4. INFINITE GROUPS

For the most part, these notes treat problems involving finite groups. How-
ever, the techniques and questions are of interest in solving applied problems
involving groups like the orthogonal group and p-adic matrix groups. Here is a
brief description.

1. The "Grand Tour" and a walk on On. Statisticians often inspect high-
dimensional data by looking at low-dimensional projections. To give a specific
example, let z i , . . .,x5Oo e R20 represent data on the Fortune 500 companies.
Here a?i, the data for company 1, might have coordinates x\\ — total value,
X\i = number of women employed, etc. For 7 e R20, the projection in direction 7
would be a plot (say a histogram) of the 500 numbers 7 x\,..., 7 £500. Similarly
the data would be projected onto various two-dimensional spaces and viewed as
a scatterplot. Such inspection is often done interactively at a computer's display
screen, and various algorithms exist for changing the projection every few seconds
so that a scientist interested in the data can hunt for structured views.

Such algorithms are discussed by D. Asimov (1983). In one such, the direction
7 changes by a small, random rotation. Thus, one of a finite collection Γ, of 20 X 20
orthogonal matrices would be chosen at random, and the old view is rotated by
Γj. This leads to obvious questions such as, how long do we have to wait until
the views we have seen come within a prescribed distance (say 5 degrees) of any
other view. A good deal of progress on this problem has been made by Peter
Matthews in his Stanford Ph.D. thesis. Matthews (1988a) uses Fourier analysis
on the orthogonal group and diffusion approximations to get useful numerical and
theoretical results.
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2. Salmon fishing and GL2(Q2)- Consider a binary tree

Let us describe a homogeneous random walk on such a tree. A particle starts at a
fixed vertex. An integer distance is picked from a fixed measure, and the particle
moves to one of the finite sets of vertices at this distance at random. The particle
continues to move in this way. Questions involving recurrence (does the particle
ever get back to where it started?) and the distribution of the distance of the
walk from its starting position were raised by population geneticists studying life
along a river system.

Sawyer (1978) gives background and much elegant analysis. It turns out that
the tree is a coset space (homogeneous space) of the 2x2 matrices with entries in
the 2-adic rationale, with respect to the subgroup of matrices with 2-adic integer
entries. Number theorists have worked out enough of the representation theory
to allow a dedicated probabilist to get elegant formulas and approximations.

3. Other groups. There is of course vast literature on random walks on Rn.
This is summarized in Feller (1971) or in Spitzer (1964). Much of this material
has been generalized to non-commutative groups. Heyer (1977) contains a thor-
ough survey. Recently there has been a really successful attack on random walk
problems on Lie groups. The work of Furstenberg and Guivarclh is beautifully
summarized in Bougerol-Lacroix (1985).

B. THE BASIC SETUP

We now formally define what we mean by "close to random" and introduce
an inequality that allows a good bound on the distance to uniformity in terms
of Fourier transforms. Let G be a finite group. Let P and Q be probability
distributions on G. Define the variation distance between P and Q as

\\P-Q\\ = m3x\P(A)-Q(A)\.

Because we will use it heavily, we pause to discuss some basic properties.

EXERCISE 2. Prove that

(i) \\P - Q\\ = \ Σ lpW - OWI = \
s



22 Chapter 3B

where, in the last expression, / is a function from G to R with \f(s)\ < 1, and
P(/) = ΣsP(s)f(s) is the expected value of / under P. Also, prove the validity
of the following interpretation of variation distance suggested by Paul Switzer:
Given a single observation, coming from P or Q with probability | , you are to
guess which. Your chance of being correct i s j + j | | P - < 2 | | .

EXERCISE 3. Show that if U is uniform, and h: G —• G is 1 - 1, then

| |P _ U\\ = \\Ph~1 - U\\ where P/T^A) = P(h-\A)).

EXERCISE 4. Let G = Sn. Part (a): let P be defined by "card 1 is on top,
all the rest are random." Thus, P(π) = 0 if τr(l) φ 1 and P(π) = l/(n - 1)!
otherwise. What is ||P-{7||? Part (b): suppose P is defined by "card 1 is randomly
distributed in a fixed set A of positions, all the other cards are random?" What

Further properties of the variation distance are given in the following remarks
and in lemma 4 of Chapter 3, lemma 4 of Chapter 4 and lemma 5 of Chapter 4.

Remark 1. The variation distance can be defined for any measurable group. It
makes the measures on G into a Banach space. For G compact, the measures
are the dual of the bounded continuous functions and || || is the dual norm. For
continuous groups, the variation distance is often not suitable, since the distance
between a discrete and continuous probability is 1. In this case, one picks a
natural metric on G*, and uses this to metrize the weak-star topology. Of course,
for finite groups, all topologies are equivalent and the variation distance is chosen
because of the natural interpretation given by (1): if two probabilities are close
in variation distance, they give practically the same answer for any question.

Remark 2. Consider a random walk on Sn. In the language of shuffling cards, it
might be thought that the following notion would be a more suitable definition of
when cards are close to uniformly well shuffled: suppose the cards are turned face
up one at a time and we try to guess at the value of each card before it is shown.
For the uniform distribution, as in Diaconis and Graham (1977), we expect to get
# n = l + j + ^ + . . . + ~ right on average. If the deck is not well mixed, the
increase in the number of cards we can guess correctly seems like a useful measure
of how far we are from uniform. Formally, one may define a guessing strategy for
each possible history. Its value on a given permutation π defines a function f(π)
and (1) shows that, on average, |P(/) —ϋΓn| < n | | P - ί 7 | | no matter what guessing
strategy is used. This may serve as a guide for how small a distance \\P - U\\ to
aim for.

Remark 3. The variation distance is closely related to a variety of other metrics.
For example, two other widely used measures of distance between probabilities



are

Random Waits on Groups 23

dH(P,Q) = ^ ( P ( θ ) 2 - Q{s)τf - Hellinger distance
s

I(P,Q) = Y^P(s) \og[P(s)/Q(s)] - Kullback-Leibler separation.
S

These satisfy

y/2\\ | |

It follows that when djj or / are small, the variation distance is small. The
converse can be shown to hold under regularity conditions.

Metrics on probabilities are discussed by Dudley (1968), Zolatorev (1983)
and Diaconis and Zabell (1982). Rachev (1986) is a recent survey.

THE BASIC PROBLEM.

We can now ask a sharp mathematical question: Let P be a probability on
G. Given ε > 0, how large should k be so that | |P** - U\\ < εΊ

It is not hard to show that P*k tends to uniform if P is not concentrated on
a subgroup or a coset of a subgroup. Here is a version of the theorem due to Koss
(1959):

Theorem 1. Let G be α compact group. Let P be a probability on G such that
for some no and c, 0 < c < 1, for all n > no,

(*) P*n(A) > cU(A) for all open sets A.

Then, for all k,
k

Remarks. Condition * rules out periodicity. The conclusion shows that eventually
the variation distance tends to zero exponentially fast. The result seems quanti-
tative, but it's hard to use it to get bounds in concrete problems: as an example,
consider simple random walk on Zn. How large must k be to have the distance
to uniform less than j^? To answer, we must determine a suitable no and c. This
seems difficult. A short proof of the theorem is given here in Chapter 4.

There is a huge literature relating to this theorem. Heyer (1977) contains an
extensive survey. Bhattacharya (1972) and Major and Shlossman (1979) contain
quantitative versions which are more directly useable. Csiszar (1962) gives a
proof which indicates "why it is true": briefly, convolving increases entropy and
the maximum entropy distribution is the uniform. Bondesson (1983) discusses
repeated convolutions of different measures.

Remark. The following "cut off" phenomena occurs in most cases where the
computations can be done: the variation distance, as a function of A;, is essentially
1 for a time and then rapidly becomes tiny and tends to zero exponentially fast
past the cut off. Thus a graph might appear
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We will determine these cut off points k* in most of the examples discussed in
Theorem 1. In such a case we will say that k* steps suffice.

One purpose of this chapter is to discuss several ways of approximating the
variation distance that give sharp non-asymptotic results. The basic tool used
in the analytical approach of this section is the following inequality first used in
Diaconis and Shahshahani (1981):

LEMMA 1. (Upper bound lemma). Let Q be a probability on the finite group G.
Then

\

where the sum is over all non-tήvial irreducible representations.

Proof. From (1),

4||4 - U\Ϋ = {Έs\Q(s) - U{s)\Y < \G\Σ\Q(s) - U(s)\2

= Σ*dp Tv(Q(p)Q(Py).

The inequality is Cauchy-Schwarz. The final equality is the Plancherel Theorem,
and Q(p) = 1 for p trivial, U(p) = 0 for p non-trivial. D

Remark 1. The Cauchy-Schwarz inequality is not as crude as it may first appear.
It is applied when Q is close to uniform, so \Q(s) - U(s)\ is roughly constant. In
the examples of Section II below, and in all other "real" examples, the lemma
gives the right answer in the sense that the upper bound matches a lower bound
to one or two terms. The following exercise gives a lower bound of similar form.
For some groups it shows the rate is off by at worst loglG]. Exercise 14 gives a
natural example, and Exercise 6 a contrived example, where this occurs.

EXERCISE 5. With the notation of the upper bound lemma, show that

Also show
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EXERCISE 6. Let G b e a finite group. Define a probability P on G by

P(id) = 1 - §, P(s) = 2 ( | ( ^ t ) for ^ id, 0 < ε < 2.

Show that

F ( l d ) - | G | + |G| ( 1 2

p *ω - 1 Lei _ £ _]
1 J ~ |G| | G | U 2 |G|

Using this, show that HP** - U\\ = ^ |1 - § j ^ r l * . Show that

Σ * ^ Tr(P(p)fcP) = f ^ 2 *

Remark 2. Lower bounds can be found by choosing a set A C G and using
\Q(A) — Z7(A)| < \\Q - U\\. Often A can be chosen so that it is possible to
calculate, or approximate, both Q(A) and U(A), and show that the distance
between them is large. Several examples are given in the next section.

Remark 3. Total variation is used almost exclusively for the next two chapters.
It is natural to inquire about the utility of the mathematically tractable L2 norm

This has a fatal flaw: Suppose \G\ is even, and consider P uniformly distributed
over half the points and zero on the others. \\P - U\[2 = -7— is close to zero

for |GI large. Thus the interpretability of the L2 norm depends on the size of the
group. This makes it difficult to compare rates as the size of the group increases.

The norm \G\i \\P - U\\2 corrects for this. It seems somewhat artificial, and
in light of the upper bound lemma and exercise 5, it is essentially the same as the
variation distance.

C. SOME EXPLICIT COMPUTATIONS

Example 1. Simple random walk on the circle. Consider Zp, the additive group
of integers mod p. Define P(l) = P(—1) = 5-, P(j) = 0 otherwise. The follow-
ing result shows that somewhat more than p2 steps are required to get close to
uniform.

Theorem 2. For n > p 2, with p odd and greater than 7,

| | P * " _ u\\ < e~an/p2 with a = π2/2.
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Conversely, for p > 7 and any n

~~ 2

Proof. The Fourier transform of P is

1 / 2τtj -2τij \

PU) = 2 V " + e P / cos(2πj/p).

The upper bound lemma yields
(p-l)/2

i x V ^ ( -
= — > COS(7Γ7

9 Δ^ί v J

To bound this sum, use properties of cosine. One neat way to proceed was sug-
gested by Hansmartin Zeuner: use the fact

cos x < e~χ2/2 forz € [0,τr/2].

This follows from h(x) = log(ex /2cos re), h\x) = x - tan x < 0; so /ι(a:) <
0, for x e [0,τr/2].

This gives

! (P-2J/2 oo
||p*n _ 2 I 2 2 i ^ 2 2 2 2

< e <
2 i i 2

i=o

This works for any n and any odd p. If n > p 2, [2(1 — e~37Γ ) ] - 1 < 1 and thus we
have proved more than we claimed for an upper bound.

Observe that the sum in the upper bound is dominated by the term with
k = £—-. This suggests using the function cos(2πkj/p) alone to give a function
bounded by 1 which has expected value zero under the uniform distribution. Using
the symmetry of P,

*n(j) cos(2πjk/p) = f^(k) = cos(2πk/p)n = ( - l ) n cos(τr/p)n.

Now, (1) in section B above yields
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If x < j , cos x > e~x I2~x / n say. This yields the lower bound with no conditions
on n, for p > 7. D

Remark 1. The same techniques work to give the same rate of convergence
(modulo constants) for other simple measures P such as P(0) = P(l) = P( —1) =
^ or P uniform on | j | < α. Use of primitive roots and the Chinese remainder
theorem gives rates for the multiplicative problem Xn = anXn-\ (mod p) where
XQ = 1, and αt are i.i.d. random variables taking values mod p. For example,
suppose p is a prime and a is a primitive root mod p. Then the multiplicative
random walk taking values α, 1 or α""1 (mod p), each with probability 1/3, takes
c(p)p2 steps to become random on the non-zero residues (mod p).

Remark 2. If n and p tend to infinity so n/p2 —*• c, the sum in the upper bound
lemma approaches a theta function, so

1 3=1

Spitzer (1964), pg. 244) gives a similar result. Diaconis and Graham (1985b) show
a similar theta function is asymptotically equal to the variation distance.

Remark 3. There are two other approaches to finding a lower bound in Theorem
1. Both result in a set having the wrong probability if not enough steps are
taken.

Approach 1. For any set A. | | P * n - ί / | | > \P*n(A)-U(A)\. Take A = {j:\j\ <
p/4}. Use the inversion theorem directly to calculate (and then approximate)

Approach 2. Consider a random walk on the integers Z taking steps ±1 with
probability j . Let Sn be the partial sum. The process considered in Theorem 1
is Sn (mod p). Using the central limit theorem, if n is small compared to p 2, Sn

has only a small chance to be outside {j: \j\ < p/4}. This can be made rigorous
using the Berry-Esseen theorem.

EXERCISE 7. Write out an honest proof, with explicit constants, for one of the
two approaches suggested above. Show | | P * n - 171| -» 1 if n = c(p)p2, c(p) —• 0.

Remark 4- The random walk based on P(j) = P(~j) — \ where (j, p) = 1
converges at the same rate as when j = 1 because of the invariance of variation
distance under 1-1 transformations (Exercise 3 above). Andrew Greenhalgh has
shown that it is definitely possible to put 2k -f 1 points down carefully, so that
the random walk based on P{j\) = . . . = P(J2k+ι) = I/(2k -f 1) converges much
faster (c(p)pιlk steps needed) than the random walk based on P(j) = \j(2k + 1)
for \j\ < k.

It would be of interest to know the rate of convergence for "most" choices of
k points.

The following exercises give other results connected to random walk on Zp.
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EXERCISE 8. Consider the random walk on Zψ generated by P(l) = P ( - l ) = j .
It is intuitively clear (and not hard to prove) that the walk visits every point.
There must be a point which is the last point visited (the last virginal point).
Prove that this last point is uniform among the n — 1 non-starting points.

I do not know how to generalize this elegant result. Avrim Blum and Ernesto
Ramos produced computation-free proofs of this result. Both showed that it fails
for simple random walk on the cube Z\.

EXERCISE 9. (Fan Chung). Prove that the convolution of symmetric unimodal
distributions on Zn is again symmetric unimodal.

EXERCISE 10. Let n be odd. Consider the random walk on Zn generated by
P(l) = P(—1) = j . Prove that after an even number of steps, the walk is most
likely to be at zero. More generally, show that the walk is monotone in the sense
that P*2n(j) > P*2n{j + 2Ϊ) where 0 < j < j + 2t < π/2.

This exercise originated in a statistical problem posed by Tom Ferguson. A
natural way to test if an X taking values in Zp is drawn from a uniform distribution
is to look in a neighborhood of a prespecified point and reject uniformity if the
point falls in that neighborhood. Consider the alternative H\\ P = P*n for simple
random walk starting at the prespecified point. The exercise, combined with the
Neyman-Pearson lemma implies classical optimality properties for this test.

Ron Graham and I showed that the same type of result holds for nearest
neighbor walk on Z^-, but fails for nearest neighbor walks on a discrete torus
like Zf3. Monotonicity also fails for the walk originally suggested by Ferguson,
namely random transpositions in the symmetric group (see Section D of this
chapter) with neighborhoods given by Cayley's distance — the minimum number
of transpositions required to bring one permutation into another (see Chapter
6-B).

Example 2. Nearest neighbor walk on Z$. Define P(0) = P(0 . . . 01) = P(0 . . . 10)
= . . . = P(10...0) = ^~y. The random walk generated by P corresponds to
staying where you are, or moving to one of the d nearest neighbors, each with
chance (A.xy The following result is presented as a clear example of a useful
lower bound technique.

Theorem 3. For P as defined above, let k = | ( d + l)[log d + c],

As d —» oo, for any ε > 0 there is a C < 0 such that c < C and k as above imply

(2) \\P*k-U\\>l-ε.

Proof There is a 1-dimensional representation associated to each x e Z$ P(x) =

Σy(-l)x'yP(y) = 1 - ĵ-tei where ω(x) is the number of ones (or weight) of x.
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The upper bound lemma gives

- n2 < \

± < ί( e.-
jl 2

For the lower bound observe that the dominating terms in the upper bound
come from x of weight 1. Define a random variable Z: Z% —• R by Z(x) =

Σ ( — l)37^ = d — Ίω{x). Under the uniform distribution, X{ are independent fair

coin tosses so E\jZ = 0, Varc/(Z) = d, and Z has an approximate normal distri-
bution. Under the distribution P*k

y arguing as in Example 1 shows

Ek(Z) =d(l - JJJΫ, Ek(Z2) =

Varfc(Z) = d + d(d-

d(d-

- d\l -

With k = \((d + l)log d + cd + c), as d -> oo,

So = d+0(e~clog d) uniformly for c = o(log d). Note that asymptotically
( ) , independent of c of order 0(log d). This is crucial to what follows.
For the lower bound, take A = {x: \Z(x)\ < βVd}. Then we have

From (3) and Chebychev,

< P*i\Z - Ek{Z)\ >

(β-c/2 _
as d —»• oo.

Choosing /3 large, and c suitably large (and negative) results in \\P*k — U\\ —>• 1.
D
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Remark 1. In this example, the set A has a natural interpretation as the set of
all binary vectors with weight close to f. Since the random walk starts at 0, if it
doesn't run long enough, it will tend to be too close to zero.

Remark 2. It is somewhat surprising that \d log d steps are enough: It takes
jd log d steps to have the right chance of reaching the opposite corner (11. . . 1).

Example 3. Simple random walk with randomness multiplier. Let p be an odd
number. Define a process on Zp by Xo = 0, Xn = 2Xn_χ + εn(mod p) where 6%
are independent and identically distributed taking values 0, ±1 with probability
j . Let Pn be the probability distribution of Xn. In joint work with Fan Chung
and R. L. Graham it was shown that n = c log p loglog p steps are enough to get
close to uniform. Note that Xn is based on the same amount of random input as
simple random walk discussed in Example 1. The deterministic doubling serves as
a randomness multiplier speeding convergence from p2 to log p loglog p steps.

Theorem 4. For Pn defined above, if

then

II n - | | _ 2 ^ e )•

Proof. Since Xo = 0, Xλ = εi, X 2 = 2ei + e 2 , . . - ,X n = 2 n " 1 ε i + . . . +
εn(mod p). This reduces the problem to a computation involving independent
random variables. The Fourier transform of Pn at frequency j is

TTfi 1 2π2αj

α=0 ^

Since

3 3 ~ \ 1 otherwise.

It will be enough to bound

α=0

where {•} denotes fractional part. Observe that if the (terminating) binary ex-
pansion of x is x = αiα2θ!3 . . . , then

β

l ifαj = α 2 .
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Let A(x,n) denote the number of alternations in the first n binary digits of
x:A(x,n) = |{1 < i < n:αi φ α t + i } | . Successively multiplying by powers of
2 just shifts the bits to the left. It follows that

TT /i({H!ΐ}) < 9-ΛOVP.n).

α=0 P

Suppose first that p is of the special form p = 2t — 1. The fractions j/p
become

t t

l / p = 0 0 . . . 0 1 00...01 . . .

2/p=00...10 00...10 . . .

3 / p = 0 0 . . . Π 00... 11 . . .

p- l/p= 11...10 11...10 . . .

If n = rt, the number of alternations in the first n places of row j/p is no
smaller than r times the number of alternations in the first t places of j/p. It
follows that

.7=1 α=0 P 3=1

(1) <

< 2[et9'r - 1].

The second inequality in (1) used the easily proved bound \j: J4(^, t) = k\ < 2{t

k).

Now, if n — rt with r = pSJ. _̂ s^ the upper bound lemma gives

l l ^ - ί / l l 2 < | [ e 9 " ' - l ]

as claimed.
For general odd p, define t by w*'1 < p < 2*. For r as chosen above,

partition the initial n — rt digits in the binary expansion of j/p into r blocks of
length t:B(iJ)l < i < r:

B(2,i) B(rJ)

j/p - αΎ...αt αt+ι . . . α2t.

Thus,

(2) Σ Π Λ ( { 2
j=l α=0



32 Chapter 3C

By the choice of ty all the blocks 2?(1, j), 1 < j < p ~ 1 in the first column are
distinct and have at least one alternation. Furthermore, since (2,p) = 1, the set
of blocks in the ith column does not depend on i. This information will be used
together with the following interchange lemma: If 0 < a < 1, and a < a', b < &',
then

aa+b' +aa'+b <aa+b + aa'+b'.

To prove this, simply expand (aa - aa')(ab - ab') > 0. The lemma implies that
collecting together terms with the same blocks in the exponent only increases the
upper bound. Thus, the right side of (2) is no bigger than

p - l
%

the sum that appears in equation (1) above! Using the bound there completes
the proof. D

Remark 1. A more careful version of the argument implies that for any odd p,
the cutoff is at c*log2p loglog2p with c* = l/log2τri where

α = l

Chung, Diaconis and Graham (1987) show that for p of form 2* — 1, c*t log t
steps are required. The lower bound technique again uses the "slow" terms in
the upper bound lemma to define a random variable Z(j) = Σ\k\=ιe2πtik/p where
the sum is over fc's with a single 1 in their binary expression. Under the uniform
distribution Z has mean 0 and "variance" (= E{ZZ)) = t. Under P n , Z has

mean approximately tπf and variance of order yjt.
Chung, Diaconis and Graham also prove that for most odd p, 1.02 log2p steps

are enough. A curious feature of the proof is that we do not know single explicit
sequence of p's such that 2 log p steps suffice to make the variation distance
smaller than ^ .

Remark 2. There is a natural generalization of this problem which may lead
to further interesting results. Let G be an Abelian group. Let A: G —» G be
an automorphism (so A is 1-1, onto and A(s + t) = A(s) + A(t)). Consider the
process

Xn =

where Xo = id and 6; are iid. This can be represented as a convolution of inde-
pendent random variables

If Ak = id, these can be further grouped in blocks of k (when k divides n) to
give a sum of iid variables. Then, methods similar to those used in the present
example may provide rates.
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It is not necessary to use an automorphism; f(s) = A(s) + ί, with tεG fixed
and A an automorphism works in a similar way. It is not necessary that G be
Abelian. If the Law of e; is constant on conjugacy classes so is the law of A(βi)
and the random variables commute in distribution (see exercise 2.7).

One natural example to try has G = l?n, A a 2x2 matrix, and e; the nearest
neighbor random variable taking values (00),(01),(0 - 1), (10), (-10) each with

if-probability -

Remark 3. Fourier techniques can be used to bound other distances. This
remark gives a result for the maximum over all "intervals" of Zv. The next
remark discusses arbitrary compact groups. The techniques are close to work of
Joop Kemperman (1975).

Let P and Q be probabilities on Zp. Define D(P,Q) = supP(J) - Q(J)

where the sup is over all "intervals" in Zp.

LEMMA. D(P,Q) < ^ Σ TO) ~ QU)\/Γ where j* = min(j,p-j).

Proof. For J an interval on the circle, | P ( J ) - Q ( J ) | = | P ( J C ) - Q ( J C ) | , where of
course Jc is an interval too. It follows that only intervals not containing zero need
be considered. Let [̂ 1,̂ 2] be such an interval, with ί\ < ί2 (clockwise). Then

Now
i , / P-I

_ 2-κ ija
V

α=0 * α=0 j=0

- 1 V
r J=0

This implies that P — Q equals

P i=i

Thus D(PyQ) is bounded above by

•p-l

Now for 0 < x < f, 1 - cos ar > y , so for 1 < j < p/4, ^-(1 -

co8(2πj/p))-ϊ < Vβ/2πj < -±=. For f < a: < π, 1 - cos x > 1, so for p/4 < j <

p/2, -(1 - cos(l7Γjf/p))"2 < - < jr. For the rest, cos(2τrj/p) = cos(2τr(p- i)/p).
D
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EXERCISE 11. Using this lemma, with Pn as defined in Example 3, show there
are constants a and b such that for every odd p,

D{Pn,U) < αe-

Remark 4- There must be similar bounds for any compact group. To see
the use of such results let T be the unit circle: T = {z e C: \z\ = 1}. Fix an
irrational a e T and consider simple random walk with step size α, thus Xo — 0,
and Xn = Xn-\ ± OL. Since Xn is concentrated on a discrete set, the variation
distance to uniform is always 1. Nonetheless, the distribution of Xn converges
to the uniform distribution in the weak star topology. To discuss rates, a metric
must be chosen. A convenient one is

D{P,Q) = sup \P(I)-Q(I)\

for I ranging over intervals of T. This metrizes weak star convergence.
Kemperman (1975) proves two useful inequalities that give bounds on D

involving the Fourier transform for P a probability on T, and meZ,

P(ro) = Γ
Jo

e2ητιπιxP(dx).

(1) D(P,U) = supP(I)-U(I)\< {12 Σ |P(rn)|2/(2πm)2}^.
/ ra=l

(2) D(P,U)< I Σ \P(m)\/m.
τn=l

Niederreiter and Philipp (1973) discuss multivariate versions.

EXERCISE 12. Consider simple random walk on the unit circle, as in remark 3
above, with a a quadratic irrational. Use bounds (1) and (2) above to estimate
rates of convergence. A direct combinatorial argument can be used to show that

It seems quite possible to carry over bounds like (2) in Remark 4 to any com-
pact group G. Choose a bi-invariant metric d(x, y) on G and consider D(P, Q) =
sup|P(/) — Q(I)\ where I ranges over all translates of balls centered at the identity.
Then D(P,Q) can be bounded as in remark 2; Lubotzky, Phillips, and Sarnak
(1986) give results for the sphere. Their paper makes fascinating use of deep num-
ber theory which must be useful for other problems. Chapter 6 below discusses
bi-invariant metrics.

Example 4- Random walks on the affine group Ap. (An elaborate exercise).
Let p b e a prime. Random numbers are often generated by the recursive scheme
Xn = αXn_i + 6(mod p). This sequence of exercises allows estimates of the rate
of convergence when a and b are random. The transformation x —» ax + b with
a non-zero (mod p) will be written Ta^{x). The set of such transformations form
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a finite group Ap. We write (α,6) for the typical group element. The product is
(α,6)(c,rf) = (αc,αd+ 6), the identity is (1,0) and (α.b)'1 = ( α " 1 , - 6 α " 1 ) . This
group has p{p - 1) elements. The subgroups {(1,6)} = Zp and {(α,0)} = Z* are
useful.
(1) Identify the p distinct conjugacy classes. Explain why measures constant on

conjugacy classes are not very interesting.
(2) From part (1) there are p distinct irreducible representations; p - 1 of these

are the 1-dimensional representations given by choosing a character χ t of
Z* and defining Pi(α,b) = Xi(α). Show that these are distinct irreducible
representations. Show that there is one other irreducible representation p
of degree p - 1. Use Serre's exercise 2-6 to construct this representation by
considering the action of Ap on Zp. By explicitly choosing a basis, show

χ,(α,δ) = 0, αφl.

(3) Let p + and p* be the restriction of p in Part 2 to Zp and Z* respectively.
Using the character of p and the inner product machinery, show that />* is
the regular representation of Z* and p + contains each non-trivial irreducible
representation of Zp once.

(4) Let P+ be a probability on Zp and P* a probability on Z*. Let χf and χ*
be characters of Zp and Z*. Let P{α,b) = P*(α) P+(δ). Show

(b) The eigenvalues of the matrix P*(/>*) are the p-1 numbers P*(χ*); the
eigenvalues of P + ( p + ) are the p-1 numbers P+(χf), χf non-trivial.

(5) Let p be an odd prime such that 2 is a primitive root mod p. Consider
the random walk on Ap which starts at 0 and is based on P * , P + , with
P*(l) = P*(2) = P*((p+ l)/2) = i and P+(0) = P+(l) = P + ( - l ) = \.
Show that k = c(p)p2 log steps are enough to get arbitrarily close to random
if c(p) -*• oo as p does. Use this to argue that the random point Tχn(0) is
close to uniformly distributed on Zp after this many steps.
One way through the computations uses the following fact. Let τ(A) be the

spectral radius (= max|eigenvalue]) of the matrix A. If A and B are diagonalizable
matrices then r{AB) < τ(A)τ(B).
(6) Show by considering the first coordinate of (α, b) that k = cp2 steps are not

enough if c is fixed.

Remark. The argument sketched above gives c(p)p2 log p. I presume that c(p)p2

is the correct answer. Actually, numerical computation strongly suggests that the
random walk Xn = αXn_i + 6, where (o, b) has the distribution described in part
5, becomes uniform in order (log p)A steps for A = 1 or 2.

When p is composite there are more conjugacy classes. It is an interesting
exercise to determine these. I have not succeeded in finding a natural "small"
measure constant on conjugacy classes which permits analysis.
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D. RANDOM TRANSPOSITIONS: AN INTRODUCTION TO THE REPRESENTATION

THEORY OF THE SYMMETRIC GROUP.

As described in Section A, repeated random transpositions of n cards in a
row can be modeled as repeatedly convolving the following measure:

1 2
(1) ^P(id) = —, P(τ) = T for r a transposition, P(π) = 0 otherwise .

This section presents a proof of the following theorem

Theorem 5. Let k = \n log n + en. For c > 0,

\\P*k - U\\ < ae~2c

for a universal constant a. Conversely, for c < 0, as n tends to infinity

The proof introduces some basic results about the representation theory of the
symmetric groups. Most all of these will be treated in greater detail in Chapter 7.
This problem was first treated by Diaconis and Shahshahani (1981). The present
argument is based on simplifications suggested by Leo Flatto, Andrew Odlyzko,
and Hansmartin Zeuner. After the proof, several further problems, to which the
same analysis applies, are described.

Discussion The measure P is constant on conjugacy classes: P(ηπη~ι) = P(τr).
Thus Schur's lemma implies, for any irreducible representation />, P(p) =
constant /. Taking traces, the constant equals (^ + Ώ^r(p)) with r(p) =
χp(τ)/dp. Here χp(τ) denotes the character of p at any transposition r and
dp denotes the dimension of p (see proposition 6 of Chapter 2). Now, the upper
bound lemma yields

The following heuristic discussion may help understanding. Table 1 gives
dp and χp(τ) for n = 10. There are 42 irreducible representations of 5Ίo For
example, the first entry is dp = 1, χp(τ) = 1 for the trivial representation. The
second entry is dp = 9, χp(τ) = 7 for the 9-dimensional permutation representa-
tion. Except for a few representations at the ends, the ratio \χp(τ)/dp\ is small.
Suppose it could be shown that χp(τ)/dp < j for most p, then, approximately for
n large, |^ + Ώ~^τ(p)\ < j and the upper bound above would be smaller than

j(-)2kΣd2

p = -(-)2knl (using proposition 5 of Chapter 2).
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Table 1
Characters of 5Ί0 (from James and Kerber (1981, pg. 354))

Partition
[10]

[9,1]
[8,2]

[8,1,1]
[7,3]
[7,2,1]

[7,1,1,1]
[6,4]
[6,3,1]
[6,2,2]
[6,2,1,1]
[6,1,1,1,1]
[5,5]
[5,4,1]
[5,3,2]
[5,3,1,1]
[5,2,2,1]
[5,2,1,1,1]
[5,1,1,1,1,1]
[4,4,2]
[4,4,1,1]
[4,3,3]
[4,3,2,1]
[4,3,1,1,1]
[4,2,2,2]
[4,2,2,1,1]
[4,2,1,1,1,1]
[4,1,1,1,1,1,1]
[3,3,3,1]
[3,3,2,2]
[3,3,2,1,1]
[3,3,1,1,1,1]
[3,2,2,2,1]
[3,2,2,1,1,1]
[3,2,1,1,1,1,1]

[3,1,1,1,1,1,1,1]
[2,2,2,2,2]
[2,2,2,2,1,1]
[2,2,2,1,1,1,1]
[2,2,1,1,1,1,1,1]
[2,1,1,1,1,1,1,1,1]
[1,1,1,1,1,1,1,1,1,1]

dim
1
9

35
36
75

160
84
90

315
225
350
126
42

288
450
567
525
448
126
252
300
210
768
525
300
567
350

84
210
252
450
225
288
315
160
36
42
90
75
35

9
1

X,(τ)
1
7

21
20
35
64
28
34
91
55
70
14
14
64
70
63
35

0
-14
28
20
14
0

-35
-20
-63
-70
-28
-14
-28
-70
-55
-64
-91
-64
-20
-14
-34
-35
-21

-7
-1
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Now using Stirling's formula,

(-)2kn\ = e~2k

It follows that if k is n log n, the upper bound will tend to zero. To complete
this heuristic discussion, consider the term arising from the n — 1 dimensional
representation: dp = n - 1, and χ p(τ) = n - 3. This is easy to see: the trace
of the permutation representation for a transposition is n — 2. The permutation
representation is the direct sum of the trivial representation and the n — 1 dimen-
sional representation so n - 2 = χp{τ) + 1. Here (£ + ^r(p))2k = (1 - £)2 / c.
This is a far cry from ( \ ) 2 k . Persevering, in the upper bound lemma k has to be
chosen large enough to kill

n = e

2 log(n-i) = e - ^ +2 log n+o(JSr)

For k = \n log n + en this is asymptotic toe 4 c . Taking square roots gives the
e~2c of the theorem.

It will turn out that this is the slowest term, the other terms being geomet-
rically smaller, and most terms being smaller than (\)2k.

This argument is somewhat similar to the bounds for simple random walk on
Zp: terms near the trivial representation needed to be summed up carefully, terms
far away were geometrically small and easily dealt with. Putting in the details for
Zp required properties of cosine. For the symmetric group, the representations
are usefully thought of as 2-dimensional shapes. Properties of dp and χp(τ) will
have to be developed.

To begin a more detailed discussion, consider a partition of n, say λ =
(λi,. . .λ m ) with λi > λ2... > λm positive integers with λi + . . . + λm = n.
There is a one to one correspondence between irreducible representations of Sn

and partitions of n. This is carefully described in Chapter 7. For present pur-
poses, the notion of the diagram associated to a partition is helpful. An example
says things best: the diagram corresponding to (5,3,1,1) is

The first row of the diagram contains λi squares, etc. A diagram containing
numbers 1, 2,..., n is called a tableaux. Two tableaux are considered equivalent
if they have the same row sets:



Random Walks on Groups 39

5

6

2

1

10

3

7

4

8 9 9

3

2

1

8

6

7

4

10 5

An equivalence class of tableaux is called a called a tabloid. There are
n!/λi!.. .λm ! distinct tabloids of a given shape. These are used to build a repre-
sentation called Mλ as follows. Consider a vector space with basis vectors {et}
where t runs over all tabloids of shape λ. For π a permutation, define p(π) by
defining on basis vectors:

p(π)(et) = eπ*

where for example, TΓ applied to the tabloid
5 10 7 8 9 τr(5) π(10) τr(7) π(8) τr(9)
6 3 4 is the τr(6) τr(3) τr(4)
2 tabloid τr(2)
1 π(l)

Here are some examples: the partition (n - 1,1) has n!/(n - 1)! = n distinct
tabloids, all of shape

π - l

These are evidently completely determined by the one number in the second
row. Hence the vector space M n ~ l j l is just the n-dimensional space spanned
by the usual basis e i , . . .e n with />(π)ez = ^(ί)- The partition n — 2,1,1 gives
rise to a vector space Mn~2yljl with basis {e(ij)} and p(^)e^j) — e(π(i)yπ(j)) The
partition n — 2,2 gives rise to M n~ 2 ' 2 with basis {β{i,j}} where {i, j} runs through
all unordered pairs.

The representations M λ are all reducible except of course for λ = n. It will
be argued that each Mλ contains a well-defined irreducible subspace 5 λ , and as
λ varies the Sχ range over all the irreducible representations of Sn. The following
two facts are all that is needed to prove Theorem 5.

FACT 1. The dimension of the irreducible representation corresponding to
partition λ is the number of ways of placing the numbers l ,2, . . . ,π into the
diagram of λ such that the entries in each row and column are increasing.

This fact is Theorem (8.4) in James (1978) who discusses other formulas for
the dimension. These are also described in Chapter 7 below. A useful computa-
tional corollary is
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(D - l)The dimension dχ of the irreducible representation corresponding

to the partition λ satisfies d\ < (χ^dχ* with λ* =

(^2, λβ,..., λm) a partition of n — λi.

Proof. The first row may be chosen in (^) ways. For each choice of first row, the
number of ways of placing the n - λι remaining numbers is dχ*. Of course not all
of these combine with the choice of first row to give a monotone total placement.
This gives the inequality. •

FACT 2. Let r(λ) = Xx(τ)/dχ where Xχ(τ) is the character at a transposition
and d\ is the dimension of the irreducible representation corresponding to the
partition λ of n. Then

{D ~2) Γ ( λ ) = ^ Ί Σ [ λ ' {2j 1)λ]

with λ' the transpose of λ.

This is a special case of a result due to Frobenius who essentially determined
formulas for all of the characters. These become unwieldly for complex conjugacy
classes. An accessible proof of (D-2) is given in Ingram (1950).

Using Frobenius' formula, Shahshahani and I proved a simple monotonicity
result: Call partition λ1 larger than partition λ2 if it is possible to get from the
diagram of λ2 to the diagram of λ1 by moving boxes up to the right. This is a
partial order. For example (5,1) > (4,2) > (3,3), but (3,3) and (4,1,1) are not
comparable, though both are larger than (3,2,1). This order is widely used in
statistics under the name of majorization (see e.g. Marshall and Olkin (1979)).
James (1978, pg. 8) contains further examples.

LEMMA 1. If X > λ', then r(λ) > r(λ') where r(λ) = χχ(τ)/dχ is given by
(D-2).

Proof. It suffices to consider the case where one box is switched from row b to
a(b > α), i.e. λα = λ'α + 1, h = λ'6 - 1, λc = λ'c for cφ α, 6. Formula (D-2) shows'
that

r(λ) - r(λ') = * {Λ2

α - (2a - l)λβ - λ'α
2 + (2a - l)A'β+

Ti l TV J. J

1 {2λ'α + l - (2α - 1) - (2λ'6 - 1) + (26 - 1)}
n(n - 1)

= "7 7\{K - λ'6 + 6 - α + 1} > —, 7τ > 0
n(n - 1) n(n - 1)

since λ^ > λ̂  and b - a> 1. This argument is correct even if λb = 0.
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LEMMA 2. Let A be α partition of n. Then

(b) r(Λ) <

Proof.
(a) By assumption λ < (λχ,n - λi), so it follows from Lemma 1 and (D-2) that

< , 1

 1λ{A* - λi + n2 - 2n\λ + \\ - 3n + 3AX}n[n — 1)

^ 1 | 2{\\ + Λi - nλ! - n)

-i

n(n — 1)

2(Λ1

n(n - 1)
m m m

COROLLARY. Let λ 6e such that r(λ) > 0. Then

1 2(Λ1+l)(n-Λ1) f Λ >

n n I ^- for all A.

Proof of Theorem 5: If A* denotes the transpose of A we certainly have either
r(λ) > 0 or r(Xt) > 0, because χ\ = -χ\ (see James 1978, p. 25). Hence

2k , / ., Λ \ 2k

λ:r(λ)>0
2k

λ:r(λ)>0

λ:r(λ)>0

For A = (n), which is contained in the next to last, but not the last sum, this
used

) + ( ) (



42 Chapter 3D

In order to bound this sum we split it into two parts according as λi $ ( l-α)n
(where a G (0, \) will be chosen below)

2k / \2k

1 n - 1Σ* 2 f 1 n - l / λ Λ v ^ v-^ f2 / 1 π -
C + v * > ) = Σ . Σ . 4 ( : + —

λ:r(λ)>0 \ / j=l λ:r(λ)>0

(*)

To obtain this we used the corollary to (D-2) above and

2-j x — \e)
>n\

(where the λ' are the irreducible representations of Sn-t).
In order to give a bound for the first sum shown in (*) above recall that

k = ylog n + en;

a n / i \l2
> 2 . -ik/n . V^ I 7 1 " L) . e -2 log n.(l-ί.)(j-l)

^ ( ) ! 2 !

we observe that the factor in front of the sum is exactly e 4c and so all we have
an 2(ι —l) " c m 2>O-i)

to do is to bound Σ Ώ^— n~2^~ n)U~^) — £ I- . n n for large values of

n. The ratio between two consecutive terms in this sum is ^ - n4 ?/n, which, as
a function of j , is decreasing if j < —r21— and increasing if j > —y1—. So if

both the first and the last ratio are less than q < 1 we may bound the sum by
γ^~. But the first ratio is < 1 if n > 17 and the last one is < 1 if -^n401 < 1, i.e.

n > (^•)1^1~4o;. This works well if a < 1/4.
Now let's consider the second sum

- ^ 2 * < ri - 2 c n

; > α n v ^ y j > α n v ^ y

The factor in front of the sum is < e"4c if n > 7 and a is close enough to \.
Hence it is sufficient to bound the sum for large values of n. The ratio between
two consecutive terms is

( r c - J ) 2 ^ l_v n log n
j+1 n-j
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which is decreasing in j . So, if the first of these ratios,

is less than one (this happens if n > O1"^*' ) «α ) we may bound the sum by n
times the first term, that is, by

n

. (I _ a\n log n

Using Stirling's formula one can show that this tends to 0 (very slowly) if rz tends
to oo and so it must be bounded. This completes the proof of the upper bound
part of Theorem 5.

The following argument for the lower bound produces an explicit set A where
the variation distance is large. Intuitively, if not enough transpositions have been
made, there will be too many cards that occupy their original positions. Let A be
the set of all permutations with one or more fixed points. Under U, the chance of
one or more fixed points is well known under the name of the matching problem.
Feller (1968, Sec. IV.4) implies

To bound P*k(A), consider the process for generating P*k using random
transpositions (ii,iZχ),.. .,{Lk,Rk) Let B be the event that the set of labels
{Li,Ri}![=1 is strictly smaller than {l,...,n}. Clearly A D B. The probability
of B is the same as the probability that when 2k balls are dropped into n boxes,
one or more of the boxes will be empty. Arguments in Feller (1968, Sec. IV.2)
imply that the probability of B equals

1 - e~ne + o(l) uniformly in k, as n —• oo.

With k = \n log n + cn,P*k(A) > 1 - e~e~2c^0^. Thus

| |P** - U\\ > \P*k(A) - U(A)\ > (P*k(A) - U(A))

D

Remarks.
1) On Lower Bounds. The argument for the lower bound is satisfying in that

it produces a simple set that "explains" why \n log n steps are needed. On
the other hand, the computation involved two classical results which would
not generally be available for other random walk problems. It is therefore of
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some interest to see how the general approach to lower bounds works out in
this case.
The general approach begins with the upper bound argument and chooses

the difficult or "slowest" representations to construct a random variable to work
with. In the present case, the difficult representation is 5 7 1" 1 ' 1. A reasonable
candidate for a random variable is thus the character χ of this representation.
Observe that this is exactly the number of fixed points minus one. Under the
uniform distribution

M) = 0, VaπKχ) = j ^ i ^ O r ) - (χ|χ) = 1.

Under the convolution measure, with p the n — 1 dimensional representation,

Ek(χ) = ΣP*k(π) Tτp(π) = Tr ΣP*k(π)p(π) = Tr Pik(p) = (n - £

Observe that in order to drive this to its correct value zero, k must be
T^n log n +en for c large. However, this is not enough to lower bound the variation
distance since there are random variables with large means which are small with
high probability. A second moment is needed. To compute this Ek(χ2) is needed.
Now χ2 is the character of the tensor product of χ with itself. It is not difficult
to argue that

Sn-1»1®5n-1 1 = 5n Θ S*-1'1 Θ 5n~2'2 0 Sn-2'1'1

dim (n-1)2 1 n - 1

An explicit proof of this result can be found on page 97 of James and Kerber
(1981).

EXERCISE 13. Using the data above, compute Var/c(χ) and use Chebychev's
inequality to show that \n log n — en steps are not enough.

2) While limited, the approach developed above gives precise results for some
other problems. To begin with, consider random transpositions. The iden-
tity is chosen much more frequently than any specific transposition. It is
straightforward to carry out the analysis for the probability

Pn(id) = pn, Pn(τ) = i - = ^ , Pn(π) = 0 otherwise .

If pn = 1/(1 -f. (2)), all possible permutations are equally likely. In this
case the argument shows that k = c(n)n2 transpositions are needed where
c(n) —> 00 with n. This is somewhat surprising; usually, for a given support
set, the probability that approaches the uniform most rapidly is uniform on
the support set.
Similarly, any simple probability on Sn which is constant on conjugacy classes

can be worked with. A key tool is a uniform bound on the characters developed by
Vershik and Kerov (1981). A readable account of this is given by Flatto, Odlyzko
and Wales (1985). They work out details for probabilities uniform on a fixed
conjugacy class c (e.g., all 3 cycles). Their results imply that jn log n steps are
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always sufficient. This is not surprising — choosing a random 3-cycle mixes more
cards each time and should result in faster convergence.

A simple problem not covered by available techniques is the rate of con-
vergence for a random involution (π2 = id). There are Σpdp of these, which is
asymptotically (j)n^2 e^/y/ΐϊe*. For this and other properties of involutions
see Stanley (1971, pg. 267). Such a measure is constant on conjugacy classes, but
the asymptotics haven't been worked out. It is not hard to show that any non
trivial conjugacy class generates Sn. See Arad and Herzog (1985). Thus there are
many open problems.

Finally, it is straightforward to handle random walks based on measures
constant on conjugacy classes of the alternating group An. The characters of An

are available as simple functions of the characters of Sn. James and Kerber (1981)
Chapter 2 give these results.

EXERCISE 14. Let n be odd. Let Q be uniform on the set of n cycles in An.
Show that Q*2 is close to uniform for large n. (Hint: See formula 2.3.17 in James
and Kerber (1981) or Stanley (1983).)

3) Connections with Radon Transforms, The analysis developed in this section
has been applied to the study of uniqueness and inversion of the Radon
transform by Diaconis and Graham (1985a). Here is a brief description: let
G be a group with d(s, t) a bi-invariant metric: d(rs, rt) = d{sr, tr) = d(sy t).
Let /: G —> R be a function. Suppose we are told not f{s) but

f(s) — ^2 /(*) f°r a ^ s a n d fixed α.
d(s,t)<a

When do these averages determine /? If S = {s: c?(id, s) < a} the Radon
transform is f(s) = is*/(«s). Taking Fourier transforms, the Radon transform
is unique if and only if Is(p) is invertible for every irreducible representation

P
The study of this problem leads to interesting questions of probability and

computational complexity even for groups as simple as Z^. In this case, with d
as Hamming distance, when α = l , / — > / i s l — l i f fπis even; when a = 2, iff n
is not a perfect square; for a > 4 iff n is not in a finite set of numbers.

John Morrison (1986) derived exact results for this problem using Gelfand
pair tools (Section F below). Jim Fill (1987) gives comprehensive results for Zn.
For applications to data analysis, see Diaconis (1983). For general background,
see Bolker (1987).

For G = 5 n , choose d(π, η) as the minimum number of transpositions needed
to bring TΓ to η. This metric is further discussed in Chapter 6-B. For any bi-
invariant metric, Is is constant on conjugacy classes, so ϊs{p) = cl. For a =
1, c = (1 + (2) r(p)). Diaconis and Graham use this result and Frobenius' formula
for r(p) to argue that / —» / is invertible iff n E {1,3,4,5,6,8,10,12}.

4) Perfect codes. Very similar computations occur in a seemingly different prob-
lem treated by Rothaus and Thompson (1966). Let G be a group and T be a
subset of G. Say that T divides G if there is a set 5 in G such that each g 6 G
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has a unique representation st — g with s in S and t in T. For example, if
T is a subgroup, then T divides G. If G = S3 and T = {id, (12), (13), (23)},
then T does not divide 53.
The construction of codes leads naturally to questions of divisibility: Let G

be a group and d(syt) a G invariant metric on G (i.e., d(s,t) = d(gs,gt)). For
example, G might be Z% and d might be the Hamming distance, or G might be
Sn and d(s, t) might be Cayley's distance: the minimum number of transpositions
required to bring s to t (see Chapter 6-B).

A subset S C G is called a code] S corrects k errors if any two code words
are at distance more than 2fc apart; 5 is perfect if G is the disjoint union of balls
of fixed radius centered at the elements of S.

Perfect codes are elegant efficient ways of coding data with minimum waste.
On Z% the perfect codes have been classified; see MacWilliams and Sloane (1977).
The search for codes in other groups is an active area of research.

To see the connection with group divisibility, consider Sn with Cayley's dis-
tance. Take T to be a (solid) ball of radius k about the identity. Observe that T
divides Sn if and only if there is a perfect code S of this radius — indeed, balls
centered at points of S would be disjoint if TS = Sn uniquely.

Rothaus and Thompson considered k = 1, i.e. T as the identity together
with the set of all transpositions in Sn. To explain their result, observe that a
necessary condition for divisibility is (1 + (^))|n! (after all, disjoint balls of radius
1 have to cover). This rules out n = 3,4,5 but not 6 for example. They proved
that if (1 + (2)) is divisible by a prime exceeding y/n + 2, then T does not divide
Sn-

Their argument is very similar to the argument for analyzing repeated ran-
dom transpositions. Interpret the equation ST = G as an equation about the
convolution of the indicator functions of the sets S and T(fs * fr = 1 say ). Tak-
ing Fourier transforms at an irreducible representation leads to c(p)fs(p) = 0,
where c(p) = 1 + (£)χp(τ)/dp. Now one must study when c(p) vanishes (see the
previous remark). One really new thing in the Rothaus-Thompson paper is the
skillful use of transforms at non-irreducible representations to give checkable di-
visibility constraints on n. The argument is fairly detailed and will not be given
here. Sloane (1982) connects this work with the modern coding literature and
gives many further applications. Chihara (1987) extends the results to Chevalley
groups.

EXERCISE 15. Rothaus and Thompson report 1, 2, 3, 6, 91, 137, 733, and 907
as the only integers less than 1,000 which fail to satisfy the theorem. The naive
criterion does 3, (and S2 is divisible). Show that Sβ is not divisible.

5) Varying the measure. The ideas developed above can be used for some re-
lated problem like transpose a random card with the top card, or switch the
top k cards with k randomly chosen cards. Here we have a measure on Sn

invariant under conjugation by Sk and bi-invariant under Snk The Fourier
transform can be shown to be diagonal with explicitly computable elements.
See Diaconis (1986) or Greenhalgh (1988) for further details.

6) Random reflections. Similar analyses are possible for other random walks
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constant on conjugacy classes. For example, let G = 0p — the p-dimensional
orthogonal group. One practical problem involves algorithms for choosing a
random element of G when p is large (e.g. p = 256). The usual algorithm
begins with p2 standard normal random variables X^ , forms a matrix M =
{Xij} and makes M orthogonal using the Gram-Schmidt algorithm. It is easy
to show that this results in a random orthogonal matrix uniformly distributed
on G. Diaconis and Shahshahani (1987a) discuss this and other algorithms.
In carrying out the Gram-Schmidt algorithm, the ith row of M must be
modified by subtracting out the inner product of all rows above it. This
entails computation of i — 1 inner products. Each inner product involves p

p

multiplications and additions. The whole procedure takes order p ]Γ) i =

0(p3) operations. This is often too large for practical use.
Sloane (1983) contains a fascinating application to encrypting telephone con-
versations. Sloane suggested generating a matrix by using random reflections.
Geometrically this involves choosing a random point U in the p-sphere and
reflecting in the hyperplane orthogonal to U. Algebraically the matrix is
Γ = (/ — 2UU1). Observe that the distribution of Γ is constant on conjugacy
classes because Γ i ( J - 2UU')T[ = (I-2TιU(T1U)t). If U is uniform on the
p-sphere, Γχί7 is uniform as well. There is a straightforward extension of the
upper bound lemma to compact groups. The analysis can be carried out to
show that jp log p + cp steps are enough (while \p log p — cp steps are too
few). Some details can be found in Diaconis and Shahshahani (1986a).
In this problem, P is singular with respect to the uniform distribution, but
P*k has a density for k > p. Thus variation distance bounds make sense. For
random walks on continuous compact groups involving a discrete measure,
the distribution is always singular and only bounds in a metic for the weak
star topology can be hoped for.

7) Random walks on linear groups over finite fields. The problem described
above can be carried out over other fields such as C (to generate a random
unitary matrix) or Fq - a finite field with q = pd elements. Here is another
problem which should lead to interesting mathematics. Let V be a vector
space of dimension d over Fq. Let SLd(V) be the dxd invertible matrices with
determinant 1. This is a finite group of order ^2^Πf=2(g2 - 1). A transυection
is a linear transformation in SLd(V) which is not the identity but fixes all
elements of a hyperplane. Suzuki (1982, Sec. 9) shows that if d > 3, the
transvections form a single conjugacy class that generates SLd(V). Thus,
the question "how many random transvections are required to get close to
the uniform distribution on SLd(V)Ί" can be attacked by the method of this
section.
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E. THE MARKOV CHAIN CONNECTION.

1. INTRODUCTION.

There is another approach to random walks on groups: treat them as Markov
chains with state space G and |G| X |G| transition matrix Q{s,t) = Qfo'1).
In early attempts to understand the problem of random transpositions Joseph
Deken did exact computations of the second largest eigenvalue for decks of size
n = 2, 3, . . . , 10. He found it to be (1 — 2/n). This is precisely the constant in
the Fourier transform at the "slow" representation (see Theorem 5 of Section D).
This striking numerical coincidence suggested that (a) the (1 — 2/n) result must
hold for all n, and (b) there is a close connection between the Markov chain and
group representation approach. Some of this was worked out by Diaconis and
Shahshahani (1981), who showed that the eigenvalues of the transition matrix are
precisely the eigenvalues of Q(p), each appearing with multiplicity dp.

The following discussion uses work of Matthews (1985). It results in a sort of
diagonalization of the transition matrix and an exact determination of eigenvalues
and eigenvectors where these are available. This allows us to use results from
classical Markov chain theory.

2 . A SPECTRAL DECOMPOSITION OF THE TRANSITION MATRIX.

Let G be a finite group with elements {si,..., s;v}, N = |G|. For a probability
Q on G, construct Q(i,j) = Q(SJS~1) — the chance that the walk goes from s t

to Sj in one step. Suppose that the irreducible representations are numbered
ρly...,pκ. Define

(1)

a d\ X d\ block matrix with Q(pk) the Fourier transform of Q at />&.

ίMx 0

(2) Let M be the N x N block diagonal matrix j

\ 0 Mκ

Suppose that a basis has been chosen so that each irreducible representation
is given by a unitary matrix. Define

(3) φk(s) = )J jjr(ph(s)n, Pk(s)2i,..., Pk(s)dkU pk{s)u,..., Pk(s)dkdk ) τ ,

a column vector of length d\. Let φ(s) = (φι(s)τ, ψ2{s)T, > Φκ(s)T)τ be a
column vector of length N obtained by concatenating the ψk(s) vectors.

(4) Let φ be the N X N matrix (φ(sι),..., φ(sjy)) and φ* its conjugate

transpose .
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Theorem 6. The transition matrix Q(i<,j) can be written

(5) Q = φ*M*φ

Remarks. The Schur orthogonality relations show that φ is a unitary matrix.
So (5) is a decomposition similar to the traditional eigenvalue, eigenvector de-
composition. It implies that each eigenvalue of Q(p) is an eigenvalue of Q(i,j)
with multiplicity dp. Together these are all the eigenvalues of Q{i,j). If M is
diagonal (e.g. Q constant on conjugacy classes or bi-invariant on a Gelfand pair
(Section F below)), then (5) is the spectral decomposition of Q with respect to
an orthonormal basis of eigenvectors.

Proof of Theorem 6: The Fourier inversion theorem gives

K K

k = l A : = l

Expanding the trace, this equals

K

D

3. T H E FIRST HIT DISTRIBUTION.

Let G be a finite group and Q a probability on G. For s,t £ G, define
JFJJ = the probability that t is first hit at time n starting at s. For \z\ < 1 let

Fst(z) = Σ F?tz".
n=l

Theorem 7. For \z\ < ! , ( / - zQ(p)) i>s invertible and

(z) = ΣpdpTτ[I -

Proof. Using the notation of Section 2, Q(z) = Σ znQn = {φ*(I - zM*)-χφ}.
n=l

Kemperman (1961, pg. 18-19) gives the standard result

Fst{z) = Qst(z)/Qt(z).

The result follows from this and (5) above. It is given a direct independent proof in
Section H. It is mentioned here to underscore the availability of the Markov chain
machine in situations where all the eigenvalues and eigenvectors of the transition
matrix are known.
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4. ON GENERALIZED CIRCULANTS.

The technique we have developed for analyzing random walks gives rise to
a class of "patterned matrices" for which we can explicitly determine all the
eigenvalues and eigenvectors. Let G be a finite group of order g. Let s i , . . . , sg be
an enumeration of the elements of G. Let P be a probability measure on G. The
transition matrix associated with P is the g X g matr ix with i , j entry P^SjS^1).
If a random walk on G is thought of as a Markov chain with G as state space, the
i, j entry is the probability of a transition from state S{ to state Sj. We have been
working with measures which are constant on conjugacy classes. Generalizing this
somewhat define a G-circulant as a g X g matrix with i, j entry /{SJS'1) with /
constant on conjugacy classes.

Examples. If G is Abelian, then the equivalence classes consist of single el-
ements. If G is cyclic, then a G circulant is an ordinary circulant: a g x g
matrix in which each row is a cyclic shift of the first row. For G = S3 the
equivalence classes are {id},{(l 2),(1 3), (2 3)}{(1 2 3),(1 3 2)}. If /(id) =
α,/(l 2) = 6,/(I 2 3) = c and the group is labelled in order (using ( )
notation) (1 2 3)(1 3 2)(2 1 3)(2 3 1)(3 1 2)(3 2 1), we get

(a
b
b
c
c

Let G be 1he

b
a
c
b
b
c

8

b
c
a
b
b
c

c
b
b
a
c
b

c
b
b
c
a
b

b\
c
c
b
b
a)

element

value
α + 3δ
a - 3 6

a —

quartemion

+ 2c
+ 2c
c

group

typical vector
(1
(1
(2

G =

1 1 1 1
- 1 - 1
0 0 - 1

{±1,±*

1)
1 1
- 1

,±J

- i )
0)

dim
1
1
4

with multiplica-

tion given by / \.. Thus ij = k,kj = —i, etc. There are five conjugacy classes:
k <— j

} { } { . Let them have weight a, b, c, d, e. Label the group 1,
-1, i, -i, j , -j, k, -k. We get

fabccddee\
baccddee
ccabeedd
ccbaeedd
ddeeabcc
ddeebacc
eeddccab

\e e d d c c b a)

value typical vector dim
•2c + 2d + 2e ( 1 1 1 1 1 1 1 1 ) 1
-2c-2d-2e (1111-1-1-1-1) 1
- 2d - 2c - 2e ( 1 1 - 1 - 1 1 1 - 1 -1) 1
-2e-2c-2d (11-1-1-1-111) 1
a-b ( 1 - 1 0 0 0 0 0 0 ) 2

Theorem 8. Let M be a G-circulant. Then M has an eigenvalue \p for each
irreducible representation p of G,

λp ~ d
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the eigenvalue λp occurs with multiplicity d2

p.

Proof. The spectral decomposition of Section 2 above proves a stronger result:
it gives the eigenvectors as an explicit arrangement of the matrix entries of the
irreducible representations.

Remarks.
1. There is a lovely book called Circulant Matrices by Phillip Davis (1979). It

seems like a nice project to go through the book and generalize all the results
to G-circulants.

2. Note that the character vector (χp(sι).. .χp(sg)) is always an eigenvector for

3. The argument generalizes easily to a transitive action of G on a finite set X. If
P is a probability on G, then P induces a Markov chain on X. The transition
matrix of this chain has the same eigenvalues as the matrices P(p), where p
runs over the irreducible representations of G that appear in the permutation
representation of G on X. This is developed in Section F which follows.

4. Example 3 of Section C suggests some further extensions. This begins with
the Markov chain Xn = 2Xn_i + En (mod p) with E; i.i.d. taking values
0, ±1 with probability j . The transition matrix M of this chain is not a
circulant, but the argument shows that its ath power is a circulant, where a
is the order of 2 (mod p). Thus one knows, up to an ath root of unity, all the
eigenvalues of M. Remark 2 of the example suggests many further situations
where a similar analysis is possible.

F. RANDOM WALKS ON HOMOGENEOUS SPACES AND GELFAND PAIRS.

1. HOMOGENEOUS SPACES.

There is an extension of the basic set up which is useful. It involves the
Markov chain induced by a random walk under the action of a group. This arises
in some of the introductory examples: for instance, in considering the recurrence
Xn = αnXn_i +&nXn_2 (mod p), a random walk on 2 x 2 matrices was considered.
The matrices act on pairs (Xn,Xn_i). To understand the behavior of Xn it is
not necessary to bound the rate of convergence on the group of matrices, but only
on the set of non-zero pairs. Similarly, the grand tour example in section A4 only
involved the action of the orthogonal group on lines or planes.
Definition. Let G be a finite group and X be a finite set. An action of G on X
is a mapping from G X X —» X which we will denote (s, x) —» s x or simply sx.
It must satisfy: id -x = x and s (t x) = (st) x. Define an equivalence on X
by x ~ y if for some s £ G,sx = y. The equivalence classes are called orbits. G
operates transitively on X if there is only one orbit. A set with a group acting
transitively is called a homogeneous space.

When G operates transitively, the following canonical representation of X
is useful. Fix xo G X. Let N — the isotropy subgroup of XQ - be the set of
s G G with sxo = XQ. The group G acts on the coset space G/N. There is an
isomorphism between X and G/N respecting the action of G. We will identify
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X with £o, # 1 , . . . , a?n, a set of coset representatives for TV in G. It will always be
assumed that x$ = id.

Example L The symmetric group Sn acts on {1,2, ...π} transitively. The
isotropy subgroup is isomorphic to 5n_i — as all permutations fixing 1. Coset
representatives can be chosen as the identity and the transpositions (12),..., (In).

A probability P on G induces a probability P o n l = G/N by P(xi) =
P(xiN). Similarly, if P*k denotes the convolution of P with itself k times, P*k

induces a probability on X. We can think of a process with values in (7, say id,
S 3 S 2 S 1 , . . . T h e i n d u c e d p r o c e s s i n X is xo? S i # o ? S2S1X0,... .

EXERCISE 16. Let the finite group G act on the finite set X, partitioning X
into orbits θ{. If P and Q are probabilities on X which are G-invariant, then

\\P-Q\\ = ±Σ\P(θi)-Q(θi)\.

Thus, the variation distance between P and Q equals the distance between their
restrictions to the set of orbits. This is a special case of the following result: if
P and Q are probabilities on a σ-algebra T and if a sub-σ-algebra B C T is
sufficient for P and Q, then \\P - Q\\jr = \\p - Q\\B, See Diaconis and Zabell
(1982) for details and applications.

LEMMA 3. Let G act transitively on X. Let P be a probability on G. The
induced process is a doubly stochastic Markov chain on X with transition matrix
Px(y) = P(yNχ-1).

Proof. For the induced processes, the chance of going from x to y in one step is
Pχ(y) defined as P{s:sx = y} = PlyNx"1}. For a Markov chain, the chance of
going from x to y in two steps is of course

The chance that the chain in question is at y in two steps is

Let s = xπ, we get

= ΣP{yNn-λχ-χ) P{xn) = ^PiyNx-1) • P(xN) = Px

2

0(y).

The last computation is essentially the inductive step of a proof that the measure
induced by P*k on X equals Pk

Q(y). D

To state the next result, introduce L(X) — the set of all functions from X
into the complex numbers. The action of G on X induces an action of G on L(X)
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by sf(x) = f(s~1x). This is a 1 — 1 linear mapping of L(X), and so yields a
representation of G. The representation splits into a direct sum of irreducible
representations p.

LEMMA 4. (Upper bound lemma). Let G operate transitively on the finite set
X. Let N be the isotropy subgroup. Let P be a right N invariant probability on
G,P the induced probability on X, and U the uniform distribution on X. Then

\\P-U\\2 <\Έ*dpTr{hp)hpY}

where the sum is over all nontrivial irreducible representations that occur in
L{X).

Proof. Let U be the uniform probability on G.

(Σx\P(x) - U{x)\γ < \X\Σx\P(x) - U(x)\2 = \X\ \N\Σs\P(s) - U(s)\2

In the last step, the Plancherel theorem was used together with the facts that a
right N invariant function has zero Fourier transform if p does not occur in L(X).
This follows from the following lemma and remark. D

LEMMA 5. Let p,V be an irreducible representation of the finite group G. Let
N C G be a subgroup Έind X = G/N the associated homogeneous space. The
number of times that p appears in L(X) equals the dimension of the space of N
fixed vectors in p, V(= dim{v G V: p{n)v = v for all n (Ξ N}).

Proof Let {δx(-)} be a basis for L(X). The character χ for the representation
of G on L(X) is

χ(s) = Hx .δxis^y) = δx(y)}\ = \x:sx = x\

= \x:x~λsx E JV|.

Now, the number of times p appears in this representation is

(χp\χ)= ΪG| Σ *p(s)χ(s) = TQ\ Σ χ^ s) Σ 1

i/^i * J X p\ ) / J
|\jr I

X

But, for any fixed n,

Σ
S,X

To see this observe that for fixed n,z,s = xnx~x is determined. Further, if
x~xsx = n, then (tx)'1 tst'1 (tx) = n for all t E G. Since G operates transitively
on X, for every y G X there is a unique 5* such that y~τs*y — n.
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Since \G\/\X\ = \N\,

(XP\X) = JfZn

The right side is the number of times the trivial representation appears in χp

restricted to N. This is just the dimension of the space of N fixed-vectors. D

Remarks. Lemma 5 is a special case of Frobenius' reciprocity formula. The
representation L(X) is the trivial representation of N induced up to G. Frobenius'
formula says the number of times a representation pofG appears in the induction
of λ (a representation of N) to G equals the multiplicity of λ in p restricted to
N. Chapters 3 and 7 of Serre (1977) give further development. The general result
is proved by essentially the same combinatorial argument. For present purposes,
Lemma 5 is all that is needed.

Using Lemma 5, if p does not occur in L(X), the trivial representation does
not occur in p restricted to N. Now, the orthogonality relations (Corollary 2 of
Schurs lemma in Chapter 2) yield Σnp(n) = 0. For a right N invariant function
/ o n G ,

f(p) = Σ* f(x) p(x)Σn p{n) = 0.

This completes the proof of the upper bound Lemma 4.

The next section discusses a collection of examples where a huge simplification
occurs.

2. G elf and pairs

This is a class of examples where the Fourier analysis becomes simple. Con-
sider, as above, a group G acting transitively on a finite set X with isotropy
subgroup N. A function f:G-+Cis called N-bi-inυariant if f(n\sri2) = f(s) for
all s G G,nun2 G N.
Definition. G, N is called a Gelfand pair if the convolution of N bi-invariant
functions is commutative.

One value of this definition comes from a long list of examples. Some of these
are discussed later in this section. Letac (1981, 1982) or Bougerol (1983) present
very readable surveys of available results. The following theorem is basic:

Theorem 9. The following three conditions are equivalent
(1) GjN is a Gelfand pair.
(2) The decomposition of L(X) is multiplicity free.
(3) For every irreducible representation (p, V) there is a basis of V such that

f{p) = ( o o ) (a ma^x wtth z e r o entries except perhaps in the (1,1) position)
for all N -bi-invariant functions f'.

Proof. Assume (2), so L(X) = V\ Θ V2 Θ.. .φ Vm say. This is multiplicity free, so
by Lemma 5 above, each V{ has a non-trivial one-dimensional space of N invariant
functions. Choose so called spherical functions S{ E V{ to be left iV-invariant and
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normalized so Si(id) = 1. Complete S{ to a basis for VJ chosen so pi(n) = (J °)
for all n G iV (the top block is 1 x 1, the bottom block is (df - 1) X (d{ - 1)).

For / an iV-bi-invariant function,

But pi restricted to N has a one-dimensional space of fixed vectors. By the
orthogonality relations for the matrix entries, the (α, b) entry satisfies

«>(„)= ( W ifβ = 6 = l
1 10 otherwise.

n

Thus f(pi) has the form Σf(x)(t 0) = (: 0). This argument works for any right

invariant function /. For left invariant /, a similar argument shows that f(pi)

has form ( ό" ). From Lemma 5, if p does not appear in L(X), f(p) = 0. This

shows (2) implies (3).
Clearly (3) implies (1) by taking Fourier transforms. To finish off, suppose

(1) but some pi has multiplicity j > 1 in L(X). Pick a basis of V{ with first j co-
ordinates spanning the iV-invariant space. Take M\,Mi any two non-commuting
j x j matrices. Define /i, fa on G by

fi(p) = f2(p) = 0 X P ϊ Pi

Mx 0\ . (Mi 0

By Fourier inversion, these are non-zero, 7V-bi-invariant functions and /i * /^ Φ

/2*/i Π

COROLLARY. Lei (G, JV) be a Gelfand pair with L(X) = VΎ φ . . . 0 Vm. Each
V{ contains a unique N-invariant function Si with Si(id) = 1. // the Fourier
transform of an N invariant probability P on X is defined by

P(i) = ΣxSi(x)P(x),

then, for U the uniform distribution on X

Remarks. The corollary follows from the theorem above and the upper bound
lemma of the last section. The Si are called spherical functions. They have been
explicitly computed for many groups. From part (3) of the theorem Si(x) =
Pi(x)n- This sometimes serves as a definition, or as a way of computing spherical
functions: take (/>i,Vί), a unitary representation that appers in L(X). By the
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theorem, V{ contains a one-dimensional space of N fixed vectors. Let u be a unit
iV-fixed vector. Then S{(x) =< pi(x)u,u >. The Si are left N invariant functions
on X. They are also JV-bi-invariant functions on G. Turning things around, if
the spherical functions are known, the * in Theorem 9-3 can be computed as

Σ
EXERCISE 17. Let χ; be the character of a representation pi that appears in

L(X). Show

Thus the spherical functions are determined by characters.

3. Example: The Bernoulli-Laplace model of diffusion.

As a specific example of the techniques discussed above consider the following
model of diffusion suggested originally by Daniel Bernoulli and Laplace. Feller
(1968, p. 378) contains the history. There are two urns, the first containing n
red balls, the second containing n white balls. At each stage, a ball is picked at
random from each urn and the two are switched. Evidently, many switches mix
things up and it is not difficult to show that once things reach equilibrium they
evolve (approximately) as an Ornstein-Uhlenbeck process (at least for large n).
The problem is, how many switches are required to reach equilibrium? In what
follows, we show that ~ log n + en switches suffice.

It is just as simple to solve the same problem with r red balls in the first urn
and b black balls in the second urn. Let n = r + b. A convenient mathematical
model for this has X — Sn/Sr X Sb', thus X can be thought of as the set of
r element subsets of a set with n elements. For x,y £ X define the distance
d(x,y) = r - \x Π y\. This is a metric (see Chapter 6-D), and the random walk
problem becomes the following: start at XQ = {1,2,.. . , r } . Choose an element
inside XQ and an element outside XQ and switch them. This chooses a set x at
distance one from xo at random. The following result is proved by Diaconis and
Shahshahani (1987b).

Theorem 10. For nearest neighbor random walk on the r sets of an n set, if
k = j ( l — £•) log n + cr then

for positive universal constants a and d.

Proof. Without loss, take r < n/2. The space decomposes as L(X) = Vb θ
V\ ® . . . © Vr where V{ is the irreducible representation of the symmetric group
Sn corresponding to the partition (n — i, i). James (1978) gives this result as well
as dim(Vί) = (J1) - (t ̂ 1 ) . In particular, the pair (Sn,Sr X 5&) is a Gelfand pair.

The spherical functions have been determined by Karlin and McGregor (1961)
in studying an equivalent formulation in a genetics example (Moran's model).
Stanton (1984) contains this result in modern language. The spherical functions
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turn out to be classically studied orthogonal functions called the Dual Hahn or
Eberlein polynomials. The function Si(x) only depends on the distance d(x,xo)
and is a polynomial in d given by

0 < , < r,

where (j)m = j(j + 1 ) . . .(j + m - 1). Thus,

2(nl)rf
()r(n-r) (n-r)(n-r-l)r(r-l)

The basic probability P for this problem is supported on the r(n — r) sets of
distance one from the set {1,..., r}. Thus the Fourier transform of P at the ith
spherical function is

(3) p ( i ) = ί i ( 1 ) = ! _

Now the corollary to Theorem 9

^ r ( n - r ) y

To bound this sum, consider first the term for i = 1,

This is essentially

Thus k must be j ( l - £) log n at least to kill this term. If r = n/2, this becomes
j log r. If r = o(n), this becomes | log n.

Next consider the final term

This is certainly bounded above by

nT 1 _ -2k log f+r log π- log r!

2 /

In any case, if k is of order ~(1 - ^) log n, this tends to zero exponentially
fast. The intermediate terms are always geometrically smaller than the extreme



58 Chapter 3F

terms, just as with the argument for random transpositions. Further details are
in Diaconis and Shahshahani (1987b). •

Remark 1. As described in Section E, the analysis gives a precise formula for
the eigenvectors and eigenvalues of the transition matrix of this problem treated
as a Markov chain. Karlin and McGregor (1961) essentially derived this result
without using group theory. Their application was to a similar problem arising
as a genetics model due to Moran. A clear discussion of Moran's model can be
found in Ewens (1979, Sec. 3.3). Diaconis and Shahshahani give applications to
a learning problem discussed by Piaget.

Remark 2. As usual with approximation, some precision has been lost to get
a clean statement. The basic result is the bound of the corollary to Theorem 9.
When r = 1 for example there is only one term: (π — l)(^zγ)2 / c. For k — 1 taking
square roots gives \ ~τ=ψ as an upper bound for the variation distance. Elemen-
tary considerations show that the exact distance in this case is 1/n. Here, when
n is large, use of the upper bound lemma gives the right answer for the number
of steps required (namely 1) to make the distance small but an overestimate for
the distance itself.

EXERCISE 18. Consider two urns, the left containing n red balls, the right
containing n black balls. At each stage "α" balls are chosen at random from each
urn and the two sets are switched. Show that this is bi-invariant. Show that for
fixed α, as n —> oo, this speeds things up by a factor of a (so j^n log n moves
suffice).

Remark 3. A reasonable number of other problems allow very similar analysis.
Stanton (1984) contains a list of finite homogeneous spaces arising from Chevalley
groups where (a) the associated L(X) is a Gelfand pair, and (b) the spherical
functions are explicitly known orthogonal polynomials. One case of particular
interest is a walk in the set of r-dimensional subspaces of an s dimensional vector
space over a finite field. See Greenhalgh (1988) for details. In all cases, there is a
natural metric so that nearest neighbor walks on X allow a 1-dimensional analysis.
For the example of r-dimensional subspaces the distance is d(x, y) = r — dim(xΠy).

A special case of this analysis is nearest neighbor walk on the cube X = Zg.
Here G can be represented as the semi-direct product of Z% with Sn. This is the
group of pairs (z,τr) for x G Zζ, π £ Sn. It acts on y e Z% by (a:,π)(y) =
πy + x. Multiplication in G is composition of repeated transformations. Choosing
xo = 0, the isotropy subgroup is N = {(0,τr):π G Sn} = Sn. It is easy to
verify that L(X) = Vo © Vλ 0 . . . 0 Vn where Vj is the subspace spanned by
the functions {fy(x)}\y\=j and fy(x) = (-l)x'y. Thus G, N is a Gelfand pair
and dim Vj = (™). The spherical functions Sj(x) again only depend on d(x,0)
(with d(x,y) = #places(x2 φ yι)) and are polynomials in d called Krawtchouk
polynomials:

m = 0
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The upper bound found by treating this problem as a Gelfand pair is the same as
the upper bound by treating the problem on the group Z% (Example 2 of Section
C).

Remark 4 The theory of Gelfand pairs can be developed without using group
theory. One advantage of the present program is that it offers a route to follow for
problems where the representation is not multiplicity free. For example, consider
the Bernoulli-Laplace urn model with 3 urns; the first containing n red, the second
containing n white, the third containing n blue balls. At each stage, a pair of urns
is chosen at random, then a randomly picked pair of balls is switched. Analysis
of the contents of even the first urn is complicated by the fact that the associated
representation of S$n on L(X), with X — S$nlSn X Sn x Sn, has multiplicity.
(See Young's rule in Chapter 7.) This is an open problem.

There is a useful sufficient condition for showing that (G, N) is Gelfand with-
out explicitly determining the decomposition of L(X).

LEMMA 6. (Gelfand's lemma). Let r be 1 — 1 homomorphism τ:G —» G with
the property θ " 1 £ Nr(s)N for all s £ G. Then (G, N) is a Gelfand pair.

Proof Note first that for bi-invariant functions /(s"""1) = f(τ(s)) and τ(N) C N.
If / is bi-invariant, define f(s) = /(s" 1 ) , fτ(s) = f(τ(s)). Thus / = / τ . Now

Σsf(ts-ι)g(s)y so

fig(t) = ΣsfiΓ's-^gis) = ΣJiz-'MzΓ1) = Σ2f(z)g(tz-1) = g*f(t),

U * gY(t) = ΣsfiτWs-'Ms) = Σ/ίrWφ)-1),^)) = Γ * gT(t).

It thus follows that for all bi-invariant /, g

so/*<7 = # * / . D

Example 1. Let N be any group, A an Abelian group and suppose N acts
on A. Form the semi-direct product G — N xs A as the set of pairs (n,a)
with (fi2,α2)(ni,αi) = (n 2ni,n 2ai + a2); (n^a)'1 = (n" 1 ,-n~ιa). These are
all Gelfand pairs as one sees by considering the 1 — 1 homomorphisms τ(n,a) =
(n,-a). This satisfies (n,a)'1 = (n- 1,0)(n,-α)(n " 1,0).

As examples we have the dihedral groups, the group of the cube (Sn Xs Z^)^
the afRne group Z^ xs Zm. The Euclidean group SOd XsR

d is also a Gelfand
pair.

Example 2. (Groups of isometries). Let (X, d) be a finite metric space on
which G acts. Suppose d is G invariant. Say G acts 2 point homogeniously if for
all (zi,2/i), (#2>2/2) with d(x\,yι) = ̂ (#2,2/2) there is an s such that szi = #2,
sj/i = 2/2- Observe that G operates transitively (take x\ = yi, X2 = 2/2? then
sxi = x2 for some s). Pick x0 £ X, let N = {s £ G:sx0 = xo} Then (G,N) is
Gelfand with τ(s) = s. To see this observe ψ o ^ a o) = d(xo^s~1xo). Thus there
is an n so ns^o = ̂ ""1#o This implies sns £ TV, so s"1 £
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There are many special cases for this construction - most notably graphs
whose automorphism groups act 2 point homogeniously. Biggs (1984) gives an
extensive list, and a detailed recipe for determining the associated spherical func-
tions. As a special case, consider X as the k sets of an n set with distance
d(x,y) = k - \x Π y\. The symmetric group Sn operates 2 point homogeniously.
The isotropy subgroup is S* X Sn-k, and we have recaptured the Bernoulli-Laplace
model. A continuous example has X = Sn (the n-sphere), G = SO{n).

It is interesting to know when (G, N) can be shown Gelfand by the existence
of a homomorphism r. Diaconis and Garsia (1988) show that τ(s) = s works if and
only if the representation of G in the space of real functions on X is multiplicity
free. They also present counter examples (a Gelfand pair that doesn't admit an
automorphisim) and discussion.

We have seen that Fourier analysis of bi-invariant functions on a Gelfand pair
offers a rich theory and collection of examples. The commutativity, which makes
life so easy here, is also present in the analysis of functions that are constant on
conjugacy classes. It is not surprising that one can be regarded as a special case
of the other.

EXERCISE 19. Let G be a finite group. Let G x G act on G by (s, t)x = s~Ύxt.
The isotropy subgroup N in G X G is isomorphic to G as is the quotient space X.
Show that (G X G, N) is a Gelfand pair. The decomposition of L(X) is into p φ p
with p(s) = p*(s~1) as p varies over irreducible representations of G. These are
all distinct irreducible representations of G X G. Find the spherical functions in
terms of the characters and show how Fourier analysis of N invariant functions
on X via Gelfand pair techniques is the same as Fourier analysis of functions
constant on conjugacy classes as developed in section D.

There are two generalizations of Gelfand pairs worth mentioning here: asso-
ciation schemes and Hypergroups.

An association scheme is a finite set X with a collection of relations iZo, -Hi,
. . . , iϋrf. Take R{ as a zero-one matrix indexed by X with a 1 in position (z, y) if
x and y are related in the ith relation. The JR 'S satisfy axioms: (1) Ro = Id, (2)
ΣRi = J (matrix of all ones), (3) for every i there is an i1 such that R\ = R{^ (4)
RiRj = ΣpijRk for non-negative integers p* . If R{Rj = RjR{, the association
scheme is called commutative.

Commutative association schemes have an interesting elementary theory.
MacWilliams and Sloane (1981) give an efficient development. Bannai and Ito
(1986, 1987) give a very well done encyclopedic treatment.

- Because of (4) the set of all linear combinations of the Ri form an algebra.
For commutative association schemes the Ri can be simultaneously diagonalized.
For many examples, this diagonalization is very explicit.

As one example, take G a group, H a subgroup with X = G/H and (G, H) a
Gelfand pair. Then G acts on X X X by g(x, y) = (gx, gy). Take the orbits of this
action as relations on X. These relations form a commutative association scheme
with algebra isomorphic to the convolution algebra L(X).

In the other direction, consider a commutative association scheme X. The
axioms imply that every row and column of Ri have the same number ki of ones
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in each row and column. Thus Ri/k{ is a doubly stochastic matrix. If wt > 0 sum
to 1,

f
is doubly stochastic and so defines a Markov chain on X. The point is, for hun-
dreds of examples, this Markov chain is explicitly diagonalizable using available
information. Classical Markov chain techniques can then be used to derive answers
to the usual questions. Diaconis and Smith (1987) derive an appropriate upper
bound lemma and carry through some examples that don't arise from groups.

Association schemes were originally developed by statisticians for analysis of
variance problems. Speed (1987) shows how they have come to life recently for
new statistical applications. Coding theorists, combinatorialists, and finite group
theorists have been the principal developers of assocation schemes in recent years.
Bannai and Ito (1986, 1987) survey these developments and examples.

A Hypergroup begins with a set X and introduces a product on probabilities
on X — so the product of two pointmasses is a probability (which is not usually a
point mass). For example, a product can be introduced on the conjugacy classes
of a group: e.g. in the symmetric group, the product of two transpositions can be
the identity, a 3-cycle on the product of two 2-cycles. These occur with certain
mass. As a second example, the set of irreducible representations on a compact
group can be made into a Hypergroup using the Tensor product and its associated
weights.

A reasonable amount of theory and examples have been developed. There has
started to be a payoff to more classical areas. For example, Bochner's theorem for
Gelfand pairs or class functions follows from Hypergroup Theorems of Johanson
(1981). It is still unknown in general cases. Gallardo (1987) presents a nice
example of Fourier analysis for a class of birth and death processes that is available
by interpreting the decomposition of Tensor products on SU(2) as rules for births
and deaths. Zeuner (1987) gives a unified treatment of central limit problmes on
Hypergroups and pointers to related literature.

Hypergroups offer a continuous generalization of association schemes. They
appear to offer an extension worth keeping track of.

There are many further topics to discuss relating to Gelfand pairs. The
interested reader is referred to the annotated bibliography in Section G.

G. SOME REFERENCES ON GELFAND PAIRS.

The literature on Gelfand pairs is already sizeable. I hope the following anno-
tated bibliography will help. The articles by Bougerol and Stanton are very clear
and give details. The articles by Sloane and Heyer have extensive bibliographies.
Bailey, R. and Rowley, C. A. (1987). General balance and treatment permu-

tations. Techical Report, Statistics Department, Rothamsted Experimental
Station. Harpenden, Herts, AL5 2JQ, United Kingdom.
This paper is important in offering a bridge betwen the mathematics of

Gelfand pairs and an important component of designed experiments — gener-
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alized balance. Many experimental designs are constructed using group theory.
The paper shows that many such designs automatically have nice statistical prop-
erties.

Biggs, N. (1974). Algebraic Graph Theory. Cambridge University Press, London.

Chapters 20, 21 discuss "distance transitive graphs." These are what we
called two-point homogeneous. Graph theorists have derived lots of facts about
the eigenvalue, eigenvectors of these groups redeveloping the tools of Gelfand
pairs.

Bougerol, P. (1983). Un Mini-Cours Sur Les Couples de Guelfand. Pub. du Labora-
toire de Statistique et Probabilities, Universite Paul Sabatier, Toulouse.

A terrific set of lectures with complete proofs and no "baloney," many exam-
ples.

Bougerol, P. (1981). Theoreme Central Limite Local Sur Certains Groupes de Lie.
Ann. Scient. Ec. Norm. Sup. 4th Ser. i, 14, 403-432.

A serious application in probability, showing how general results (not re-
stricted to bi-invariant functions) can be derived using the machinery of Gelfand
pairs.

Cartier, P. (1972). Functions Harmoniques Sur Un Arbe. Symposia Math. 9, 203-
270.

An elegant combinatorial derivation of all properties of this Gelfand pair. See
Sawyer (1978) for an application.

Diaconis, P. and Graham, R. L. (1985). The Radon Transform Z\. Pacific Jour.
118, 323-345.

This can all be carried over to bi-invariant neighborhoods on Gelfand pairs.

Diaconis, P. and Shahshahani, M. (1987). Time to reach stationarity in the Bernoulli-
Laplace diffusion model. SIAM Jour. Math. Anal. 18, 208-218.

A longer version of Section F-3 above.

Dieudonne, J. (1978). Treatise on Analysis VI. Academic Press, New York.

A reasonably self-contained single source. Weighted toward the analyst, but
it's possible to read.

Farrell, R. (1976). Techniques of Multiυariate Calculation. Lecture Notes in Math,
No. 520. Springer-Verlag, Berlin.

The only attempt at a beginning to end treatment of the mathematics of
multivariate analysis that really does zonal polynomials.

Gangolli, R. (1972). Spherical functions on semi-simple Lie groups. In Symmetric
Spaces, W. Boothby and G. Weiss. Marcel Dekker, New York.

Gangolli's article is a well written introduction to computations on continuous
groups involving the Laplacian and its generalizations. The whole book consists
of survey articles, roughly on the same topic.

Guillemin, V. and Sternberg, S. (1984). Multiplicity free spaces. J. Differential
Geometry 19, 31-56.
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This is included to show this area is still under active development.
Helgason, S. (1978). Differential Geometry Lie Groups and Symmetric Spaces. Aca-

demic Press, New York.
Helgason, S. (1984). Groups and Geometric Analysis: Integral Geometry Invariant

Differential Operators^ and Spherical Functions. Academic Press, New York.
These two books give a comprehensive modern treatment of continuous

Gelfand Pairs.
Helgason, S. (1973). Functions on symmetric spaces, pp. 101-146 in Harmonic Anal-

ysis on Homogeneous Spaces. Proc. Symposia Math. 24, American Mathematical
Society. Providence.

This entire volume shows how "grown-ups" use Gelfand pairs to do general
representation theory.

Heyer, H. (1983). Convolution semigroups of probability measures on Gelfand pairs.
Expo. Math. 1, 3-45.

Contains a 62 item bibliography (mainly analytic, but useful).
James, A. T. (1975). Special functions of matrix and single argument in statistics.

Theory and Application of Special Functions, R. As key ed.
This is a summary of years of work on the example GLn/On. This is a

central example in the piece of math statistics known as multivariate analysis. The
spherical functions, known as zonal polynomials, are used to derive distributions
of things like the largest eigenvector in the covariance matrix of a normal sample.

Karlin, S. and McGregor, J. (1961). The Hahn polynomials, formulas and an appli-
cation. Scripta Math. 23, 33-46.

One of the earliest derivations of the special functions of Sn/Sk X Sn-k The
applications are to a genetics model for random mating in a population with two
alleles due to Moran. Many useful properties of the spherical functions are derived
without mention of group theory.

Kramer, M. (1979). Spharische Untergruppen in Kompacten Zusammenhangenden
Lie Gruppen. Composito Math. 38, 129-153.

He classifies, for G compact, simple, connected, Lie, all subgroups K such
that (G, K) is Gelfand.

Letac, G. (1981). Problemes classiques de probabilite sur un couple de Gelfand. In
Lecture Notes in Math. 861 (Springer-Verlag).

A very clear, elementary survey explaining a dozen applications in probability.
Highly recommended.

Letac, G. (1982). Les fonctions spheriques d'un couple de Gelfand symetrique et les
chaines de Markov. Advances Appl. Prob. 14, 272-294.

A very clear, useful survey, explaining in particular a method of computing
the spherical functions in "small" cases, so one can hope to guess at the answer.

Saxl, J. (1981). On multiplicity — free permutation representations. In Finite Ge-
ometries and Designs, London Math. Soc. Lecture notes, Series 48, Cambridge
University Press, 337-353.
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This classifies all subgroups of Sn which yield a Gelfand pair. Aside from
Sk X Sn-k and small twists like Ak X An-k (Ak the alternating groups) the only
"interesting" example is S2 WrSn which gives the Zonal Polynomials. See Diaconis
(1987).

Saw, J. G (1977). Zonal polynomials: an alternative approach. Jour. Multiυariate
Analysis 7, 461-467.

Derives properties of the spherical functions of GLn/On without any group
theory (but lots of "standard" properties of the Wishart distribution).

Sawyer, S. (1978). Isotropic random walks in a tree. Zeit. Wahr. 42, 279-292.

A fascinating application of Gelfand pairs and p-adic numbers to salmon
fishing!

Sloane, N. J. A. (1975). An introduction to association schemes and coding theory.
Theory and Applications of Special Functions, R. Askey, ed.

Long, friendly introduction to the use of the tools of interest to coding theory.

Sloane, N. J. A. (1982). Recent bounds for codes, sphere packings and related prob-
lems obtained by linear programming and other methods. Contemp. Math 9,
153-185.

Great, friendly article on the use of Gelfand pairs. Bibliography of 163 items.

Soto-Andrade, J. (1985). En torna a las funciones esfericas (caso finito). Notas de la
Sociedad de Matematica de Chile IV, 71-94.

There is an active group working in Chile on Gelfand pairs. There are several
other papers in this volume on this subject. A valuable thesis: Caracteres de
Espacios de Gelfand Finitos by S. Garcia Zambrano (1984), also contains much of
interest, in particular a careful discussion of spherical functions for the "orthogonal
group" over a finite field.

Stanton, D. (1984). Orthogonal polynomials and Chevalley groups. In R. Askey et
al (eds.) Special Functions: Group Theoretical Aspects and Applications, 87-92.

An important, clear, friendly survey of a dozen explicit calculations of spher-
ical functions for finite spaces. Highly recommended.

Takemura, A. (1984). Zonal Polynomials. Institute of Mathematical Statistics. Hay-
ward.

The best introduction to zonal polynomials for statisticians. No group theory,
but lots of Wishart distributions.

H. FIRST HITTING TIMES

Fourier analysis has been used to bound rates of convergence through the
upper bound lemma. In this section a different application is presented. This
permits sharp approximation of first passage probabilities and first return times
for random walk. As an application, the classical gambler's ruin is given a new
presentation. The arguments lean heavily on Good (1951).

Let Q be a probability on a finite group G. The random walk determined by Q
starting at x is denoted Q%K Thus Qf(y) = 6x(y), Qx\y) = Q{yx~λ\ Qx

2(y) =
1 . In general, Q%k = Q$ * δxδx.
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Let S C G be a set of elements called "sinks." We consider the random walk,
starting at x and absorbed the first time it hits S. To rule out trivialities, assume

Let αk(t) be defined as the probability of arriving at the group element t
at time k. If / ^ Sy this is the chance of the walk being at t at time fc, without
having hit any sites in S. If t G 5*, this is the chance of first being absorbed at t
at time k.

Let bk{t) be defined as the probability of arriving at ί, at time fc, in the
unrestricted random walk (S = φ). The α's and ό's are related via

LEMMA 7.

j=o

Proof. Divide the set of paths of length k from x to t into 1 + (k + l)\S\ classes.
The first consists of paths that avoid all sinks. A typical path in one of the other
classes hits a sink s for the first time at j (Probability a,j(s)) and then goes from
s to t in the next k- j steps (Probability bk-j(ts~ιx)). By finite additivity, bk(t)
is the sum of the probabilities of the classes. D

The convolution suggests generating functions (Fourier analysis on Z). Let
z), B(t, z) be the generating functions

k=0 k=0

COROLLARY.

B{t,z) = Σbk(t)zk = ( Y^
j=o

= δSc (ί)α(ί, z) + Σ A(s, z)B(ts~1x, z).

Remark. Here is the way this formulation works: usually, we have a closed form
expression for B{t,z) for all t. Letting t run through S, the corollary gives \S\
equations in the |SΊ unknowns A(s, z). These can be solved (if | 5 | is not too large,
or is "symmetric") and then the corollary gives an expression for A(t9 z) for all t.
The group theory enters as follows:

LEMMA 8. With notation as above, B(t,z) equals
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The inverse exists, at least for \z\ < 1. The sum is over all irreducible represen-
tations of G.

Proof. This is just the Fourier inversion theorem applied to the definition of
B(t,z). D

Classical Gambler's Ruin: Peter and Paul flip a fair coin, Peter wins $1 if the
coin comes up heads; Paul wins $1 if the coin comes up tails. Peter starts with $-έ,
Paul starts with $ra. The game stops at time Γ when one of them has no money
left.

This can be analyzed as simple random walk on Z n, where n = £+ m. The
particle starts at £, and the game ends the first time zero is hit. For example,
suppose Peter has 1 and Paul has 4

0
4 φ
3 2

A walk starting at 1 stops after 1 step to the left (Peter wiped out) or 4 steps
to the right (Paul wiped out), etc.

Here there is one sink, namely, zero. From Lemmas 7, 8
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B(ί,z)

Note that the numerator and denominator both have simple poles at z = 1. It
follows that the left side is analytic in \z\ < 1. Writing

Here A' denotes differentiation with respect to the second argument. Comparing
coefficient as z —• 1 (set 1 — z = ε) gives

Result 1. A(0, ί) = 1 so absorption is certain.

Result 2.

E{T) = A'(0,l) = Σ1 }:£,'&, = Σ V - cosC-ψ)) (1 - cosiψ))'1. Here

is a curious consequence. By an elementary argument (Feller (1968, Chapter 14)
E{T) = ί{n — ί). This gives a curious trigonometric identity. Pass to the limit,
with ί fixed, n —• oo, the following emerges:

I
1 1 - cos(2ττa)

Ό 1 - cos(2π/)
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It is also straightforward to pass to the limit in the original generating func-
tion:

Result 3.
Case 1. Let ί be fixed and let n —• oo:

r l
Jθ 1-

COS(2ττtl)

Jθ 1-*

COB(2,«) =

COS(2πί)

The second identity is derived as follows: by expanding both sides, verify

Jo * i-coB* = 2<l ~ ^ ) " ' T h e n > f o r ί = 1. ^(0>*) = Ί$f} w i t h D-zN = l.
This gives the right side when I = 1. The general case follows from the convolution
interpretation of the left side.

Case 2. Let I = θn for 0 < θ < 1 fixed. Make the change of variables z = e~ λ / n 2 .
Then as n tends to oo,J5{eλT/n } tends to

y* COS (2ττflj)

j=0

^Ό λ+(2τrj)2/2

This last function is the Laplace transform of a probability measure on R+.

EXERCISE 20. Consider nearest neighbor walk on the cube Z% as described
in Example 2 of Section C. Let T be the first return time to zero. Prove that
E(T) = 2n, and show that T/2n has a limiting exponential distribution.

Remarks. Flatto, Odlyzko, and Wales (1985) carried out similar computations
for random transpositions. All of these computations use only 1 sink. Using 2
sinks, one can derive the chance that Peter wins in gambler's ruin, or the law
of the maximum of random walk, given that its first return is at time 2k; see
Smith and Diaconis (1988) for references to the literature. Similar results on the
cube would give results for fluctuations and excursions of the Ornstein-Uhlenbeck
process, or any of the birth and death chains described in Section F.

An elegant application of first hitting distributions for simple random walk
on the n-cube to the analysis of algorithms appears in Aldous (1983b). Consider
finding the minimum of a function /: Z% —• R. Clearly general functions take
order 2n steps for any algorithm on average. People in operations research hoped
that "local-global" functions with the property that if f(x) is not a minimum,
then f(y) < f(x) for some neighbor y of z, would be a useful special class.

The obvious algorithm is: start someplace, and take your smallest neighbor
as your next place, etc. Craig Tovey showed there were some exponentially bad
examples, but naturally created functions seemed to work in order n2 steps.

Aldous treated the problem as a two-person game: nature picks a function,
we pick an algorithm. We pay nature the number of steps it takes our algorithm
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to find the minimum. Because both sets of possibilities are finite (things only
depend on the relative values) the game has a value υ. Aldous showed that the
value was approximately 2n/2.

The two strategies are easy to describe: your (randomized) strategy is to pick
vertices xχ,X2 -,xj at random (J = 2n/2) and then use the obvious algorithm
starting at min(/(a^)).

Nature's strategy involves choosing a random local-global function as follows.
Start simple random walk at a random point #o Let f(x) be the number of steps
until the walk first hits x. Thus f(xo) = 0, and for any other x there is a neighbor
y of x which was visited first. Thus / is local-global. By careful analysis of random
walk, Aldous is able to show it takes order 2n/2 steps to find the minimum with
any algorithm.




