CHaPTER 1. Basic PROPERTIES

TANDARD EXPONENTIAL FAMILIES

.1 Definitions (Standard Exponential Family): Let v be a o-finite measure

n the Borel subsets of Rk. Let

1) No= Ny = e 79" %u(dx) < =}
et
2) A(0) = fee'xv(dx)

Define A(8) = » if the integral in (2) is infinite.) Let
v(8) = log A(6) ,

nd define
3) Pg(x) = exp(6ex - y(6)) , €N

et ©c N . The family of probability densities
{pg : 08 €0}
s called a k-dimensional standard exponential family (of probability
lensities). The associated distributions
P.(A) = f p,(x)v(dx) , 6 €0
0 A 0

re also referred to as a standard exponential family (of probability
listributions).

N is called the natural parameter space. Y has many names. We
will call it the log Laplace tramsform (of v) or the cumulant generating

function. 8 € 0 is sometimes referred to as a canonical parameter, and
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2 STATISTICAL EXPONENTIAL FAMILIES

X € X is sometimes called a canonical observation, or value of a canonical
statistic.

The family is called full if 0 =N . It is called regular if
N is open, i.e. if

N = N°

where N° denotes the interior of N, defined as int. N = {UQ: Q = N, Q is open}.

As customary, let the support of v (supp v) denote the minimal

closed set S  RX for which v(SS°™) = 0. Let
(4) H = convex hull (supp v) = conhull (supp v) .

and let K = K = fi. K is called the convex support of v. (The convex hull of

asetS € Rk

is the set {y: & {Xi} c s, {agds 0 <oy, Zay = 15y = Z“ixi}’)
For S cRX the dimension of S, dim S, is the dimension of the
linear space spanned by the set of vectors {(x1 - xz): X{s Xy € S}. Ak-

dimensional standard family is called minimal if
(5) dim N = dim K = k .

Note that if K is compact then N = Rk, so that the family is
regular.

(The exponential families described above can be called finite
dimensional exponential familjes. Various writers have recently begun to
investigate infinite dimensional generalizations. See Soler (1977),

Mandelbaum (1983), and Lauritzen (1984) for some results and references.)

Standard exponential families abound in statistical applications.
Often a reduction by sufficiency and reparametrization is, however, needed in
order to recognize the standard exponential family hidden in specific settings.

Here are two of the most fruitful examples.

1.2 Example (Normal samples): Let Yl""’Yn be independent identically

distributed normal variables with meany and variance o2®. Thus, each Yi has
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density (relative to Lebesgue measure)

(1) 0,02 () = (216%)7% exp(-(y-w)%/20%)

and cumulative distribution function ®u G2 Consider the statistics

bl

n
¥ = !z Y,

i=1

n
2=l op (v, - 1)?

i=1

g -1 N2 2, 32

Xp= Y, X, = n7honyl o= s+

The joint density of Y = Yl”"’Yn can be written in two distinct revealing

ways, as

(2102) ™ Zexp(-ns?/202 - n(y-u)%/202) ,

(2)  f _a(y)
or as
(3) fu,cz(Y) = (ZWOZ)'"/Zexp((nu/cz)x1 + (-n/20%)x,)exp(-nu?/20%) .

From the first of these one sees that Y and 52 are sufficient
statistics. (One can also derive from this expression that ¥ and S2 are

independent (see sections 2.14 - 2.15) with Y being normal mean u, variance

o?/n and V = 52 being (oz/n)'x;_1 -- i.e. having density
(4) Fv) = (/209" 2(rim )™ V2 1) explonvyzot)x gy (V)

withm = n-1.)

X = (Xl,Xz) is also sufficient. This can be seen from the

factorization (3), or from the fact that X is a 1-1 function of (V,Sz) .
Let v denote the marginal measure on R2 corresponding to X -~ i.e.

v(A) = (xl,iz)EA dy1 een dyn g
(It can be checked that when n > 2, v(dx) = (g)nlz (ngr((n-l)/Z))'l(xz—xi)_g—ﬁx
over the region K = {(x],xz): x% < x2}. When n = 1 v is supported on the
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curve {(x],xz): x? = x2}.) Then the density of X relative to v is

(5) pel,ez(x) = exp(8yx; + 8,%, - ¥(6))
with
6, = np/o? , 0, = -n/ 202
and
v(e) = -ei/492 - (n/2)log(-292/n) .

Thus the distributions of the sufficient statistic form a 2 dimensional
exponential family with canonical parameters (61,62) related to the original
parameters as above.

This family is minimal. The natural parameter space is
N = {(el, ez) P8 ER, 6, < 0}

The above can of course be generalized to multivariate normal

distributions. See Example 1.14.

1.3 Example (Multinomial distribution):

Let X = (X ’Xk) be multinomial (N,w) -- that is

10
x.
Prix=xr = (N !
ERREEL
Let v be the measure concentrated on the set {x : X; integers,

k
x.zo,i=1,..-,k, z

Xx; = N} , and given by
i j=p 0

1

(1) \)({X}) - (Xla...,Xk 1 Kk

Then the density of X relative to v is

k
(2) Pg(x) = exp( ZBi% - ¥(e))
1=

where

(3) 8. = log m i=1,...,k
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and
k o,
(4) y(e) = Nlog(zel)
i=1

This is a k dimensional exponential family with canonical statistic

X . Its canonical parameter is related to w by (3). It has parameter space
(5) 0 = {(log "i) : 0< L Zﬂi = 1}

Note that this exponential family is not full. The full family has
densities {pe} as above with 6 = N = Rk . (For @ as in (5) wy(e) =0,
however y as defined in (4), rather than y = 0, is the appropriate cumulant

generating function, as defined in 1.1(3) for the full family.) However

(6) Po = Potal

for all a € R where 1' = (1,...,1) . Hence expanding this family to be a

full family does not introduce any new distributions.

The above phenomenon is related to the fact that the above family
is not minimal since dim K = k-1 < k . To reduce to a minimal family let

X* € Rk'1 be given by (xl"°"xk-1) . Then X* is sufficient. (In fact, it is

k-1
essentially equivalent to X since X, = N - I X; a.e.(v) .) Let o* € pk-1
i=1
be given by 6% = 6. - 6, , and let v*({x*}) = ( N k-1 ) . Then
1 i k
X¥, oo x¥F J,N- Z x¥
1 k-1 =1 i
the density of X* relative to v* is
k-1
(7) pw(x*) = exp( Ele*x* - p*(6*))
i=
where
k-1 e?
(8) y*(e*) = Nlog(l+ ¢ e')
i=1
This is a full minimal standard exponential family with N = Rk'1 .

Note that
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3
u

exp(eg)/(l + Zexp(eg)) i=1,...,k-1 ,
(9)

L 1/(1 + Zexp(G?)) .

Here, each different 6* € Rk'1

= N corresponds to a different distribution.
Reductions by reparametrization and sufficiency like those in the
above examples are frequent in statistical applications. Together with proper
choice of the dominating measure, v, they lead to the representation of
problems involving exponential families in terms of problems involving

standard exponential families. This is formally explained in the next few

paragraphs.

1.4 Definition:

Let {Fw :w € Q) be a family of distributions on a probability
space ¥Y,B . Suppose Fw << U , w € Q . Suppose there exist functions

2> (0,)

: Q- Rk

-1 o O

AR Rk (Borel measurable)

h:V->[0,o) (Borel measurable)

such that

dF
(1) fly) = —= = Clh(y)exp(R(w) - T(y)) .
i

Then {Fw} (or, {fw}) is called a k dimensional exponential family of

distributions (or, of densities).

1.5 Proposition:

Any k dimensional exponential family (1.4(1)) can be reduced by
sufficiency, reparametrization, and proper choice of v to a k dimensional
standard exponential family (1.1(3)). The sufficient statistic is X = T(Y), and
its distributions form an exponential family with canonical parameter

9 = R(w) .

Proof: X = T(Y) is sufficient by virtue of 1.4(1) and the Neyman factorization
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theorem. (See e.g. Lehmann (1959) Chapter 2 Theorem 8.) Let u*(dy) = h(y)dy
and let v(A) = u*(T'l(A)) for Borel measurable sets A < Rk . Then the
induced densities of X with respect to v exist and have the desired form

1.1(3) with 8 = R(w) and y(8) = -Tog C(R™1(8)) . (Note that if R(w.) = R(w

1) 2)’

then fwl = fw2 and hence C(wl) = C(wz) .) I
In spite of appearances the above reduction process is not really
unique. Any standard exponential family can be transformed to a different,

but equivalent, form by linearly transforming X and © with linked nonsingular

affine transformations. This is described in the following proposition.

1.6 Proposition:

Let {p,} be a k-dimensional standard exponential family. Let M be
0

a non-singular kxk matrix and let

N
]

+
MX zO

6 = )7 Te + g,

Then the distributions of Z also form a k-dimensional standard exponential

family which is equivalent to the original family.

Proof: The equivalency assertion is immediate since the transformations (1)
are 1-1. Furthermore, the density of Z relative to the measure Y, defined

by vy(A) = v LA - 2,)) s

exp(6'x(z) - v(0))

(2) exp((¢ - ¢g)' M1 (2 = zg) - WM (6 - 6,)))

exp('z - v(M' (0 - o)) + 925 - ¢gz *+ ¢g°2)-
(By definition A - zy = {x:3z€A, x=2z- zo} .)

Let vl(dz) = exp(-¢y2)v,(dz) and vp() = w(M' (o - 99)) - ¢'z5tg 20:

The densities of Z relative to v, are
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(3) exp{¢'z - w1(¢)} ,

which, as claimed, form a k parameter exponential family. The natural
parameter space for this family is M"le + ¢O and the cumulant generating

function is ¥, . [

Proposition 1.6 shows that one may apply an arbitrary affine
transformation either to © or to X. In this way one may assume without loss of
generality that © (or X) lies in a convenient position in Rk . One application
of this process will be discussed at some length in Section 3.11, and such

transformations will be used wherever convenient.

MARGINAL DISTRIBUTIONS

The proof of Proposition 1.6 yields a statement about marginal
distributions generated under linear projections by standard exponential
families. The result is important in its own right, and useful in the proof

of Theorem 1.8, as well.

Some preliminary remarks will be helpful. Let M1 : Rk onto R™ be a
Tinear map. M1 is represented by an (mxk) matrix, Ml’ of rank m. There is then
a linear map MZ : Rk on?b Rk-m which is orthogonally complementary to M1 -

that is, the rows of the corresponding ((k-m)xk) matrix, M2’ of rank (k-m)

are orthogonal to those of M. . (The rows of M, can be chosen to be orthonormal,

1 2
but that is not necessary here.) Let M denote the (kxk) nonsingular matrix
My K Z "
M= (M ) . If x € R" then Z = Mx can be written as (Z ) with Z1 €ER,
2 2
m-k
Z2 €R .
M -1
Let M = (M ) as defined above. Then M~ exists and can be
2
written as
(1) wl o= o, m)
1’ 72

where Mi is (kxm), Mé is (kx(k-m)) and
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(2) M) M = 0

since M1 and M2 are orthogonally complementary.

_ (M7)" ¢
Let 6 € RK and o= (M 1)'e = ( } )6 = (¢1) Then
(M3)* 2
(3) o'x = o'M IMx
= 07t 02,

by (2). For typographical reasons let M%' = (M;)' .

The special case where MI(X1’°"’xk) = (xl,...,xm) is worth

noting. Here

M

(4) Moo= mc(k-m)) = My

mxm’ 0

ML~

M, = 2

2 (O(k-m)xm’ I(k~m)X(k—m))

Somewhat more generally, if the rows of M1 and M2 are orthonormal then

M, = M

1 1
(4')
= '-
M2 M
1.7 Theorem:
Consider a standard exponential family. Let M1 : Rk o;to R™ and

¢ -
8 =M ( 1) as described above. Fix ¢3 € M"(N) <
¢2 2 2

family of distributions of Z1 =M

RK"™ . Consider the

1X over the parameter space

®¢o = Mi'({e €0 : Mé’e = ¢§}) . These form an m dimensional standard
2

exponential family generated by the marginal measure defined by

= 01
(5) v ,(A) /1 exp(¢2 sz)v(dx) )
M. (A)
2 1
The natural parameter space for this family is N¢o = Mi'({e EN: Mé'e = ¢§}) .

2
The statistic Z1 is sufficient for the family of densities

(g(x) : M376 = 63} .
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Proof: A direct proof is as easy as an appeal to Proposition 1.6. The density

of Z relative to the appropriate dominating measure \)(M_1 ) is

(6) exp(8'x - y(0)) = exp(¢; = z; + ¢, 2, - Y(M'9)) .

When 9, = ¢§ the factor exp(¢g . 22) can be absorbed into the dominating

measure, yielding v¢0(~) as defined in (5). The resulting family of densities
2
is the standard exponential family claimed in the statement of the theorem.

(Note that (6) also provides a formula for the cumulant generating function of

this family.)
The assertions concerning N¢0 and sufficiency follow from (6),
2
with ¢, = ¢5 , and the Neyman factorization theorem. ||

For the special case where M, is as described in (4), one sees

1

that for fixed 6 "em the distributions of Z1 = (Xl""’xk) form an

k+1°"°
exponential family.
Note that the theorem does not say that the family of distributions

of Z, = M_X form a standard exponential family with natural parameter ¢1

1 1
if the parameter © ranges over all of ® . In fact such a claim is generally

false unless 0 is of dimension <m and satisfies

.M T = 40 0 k-m
(7) 0 < {8 : M2 6 = ¢5} for some 95 € R s

as will be the case in Theorem 1.9; or
(8) Z and 22 are independent for some 6 € 0 .

(It will be seen in the next chapter that (8) implies independence of Z1 and

Z, for all 6 €0 J)

(8) Remark. The preceding theorem may be given an alternative interpretation.
Let L be a linear variety in Rk -- that is L = Xg + V for some m dimensional
linear subspace V < Rk . Let P : Rk - L be any affine projection onto L --
that is, P is affine, P2 = P, and P is the identity on L. Let Q denote the

orthogonal projection onto V- = {w € Rk : viw=0 Vv veV}. Let
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9(2) € V" . Then the family of distributions of P(X) as 6 ranges over

{6 eN: Q6= 6(2)} forms an exponential family.

To verify the above, note that there are linear isometries

. oM . k-m L
s;r R L S, t R 2

onto onto

The theorem applies to the maps M; = Sil °P, M= Sél °Q , and yields a

statement concerning the distributions of Ml(X) . This converts directly to
the above statement about the distributions of P(X) = Sl(Ml(X)) over the
appropriate parameter space since 31 is a linear isometry, and Sl and 32

are orthogonal, etc.

1.8 EXAMPLE (Log-linear models): Consider a multinomial (N, w) variable as
described in Example 1.3. Consider the family of distributions for which the

natural parameter 1.3(3) satisfies

(1) 6 = Bg+0,, BE€ R™

where B is a specified kxm matrix of rank m. Assume, in addition, that
(2) B = (lk, B(z))

where 1& = (1,...,1) and B(z) is k x (m-1) of rank (m-1). This is a log-linear
multinomial model. The name derives from the fact that the linear constraint
(1) can also be written in the form log m = BB where (log 1r)i = Tog LI

i=1,...,k . Condition (2) is imposed because Pe =P 1> as noted in 1.3(6).

6+a
Because of (2) for every BzZ) = (62,...,8m) there is a unique By = 81(6(2))

such that
k k 8;
(3) Imo o= e = 1.
i=1 i=1
"
Let M, = B' and Tet M = (M ) as in 1.7. Theorem 1.7 yields that
2

Z(l) = M1X = B'X is a sufficient statistic. The distributions of Z(l) form an

m-dimensional exponential family with corresponding natural parameter
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Mi'e =g + B‘eo. This family is not minimal since (Z(l))1 =N w.p. 1.
As in Example 1.3 one may reduce to an equivalent minimal family having dimension

(m-1) and canonical statistic Z?l) = Bzz)x = (Z(l) 2,...,2(1) m)‘

Here is a famous log-linear model arising in genetics. Suppose a
parent population contains alleles G,g at a certain locus, with frequency
p,q = 1-p , respectively. Under the assumptions of random mating and no
selection a generation of N offspring will have genotypes GG, Gg, gg according

to a multinomial distribution with m given by
= pl = =
(4) = P T, = 2pq , T3 = Q

Such a multinomial distribution is called a Hardy-Weinberg distribution.

This corresponds to a log-linear model with

1 2
(5) B = (1 1) o, = (10

ou o
n
N——"

Thus, z = ( N ) is a sufficient statistic for the distributions of this
(1) 2x1 + Xy
log-linear family, and zfl) = 2x1 * X, is a minimal sufficient statistic.

(This log-linear family can be imbedded in a useful way in the

original multinomial family as follows:

Let
2 1 0 My
(6) M =(0 1 2 = (y) -
-1/3 2/3 -1/3 2
Then

5/12 -1/12 -1/2
M = 1/6 1/6 1 = (Mi, ME) .
-1/12  5/12 -1/2

N
) 3)-
Z=MX+ z, is the canonical statistic for an exponential family with

Let ¢6 = (0,0, -1n2) and 26 = (0,0 According to Proposition 1.6

corresponding canonical parameter ¢ = (M'l)'e + ¢0 . In terms of the original
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variables z) = 2x1 t Xy 2, = 2x3 MECTIEINL OF and ¢5 = (%)]09(ﬂ§/4ﬂlﬂ3),
etc. The log-linear family described above is therefore the family of marginal

distributions of(zl, 22) under the restriction ¢3 =0 . The family of

distributions corresponding to the restriction $3 = ¢g # 0 also has a natural
genetic interpretation as the distribution of a population after variable
selection of genotypes. See Barndorff-Nielsen (1978, p.123); the

generalization of this model to a multiallelic locus is also described there.)

REDUCTION TO A MINIMAL FAMILY

Any exponential family which is not minimal can be reduced i0 a
minimal standard family through sufficiency, reparametrization, and proper
choice of v. This involves only a minor extension of the process used above in
Proposition 1.5 and Theorem 1.7. This reduction is unique up to the appearance

of linked affine transformations as in Proposition 1.6. Here are the details.

1.9 Theorem

Any k dimensional exponential family can be reduced by sufficiency,
reparametrization, and proper choice of v to an m dimensional minimal standard
exponential family, for some m<k. Let X,6 and Z,¢ denote the canonical
statistic and parameter for two such reductions to an my and an m, dimensional
minimal family, respectively. Then m, = m, and (X,0), (Z,¢) are related as in

1.6(1).

Proof. The reduction to a minimal standard family will be performed in three
steps. First, one may apply Proposition 1.5 to reduce to a standard k
dimensional family.

Suppose for this family that dim o =m' < k. Thus 6 < 60 +V
where V is an m'-dimensional linear subspace. One may let P be the orthogonal
projection on V and Ml’ M2 the corresponding orthonormal matrices described
above in Theorem 1.7. Then MZO = ¢5 , a constant vector. By Theorem 1.7,

Z1 = M1X is sufficient, and its distributions form a standard exponential

family, whose parameter space has dimension m'.
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Thus it now suffices to consider the case of a standard m' dimension-
al exponential family whose parameter space also has dimension m' . Suppose
for this family that dimK =m<m' . Then K c Xo + V , similar to the
previous situation. Let P be the orthogonal projection on V, and Ml’ M2

as above. Observe that

X+ 0'M,M

(1) B - X 1 5 Mox

¢ M1 M

e'Mi Mlx + 0 M2 sz0 a.e.v

It follows that Z1 = M1X is a sufficient statistic whose distributions form a

standard exponential family with natural parameter Mle. (Actually Z 1is not

merely sufficient, but is actually equivalent to X under v.) Since

dim (MIK) = dim (MIO) = m this family is the desired minimal family formed

from the original family through reduction by sufficiency and reparametrization.
Suppose {pw : w € Q} is a standard k dimensional exponential family

relative to v, and (X,8), (Z,¢) denote the canonical statistics and parameters

for two reductions of {pw} to a minimal standard exponential family. For the

él)’ PiZ)

with dimensions my and m, respectively, etc.. Let Wy € Q. Since X and Z

next step let P denote their respective probability distributions

are each sufficient

dp @), »(2)
w - w - w
(4) dpujb = dpé%i ) (X(y)) = EFE%ZL; (Z(y)) a.e.(v)
0 Py
Now,
(1) (1)
dP p (x)
8
i e ¢y e
8(uwy) pe(wo)

exp(((6(w) - 0lup)) + x - (W P ow)) - (P (otwg))) s

2) )

and similarly for P( Hence (4) yields
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(5) (8(w) - 8(ug)) * x(y) - UM (o(w))

= (0w) - otwp)) + 2(y) - VD) ae. (v)

for all w € Q.

Suppose m = my < m,. Since dim {¢(w) : w € Q} = my >m there

m+1
exist values a; € R, w; €0, i=1,...,m+l, such that 0 = I ai(e(wi) - e(wo))
i=1
m+1
and ¢* = I ai(¢(wi) - ¢(w0)) # 0. It follows from (5) that
i=1
(6) ¢* « z(y) = const a.e. (v)

But, (6) implies K2 c{z : ¢* « z = const} so that dim K2 < my,. This
contradicts the fact that the distributions of Z form a minimal standard

family of dimension my. Hence my = m, =m.

Now choose w,...,w, SO that {e(wi) - e(wo) ¢ i=1,...,m} span

m
R™.  The preceding argument shows that {¢(w1) - ¢(w0) : i=1,...,m} must

also span R™. Let M, non-singular, be chosen so that

-1

¢lw;) - ¢(w0) = (M) “(olwy) - e(wo)) i=1,...,m
Then, as in 1.6(3),
(7) (e(wi) - O(wo)) + x(y) - U(e(w;))

(0(w;) = ¢lug)) =+ Mx(y) - Ulo(wy))

[}

((w;) = ¢lwy)) + z(y) - Ule(w;)) a.e. (v)

Let Yo € K be a value for which (7) is valid for i=1,...,m. Then (7)

yields
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(8)  (olwg) - olug)) + M(x(y) - x(yy))

= (8log) - 8lug)) + (2(y) - 2(yg))  a.e. (v)  i=l,....m

This implies M(x(y) - x(yo)) = z(y) - z(yo); which verifies 1.6(1) with

2y = z(yy)- I

1.10 Definition

Let {pe} be a k-dimensional exponential family. Theorem 1.9
shows that there is a unique value, m, such that {pe} can be reduced to a
minimal exponential family of dimension m. This value is called the order

of the family p.

If {pe} is a standard family it is clear that its order m

satisfies

(1) m < min(dim 0, dim K)

In most cases equality holds in (1); however, it is possible to have

inequality, even when {pe} is full.

In view of Theorem 1.9 there is no loss of generality in
confining oneself to the study of minimal standard exponential families.
A full minimal standard exponential family is also called a canonical

exponential family.

RANDOM SAMPLES
A nearly trivial but very important application of the first
part of Theorem 1.9 involves independent identically distributed (i.i.d.)

observations from an exponential family.
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1.11 Theorem
Let X1""’Xn be i.i.d. observations from some k-dimensional

standard exponential family with natural parameter space N and convex support K.

n
Then S = I Xi is a sufficient statistic. The distributions of S form a
i=1

standard k-dimensional family with natural parameter space N and convex support

nK={s : 3x €K, s =nx} . The order of the families corresponding to S and

to Xi are equal.
Proof: The joint density of X1""’Xn with respect to vx ... xv is

n
exp( Z (6 + x; - ¥(6)))
i=1

pe(xls---axn)

n
exp( & (ei © Xy - w(ei))) with 0, =0
i=1

Hence Xl""’xn are canonical statistics from an nk-dimensional exponential
family whose parameter space satisfies 0 = {(61,...,en) € Rnk D6y = 0 € Rk} .
Applying Theorem 1.7 yields that S is sufficient and comes from a standard
k-dimensional family with natural parameter space N and convex support nK.
(A11 this is also obvious from the fact that
n
pe(xl,...,xn) = exp(eizlxi - ny(e)) .)
It is easily checked that any linear map which transforms the

distributions of Xi to a minimal family also transforms those of S to one, and

conversely. This yields the assertion concerning the order of the families

corresponding to S and X, . |

Note that the cumulant generating function for the exponential

family generated by S is
(1) ny(8)

The sufficient statistic X = n"1s also has distributions from an

exponential family. (Apply Theorem 1.6.) Here, the natural parameter space
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js nN and the convex support is K. The cumulant generating function for X

corresponding to the point ¢ = n6 in its natural parameter space is
(2) ny(¢/n)

(Under appropriate additional conditions a family of distributions
for which there is a nontrivial sufficient statistic based on a sample of

size n must be an exponential family. See Dynkin (1951) and Hipp (1974).)

1.12 Examples

Example 1.2 displays an instance of this theorem. If Y is normal

with mean p and variance o? then X = (Y, Yz) is the canonical statistic of a

minimal standard exponential family having canonical parameter

8 = (u/o2, -1/262) . Thus if one has i.i.d. observations Yis...o¥, then

n n n
S= X;=(z2VY,, & Y?) is a sufficient statistic; and its distributions
Lo00 soq 17 cC
i=1 i=1 i=1
form a minimal standard exponential family.
As another example, suppose Y is a member of the gamma family
with unknown index, o, and scale, o. The density of Y relative to Lebesque

measure on (0, «) is
(1) fly) = () e evio oy

We will use the notation Y ~ I'(a, o) . Note that r(m/2,2) = X; . These
distributions form a two-dimensional exponential family with canonical
statistic (Y, 1n Y) and canonical parameters (-1/0, o). If Yl""’Yn are i.i.d.

n n
with density (1) then S1 =Y and S, = rIny, forma two-dimensional
i=1 i=1

exponential family. It is interesting to note that the marginal distribution of
Slln also has a density of the form (1) with index na and scale no . (Here,

as well as in the preceding normal example, S, is strongly reproductive in the

1
terminology of Barndorff-Nielsen and Blaesild (1983b). For more details see
Theorem 2.14 and Example 2.15.)

Another example of interest is provided by the Poisson distribution;

where Y has probability function
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(2) PriY = y} = eyl y=0,1,...

We will use the notation Y ~ P(X) . Then X = Y comes from a one-dimensional

exponential family with canonical parameter 6 = 1n A. The distribution of

n
S= I Yi is itself Poisson with natural parameter 6+ 1n n = 1n nX .

i=1

CONVEXITY PROPERTY

Here is an important fundamental fact about exponential families.

1.13 Theorem
(i) N is a convex set and y is convex on N.
.. . . . k . .
(i1) ¢ is lower semi-continuous on R and is continuous on N°.

(iii) P, =P, 1if and only if
91 e2

(1) Doy + (1- a)oy) = av(eg) + (1 - a)u(s,)

for some 0 < o < 1. In this case (1) is then valid for all 0 < a < 1.
(iv) If dim K = k (in particular, if {pe} is minimal) then v is

strictly convex on N, and Pe # Pe for any e] # 8o € N.
1 2
Proof: Llet 6, 6, € N, 0 <o < 1. Then by Holder's inequality

(2)  exp(yplod; + (1 - a)e,)) = sexp({ady + (1 - a)e,y) » x)u(dx)

Slexp o5 + x)% « (exp o, - x)(l’“) v(dx)

(rexp(og + x)v(dx))® (fexp(o, + x)v(dx)) 1)

|A

exp(op(87) + (1 - a)y(e,))

This proves the convexity of y, and the convexity of N follows easily.

There is strict inequality in (1) unless
(3) 81 *X = 0yt X ¥ K (a.e. (v))

for some constant K; in which case there is equality. (3) is equivalent to
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0,ox - eKe62°X a.e.(v) which is equivalent to the assertion Pe = Pe
1 2

If (3) holds for some 61 # 0, then dim K < k - 1. Hence dim K = k
implies Pel # P62 for any el # 62 € N.
Finally, for the continuity assertions, note first that
A(6) = fexp(6+x)v(dx) is Tower semi-continuous by Fatou's lemma. Hence y is
lower semi-continuous. Any convex function defined and finite on a convex set
k

N of R* must be continuous on N°. (We leave this as an exercise on convex

sets.) |

Be careful about the above result -- the fact that ¢ is strictly
convex on N does not imply that N is strictly convex; for a simple example, see

Example 1.2 which involves a minimal family for which
N = {(el, ez): 6, €R, 6, <0}

Usually ¢ is continuous on all of N. However examples can be
constructed when k > 2 where this is not the case.

This simple theorem has an interesting direct application.

1.14 Example

Let Y be m-variate normal with mean p and covariance matrix Z.

We will use the notation Y ~ N(u, %). Also, 85 = 1if i=j and = 0 if i#j .

The density of Y with respect to Lebesgue measure is

(M 8,00 = @0 ™28 Rexp(er (-7 (y - W)y - w)'/2)

(2m) ™21z Zexp((271) -y + tr((-27Y2) (")) - v lw2) .

It follows that the distributions of Y form an (m + m(m+1)/2) dimensional

exponential family with canonical statistics Yl""’Ym’ {Yin/(l + Gij): i< j}

and corresponding canonical parameters (Z-lu)l,...,(z'lu)m, {(-Z-l)ij i <§r.

For the following it is convenient to label these statistics Xl,...,xm

{Xij : 1 < j} and the corresponding parameters as (61,...,em, {eij ti<i)l

)-m/2

Write 6 = (el,...,em), Q = (8,;). Ignoring the factor (2r , which can be

iJ
absorbed into the measure v, the cumulant generating function is
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(2)  w(-) = (=)loglz™ + (wr h)/2 = (-%)log(]-Q|) - 6'00/2

Note that N = {(e, {eij : 1< J}) : -Q is positive definite} . It is easy

to check that N is open, so that this family is regular. By Theorem 1.12
(3) W(0, {855 1 <31 = (<a)log(]-Q|)

is strictly convex in the variables {eij : i < Jjl over the set where Q is
positive definite. To reinterpret this result slightly, let B = -Q ;

then (3) yields that
(4) Tog |B| is strictly concave

as a function of the variables {bij : i < j} over the region where B is

positive definite. (4) yields

(5) |B'1| |B|'1 is strictly convex
2
((4) can also be proven by directly calculating 9 log|B|, and showing
Bbij abkl

the resulting (kzl) x (kzl) matrix is positive definite. The above proof

is much simpler !)

CONDITIONAL DISTRIBUTIONS

Let v be a given o-finite measure on the Borel subsets of Rk, and

P <<v a probability measure with density p. Assume (without loss of
generality) that 0 € N so that v is finite. Let M1 : Rk -+ R™ be linear,

Ml(x) = Mlx. Then the conditional measure of v given z; = MI(X) exists. It
will be denoted by v(-|M1X = Zl) or v(-lzl). The conditional distribution of P
given Ml(X) exists and has density proportional to p(-) relative to v(-lzl)
over the set {x : Ml(X) = zl} . (More generally these facts are true if M1

is any Borel measurable function. See, for example, Neveu (1965).)

The above situation resembles that described in 1.7. Let

k

M, : R® > Rk'm be an orthogonal complement of Ml' Then

5 *

. . - , pk-m
M2 : {x o Ml(x) zl} R
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is 1-1.

We will also use the symbol v(-]zl) for the equivalent conditional

distribution of M2(X) given Ml(X) =z, As before,
M )

_ =1l = 1 _ 1

¢ = M7l = (,-)e = (. 7)

M3 %

It is always possible to choose M2 to be "orthonormal" so that

n = ! [ =
M M2 s and so M2 M

2 2’

To do so simplifies somewhat the resulting formulae.

1.15 Theorem

The distribution of 22 = M2X given Z, = M1X depends only on

1

¢(2) = Mé'e . For fixed Z1 =1z, these distributions form the (k-m) dimensional

exponential family generated by the measure defined by v(-*

21) .

Let Nz denote the natural parameter space of this conditional
1

family. Then ¢2 € M2 N implies
(1) ¢, € NMlX a.e.(v) .
Furthermore, if {pe} is regular then

(2) MN < Ny oy a.e(V)

1

Proof: The conditional density of Z2 given Z1 = z. is proportional to

1
pe((zl’ 22)) = exP(¢1 ° 21 + ¢2 * 22 = ‘P(e))

Hence the density of Zy given Z1 = z. relative to v(-|zl) can be written as

1
(3) p¢(22) = eXp(¢2 * 22 = wz (¢2))
where
(4) ¢21(¢2) = In(sexp(¢, * zz)v(dzzlzl))

The natural parameter space Nz is the set{¢2}, for which the
1

integral on the right of (4) is finite. Let ¢, € Mé‘N . There is thus a 8 € N
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for which ¢y = Mé'e . Let v* denote the marginal measure on R™ defined by
v¥(A) = v(M7(A)). Then
o > fexp(® + x)v(dx) = J{sexp(9, - Z) + ¢y * zz)v(dzzlzl)}v*(dzl)

Hence
o > fexp(¢2 . zz)v(dzzlzl)

for almost every zl(v*) . This verifies (1).

Suppose {pe} is regular. Let {ei: i=1,...,} =« N be a countable

dense subset of N. {Mé- 6; : i=1,...} is dense in M2 N . Mé- is a linear map.

i
' -

Hence M2 N is convex and open since N is convex (by Theorem 1.13) and open

(by assumption). It follows that
(5) conhull {Mé- 8, ¢ i=l,... } = ML

(We Teave (5) as an exercise on convex sets.)

Since {91} is countable it follows from (1) that

; M, X for all i=1,..., a.e.(v)

Thus

Ml

5 N = conhull {M2 6. : i=1l,...} = N

since NM X is convex; which proves (2). I
1

The above result can be given an alternate interpretation under
which the conditional distributions of X given X € L form an exponential family,

for L a given Tinear variety in Rk. See 1.7(8). We omit the details.

Here are two important simple applications of the above ideas.

1.16 Example

Let X.,...,X, be independent Poisson variables with expectations

1°° k
A - See 1.12(2). Then X = (Xl""’xk) is the canonical statistic of a

standard exponential family with natural parameter 6: 6; = Tn Ai i=1,....k .

k

The dominating measure has v({x}) = 1/ I xil . Let N > 0 be an integer.
i=1
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k
Then the distributions of X given I Xi = N form a standard exponential family
i=1
with dominating measure
k n k
(1) v({x}]| X; = N) = 1/1 X; !, for zx; =N
i=1 i=1 i=1

This measure is proportional to the measure 1.3(1) which generates the multi-
nomial distribution. Hence the conditional distribution is multinomial (N,m).
The value of m can be easily computed as follows: orthogonally

project onto {6: £, = 0} which is the Tinear subspace parallel to
1k

{x : Ix; = N} . This yields (o - 81) (where 6 =k * I ei) as the natural
i=1
parameter of the conditional multinomial distribution. Thus
T, = ceei-é
.i
K g-8,-1
withc=(ze17) Substituting 8; = In A yields
i=1
(2) ;
2 Te = A/ A
i 521

1.17 Example

Let X be k-variate normal with mean p and covariance ¢. For ¥
given the distributions of X form a standard exponential family with
natural parameter 6 = Z-lu. (This can easily be checked directly or derived
from Example 1.14 by using Theorem 1.7.) The dominating measure for this
family is proportional to v(dx) = exp(-x'z-lx/2)dx.

Let 2, = (xl,...,xm), z, = (xm+1,...,xk). The conditional
distributions of 22 given Z1 =2z form an exponential family. The natural
parameter for this family is just ¢, = (em+1,...,ek) .

Partition ¢ as

(1) t =

)5 1
(“11 12) with zll(m xm) , etc.

\Z Iy
Then
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)71 1

-1 -1 1, -

/(z11 = Z1olaoky 211812 gp 25121721

@) N R Ty B RPR
2278218110120 Farkin (BppZpiZiikyn

N——"

)-1

11 12
/* L

, say.
\221 z22/
((2) is a general formula for block symmetric positive definite matrices. Note
12 _ -1 _ -1 -1 -1 - -1 -1
that 27 = 21181200 = TorP1rP12) = Taolar(Pyy - EifagFay) ) Mote that

the natural parameter can be written as

em+1
- . _ -1 _ 421 22
¢2 = (ék ) = (Z U)Z = ¥ U(l) + 1 U(z)
where b1
=
H \U(2)>

Consider the case where z, = 0. The conditional dominating measure is

v(dzzlo) = c exp(-zél22 22/2)

and is thus a normal density with mean 0, variance-covariance
22\~
(2°%)

of Z, given Z1 = 0 is normal with this covariance matrix and with mean p*

1 _ -1 I ‘ oy .
= 222 - 221Z11212 L, say. It follows that the conditional density

given by
Z*-lu* = ¢2 .
since ¢2 must be the value of the natural parameter for both the unconditional

and conditional family. Hence
2 -1
(3) p* = Z*¢2 = Z*(ZZIu(l) + 7 2U(2)) = -ZZIZIIU(I) +U(2)

For Z; # 0 it is convenient to use the location invariance of the

normal family. The conditional distribution under (u,%) of 2(2) given Z(l) = 2(1)

u -z
is the same as the conditional distribution under (( (1) ”(zgl))’ L) of 2(2)
given Z(l) = 0. By the preceding this is normal with covariance matrix
_ (922y-1 -1 _
I* = (2°°) " and mean Meg) - 221211(“(1) Z(l)) .
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EXERCISES
1.1.1 (a) Let C be any closed convex set in Rk. Show that there
exists a standard exponential family with N = C. [Cc = ':1{61 Vit 8 < ci}
j=
with ||vi|| =1.let v; denote Lebesgue measure on the ray {x: x = ovy, a > 0}
and let v = ';12'1 exp(civi . x)vi/(1+||X||2)- The result is also true, but
j=

harder to prove, if C is an open convex set.]

(b) Let C = {(el, ez): l|e||2 < 1} u {(0, 1)} and show there

exists an exponential family with N = C.

1.2.1 Verify 1.2(5) (including the formula for v which precedes it). Note
that when n = 1 the measure v can be described by the relations X, = x% and
v(dxl) = dxl//ZF .

1.7.1 (i) Let Z = MX as in Theorem 1.7. Show that Z1 is independent of

ZZ for some 6 € © if and only if Z1 is independent of 22 for all 6 € O.
(ii) Give an example to show that the assertion is false if Zl’ Z2
are non-linear transformations of X. [(i) Assume independence at 6 = 0.

(ii) Let X be bivariate normal with mean p and covariance I, and Z1 = ||x|],

Z, = tan'l(xz/xl)-]

1.7.2 Consider the situation of Theorem 1.7. Suppose the original family

Ipy:

$; € ¢¢ is full. It is minimal if and only if there is a 6 € int N with

2
Mé¢% = g. [For a situation where the family of distributions of Z1 is not

6 € N} is full and minimal. Then the family of distributions of Z1 for

minimal use Exercise 1.1.1(b), let M be as in (4), and let ¢§ =1.]

1.7.3 (a) Show that if 1.7(7) or (8) are satisfied then the distri-

butions of Z1 = Mlx form a standard exponential family with natural parameter
bq-

(b) Give an example to show that the distributions of Z1 = M1X may
form a standard exponential family with natural parameter different from ¢1

even when 1.7(7) and (8) fail. [Consider the distribution of X1 when X is



BASIC PROPERTIES 27

multinomial of dimension k > 3, or equivalently, of XI with X* as in Example 1.3.

There are also some other interesting instances of this phenomenon.]

1.8.1 (Contingency table under independence). Consider a 2x2 contingency

table in which the observations are Yij’ 1<1i, j <2, and have a multinomial
(N, p) distribution with p = {pij’ 1<, j<2}. Under the model of
independence pij =Py p+j where Piy = ?pij’ etc.. MWrite this independence
model as a log-linear model in a fashion so that the coordinates of the natural
(minimal) sufficient statistic are independent binomial variables. Generalize

to the model of independence in an rxc contingency table. (For further log-

linear models in contingency tables, see Haberman (1974), (1979).)

1.10.1 Show that in any standard exponential family of dimension k and
order m, m+ k > dimK + dimo . Give an example in which
m < min(dim ©, dim K). [The simplest example has m = 0, dim@® = dimK =1,

k =2.1]

1.12.1 From many points of view the negative binomial distributions are
the discrete analog to the gamma distributions. The negative binomial,

NB(o, p), distribution has probability function

P(x) = ﬁ’{—);%(l - p)%%, x=0,1,..

Show that for fixed o the family NB(a, +) is a one parameter exponential
family, but that -- unlike the T'(a, o) situation -- the family NB(a, p)

a >0, 0<p<1is notan exponential family.

1.12.2 Let v denote counting measure on {(0,0), (1,1), (2,0), (3,1),(4,0),...
k

cR Show that the exponential family generated by v has the following
properties: X1 has a geometric distribution, Ge(pl) = NB(1,p); X2 has a
binomial distribution, B(pz); (X1 - Xz)/2 has a geometric distribution

Ge(p3) and (X1 - X2)/2 is independent of X2. Write Py» Pps Py in terms of the

natural parameters 61> 92.
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m

1.12.3 Let Z),...,Z, be i.i.d. Nu,o?). Let X = I zf . Then X has a
B i=1

scaled non-central x2? distribution with m degrees of freedom, non-centrality

parameter § = muz/oz, and scale parameter 02. Denote this distribution by

X2(8, o%). (i) This distribution has density

o kA (%) (W 2)+k-1 -/ (207)
- e o
(1) 9(x) = kEO k! o2r(k + g) 2k +m/2 ’ x>0

where X = §/2. (From the form of (1) it is evident that K = k ~ P()A) and

X|K ~T(k +m/2, 02); thus (X/oz) K is central x? with k + 5 degrees of freedom.)

NS

(ii) The distributions of X can also be represented as the marginal distribution
of X1 from a canonical two parameter exponential family generated by a measure

v supported on {(xl, x2): X > 0, Xy = 0,1,...} . [(i) By change of variables
and series expansion prove (1) for the case m=1. (1) for general m then follows
from facts about sums of Poisson and gamma variables. (ii) Let v be the

measure generated by (1) with 02 =1, x=1.]

1.13.1 (i) Show that when k = 1 then y must be continuous on N. [Use
1.13 and convexity of N.]
0

(i1) More generally, let 6 € N and ep = (1- p)e0 * poy and

0’71
show w(ep) is continuous in p for 0 < p < 1. [Reason as in (i), or use
Theorem 1.7 and (i).]

(ii1) Give an example of an exponential family in which ¥ is not

continuous on N. [Exercise 1.1.1(b) provides an example.]

1.13.2 Generalize 1.13.1(ii) as follows: let 6 € N and ej €N, j=1,...,d.
Let 1, € conhull{se, 61,...,6J}, j=1,... and T; > 6. Then w(Ti) + y(e).
[Write T, = §aij[(l - pi)ej + pie] with % 5 > 0, ?aij =1, and p; + 1.

5 + pie).]

Use 1.13.1(ii) and the fact that w(Ti) 5-Zaij w((1 - pi)e
J

1.13.3 Let Y = (Y, =1, Y,,...Y )' be the initial state and n further

0 1°°""'n
observations from an S-state Markov chain with transition matrix P (i.e.,

P(YQ = JIYl_1 = i) = Py 1<i,j<S,2=1,...,n). Let N denote the sample
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transition matrix, N = {"ij}’

n
(1) nij T zzlx{i,j}(yl-l’ Yy) -

Suppose pij >0, 1<i,j <S. Show that the distributions of Y form an 52

dimensional exponential family with canonical statistic N = {nij} and
canonical parameters {log pij} . Show that if n > 3 the family has order
52 - 1. [Let Eij denote the matrix with i,j-th entry 1 and all other entries

0. Show that for given 1 < i,j < K there exist sample points Nl’ N2 having

positive probability and that N1 + (Eii - Eji) =N, and (other) points Nl’ N,
such that N1 + (Eii - Ell) = NZ']
1.14.1 Univariate General Linear Model (G.L.M.). Let Y be m-variate

normal, Y ~ N(u, 021), u € R™, 02 > 0. (a) Show that this is an m+1 dimensional

exponential family. (b) In the G.L.M. p is restricted by
u o= Bg, BeR"
with B a known mxr matrix. Assume (for convenience) B has rank r. Show that
this is a full (r+1) dimensional exponential family. [Use Example 1.14 and

Theorem 1.7.1]

1.14.2 Matrix normal distribution. Let u = {“ij} be an mxq matrix and
let T = {Yij} and 1 ={oij} be mxm and gxq positive definite matrices,
respectively. Llet Y = {Yij} be an mxq random matrix whose entries have a
multivariate normal distribution with

E Yij = Wy Cov Yini'j‘ = v

ii'95j
This is the matrix normal distribution, denoted by Y ~ N(u, ', ).

(a) Show that Y has density (relative to Lebesgue measure on R™)

fly) = (2m)™/2 0 T™2 21792 gp g (07 HY - w2THY - w)/2)

[See Arnold (1981, Theorem 17.4).]
(b) Reduce this to an mq + Eimil%ﬂiﬂill dimensional minimal exponential

family with canonical parameters 8i5 izl <is<m 1<jc<aq,and

8 sy VG Tcicitam 1< <3 <q,where Il = iy

iJ
33 = b
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RN

(c) Show that if m > 2 and g > 2 this is not a full exponential family.

= {o

Rather, © is an mq + m(m+1)/2 + q(q+1)/2 - 1 dimensional differentiable
manifold inside of N.

(An alternate notation involves writing Y = (Y(l)""’Y( )) and

q
defining (vec Y)' = (YEI) YEq)). Then Y ~ N(u, I', Z) is the same as
)

vec Y ~ N(vec u, Z 8 T') where 8 denotes the Kronecker product.

1.14.3 Multivariate Linear Model (M.L.M.). Here Y ~ N(p, I, Z) with 2
positive definite and

u = Bs
with B a known mxr matrix and 8 an (rxq) matrix of parameters. Assume (for
convenience) B has rank r. Show that this can be reduced to a full minimal

regular exponential family of dimension rq + q(q+1)/2.

1.14.4 Wishart distribution. Let X = (Xij) and I = (Oij) be symmetric
mxm positive definite matrices. The matrix I'(a, %) distribution has
density
~ LXL m+1 /2 EXPtY' lm
> (a)]2[®
m

where

m(m-1)/4 ™ .

Fm(a) = 7 ITI(a - (i-1)72) , a > (m-1)/2

i=1
Show this is an exponential family, and describe the natural observations,
natural parameters, and cumulant generating function.

(1f Yis i=1,...,n , are independent N(0, ¥) vectors then

n
T YiY% = X has the F(g, 2%) distribution. This is also called the Wishart
i=1
(n, %) distribution and denoted by W(n, ). See e.g. Arnold (1981). Also
n - -
(Y- - 1)~ -, 7))
= i
i=1
1.15.1 Consider a 2x2 contingency table (see Exercise 1.8.1). Find the

M —~

2
Y..and Y,. = Z Y,. . Show that

conditional distribution of Yij given Y, = i] #7500

j=1
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these conditional distributions depend only on the given values Y and on

i+? Y+j
the odds ratio p11p22/p12p21 and form a one-parameter exponential family.
[Under the independence model the distribution is hypergeometric and

independent of p.]





