1. Introduction and some structural properties of empirical measures.

Many standard procedures in statistics are based on a random sample
KyseeesX of i.i.d. observations, i.e., it is assumed that observations (or
measurements) occur as realizations (or values) x; = gi(w) in some sample space
X of a sequence of independent and identically distributed (i.i.d.) random ele-
ments El,...,gn defined on some basic probability space (p-space for short)
(Q,F,P); here £ is called a RANDOM ELEMENT in X whenever there exists a (Q,F,P)
such that &: © » X is F,B-measurable for an appropriate c-algebra B in X, in
which case the law uz=L{g} of £ is a well defined p-measure on B
(u(B) = P({weR: &(w)EB}) = P(&£EB) for short, BEB).

In classical situations, the sample space X is usually the k-dimensional
Euclidean space R%, k21, with the Borel o-algebra Bk. In the present notes, if
not stated otherwise, the sample space X is always an arbitrary measurable
space (X,B).

Given then i.i.d. random elements Ei in X = (X,B) with (common) law u on B

we can associate with each (sample size) n the so-called EMPIRICAL MEASURE

1
(1) u :==(e_ +...+€_ ) on B,
n n El En
1 if x€B
where e (B) := , BEB.
® 0 if x¢B

In other words, given the first n observations X, = Ei(w), i=1,...,n,
un(B) Eun(B,w) is the average number of the first n xi's falling into B. (The
notation un(',w) should call attention to the fact that oy is a random
p-measure on B.)

u, may be viewed as the statistical picture of u and we are thus inte-

rested in the connection between My and u, especially when n tends to infinity.
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In what follows, let C be some subset of B (e.g., C={(-=,t]: tGRk}, the class
of all lower left orthants in X = Pk, or the class of all closed Euclidean

balls inIRk, to have at least two specific examples in mind). Denoting with 1

c
the indicator function of a set CEC, un(C) can be rewritten in the form
OISRy
n n i=1 C 71
Now, since the random variables 1C(£i), i=1,2,... are again i.i.d. with common

mean u(C) and variance u(C)(1-u(C)), it results from classical probability
theory that
(2) (Strong Law of Large Numbers): For each fixed CEC one has
un(C) + u(C) P-almost surely (P-a.s.)
as n tends to infinity.
(3) (Central Limit Theorem): For each fixed CEC one has
nl/z(un(C) - u(c)) L GU(C) as n tends to infinity,
where @u(C) is a random variable with
L{Cu(C)} = N(o,u(c)(1-u(C))).
(4) (Multidimensional Central Limit Theorem): For any finitely many

Cl,...,CkGC one has

{nl/2(un(Cj) SRTCHIEIE SRS L ©,€,) ¢ 3oLyeensk)

as n tends to infinity, where @u E(Eu(c)) is a mean-zero

ceC
Gaussian process with covariance structure
cov(@u(C), @u(D)) = p(CcND) - u(c)u(D), C,DeC.
Here, according to Kolmogorov's theorem (cf. Gaenssler-Stute (1977), 7.1.16),
@u is viewed as a random element in (1RC,BC), where BC = %IB denotes the pro-
duct o-algebra injmc of identical components B, B being the c-algebra of Borel
sets in R.
In this lecture we are going to present uniform analogues of (2) (with
the uniformity being in CEC) known as GLIVENKO-CANTELLI THEOREMS (Section 2)
and functional versions of (4), so-called FUNCTIONAL CENTRAL LIMIT THEOREMS

(Section 4); an appropriate setting for the latter is presented in Section 3
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which might also be of independent interest. First we want to give insight into

some more or less known

STRUCTURAL PROPERTIES OF EMPIRICAL MEASURES:

For this, consider instead of Mo the counting process

N_(B)
n

nun(B), BEB.

Note that LN (B)} = Bin(n,u(B)) (i.e., PO (®)=9) = (Du@) 1-u)™3,
j=0,1,...,n). The following Markov and Martingale properties associated with
empirical measures are well known; since however specific references are not
conveniently available, and especially not in the set-indexed context of these

lectures, we present detailed derivatives.

LEMMA 1 (MARKOV PROPERTY). For any @ = B C BlC k lC B C Bk 1 X with

B1€B such that for D 1= Bi\Bi—l’ u(Di) >0, i=1l,...,k+1, and for any

Osm;s...2m , Sm Sn with m, €{0,1,...,n} one has
PN (B) =m [N (B) =my,.. 0N (B ;) =m_,)
= PO B =m N By ) =m_y)

_ nm u(Dk) MM L U(Dk) "

M M1 H(D VD) w(BDy )

Proof. P(Nn(Bk) :mk|Nn(B1) =ml""’Nn(Bk—l) =mk—l)

: P(Nn(Bl)=ml,...,Nn(B )=m Nn(Bk)=mk) o a

k-1" "k-1°
=: — , say, where
PN (B )=m 5...,N (B _)=m ) b

a =P(Nn(Dl)=ml, N ) Q) =Mmymmy s N (D) =m-m > N (D .y =n—mk)

_ n! my MM M Me-1 o
- ml(m2—ml)! (m -m ) (n- m, )! (D, ) u(D ) "'u(Dk) u(Dk+l) >
n! ™ My My Me-1"Me-2
b = T u(d,) "u(d,) ...u(d__.) x
ml!(mz-ml)!...(mk_l-mk_z).(n m )} 1 2 k-1 n_
x u(DY mk—l,
_ nem, k+l
a (n-m )t u(Dk)mk mk'lu(nk+l)
whence — = . p—
b (mem )i (nmm )t u(pup, ) X7t

k k+1
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{ - -
n-m o ) u(Dk) M- u(Dk) M
| ———— . 1-—mmm proving equality of
=] U
m Ty g u(D YD, ) u(D VD, 1)
the first and third term in the assertion of the lemma; the other equality

follows in the same way by just taking Bl,...,Bk_2 out of consideration. 0O

Corollary. Let C be a subset of B which is linearly ordered by inclusion;
then (Nn(C))CeC is a Markov process.

Lemma 2. Let BEB be arbitrary but fixed such that 0<u(B) <1 and let
C=B(B)CB be linearly ordered by inclusion with B as its smallest element;

then for 0<m<n

L{(Nn(B))BeB(E)INn(B)=m} = L{(m+ﬁn_m(B\§))BeB(§)},
where NN(D) = N EN(D), EN being the empirical measure pertaining to i.i.d.
u(DNCB)

random elements Ei in (X,B) with L{Ei} =u and u(D) := BTSN for DEB.

(Here the laws L{...} are considered to be defined on the product c-algebra
BB(§) in ZRB(B) and (B denotes the complement of B in X.)

Proof. It suffices to show that the finite dimensional marginal distributions
coincide.

1) As to the one-dimensional marginal distributions, let BEB with BCB be

arbitrary but fixed; then it follows from Lemma 1 that for k 2m
u(B\B) ¢ W(BAE) P 7X
P(N_(8) =k|N_(B) =m) = cl-—=
k-m u(CB)

n-m _
= B -m)HH
k-m

u(€B)

- L L
On the other hand, taking into account that lB(Ei) B\B(E ) (where = means

L
equality in law) and therefore NN(B) = NN(B\ﬁ) for any BEB with BCB, one

obtains that

n-m
( k-m

=P(N__ (B\B) =k-m) = P(m+N__ (B\B) =k)
n-m n-m

T ™1-TEN K B(E. (B) =k-m)
n-m
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proving the coincidence of the one-dimensional marginal distributions.
2) As to higher-dimensional marginal distributions, let us consider for sim-
plicity the two-dimensional case (the general case runs in the same way):

For this, let BiEB, i=1,2, with BCB CB2 be arbitrary but fixed; then for

1

k,zk, 2m,
P(N_(B,) =k, N_(B,) =k2INn(B) =m)

‘IP(Nn(ﬁ) =m, Nn(Bl) =k Nn(B2) :k2) o2

= =: — , say, where
]P(Nn(ﬁ) =m) b

a = ]P(Nn(B) =m, Nn(Bl\B) =kl-m, Nn(BQ\Bl) =k2—kl, Nn(X\BQ) =n—k2)

_ n!
m!(kl—m)!(kQ—kl)!(n-kz)!

u(E)mu(Bl\g)kl-mu(BQ\Bl)kQ_klu(X\BQ)n_k2 and

n
b= p(B)™(1-u(B))™™, whence
m
i ) (n-m)! u(Bl\E)kl_mu(BQ\Bl)kz_klu(X\B2)n_k2
b (kp=m)1(kyk ) H(nok,) ! p(CmH™
(n-m)!
- X
(kl—m)!((k2—m)—(kl—m))Z((n-m)-(kQ—m))!
u(s NIE) kymm u(BNE)  u(e NB) Kymm- (e -m) u(B NCB) n-m-(k,-m)
PY [ —— . - . 1- —%
u(lB) u((B) u(lB) u((®)
(n-m)!
= X
(kl—m)!((kz—m)-(kl—m))!((n—m)-(k2-m))!
« s ORI\ B, )2 ey (e
(n-m)!
- x
(kl-m)!((kQ—m)-(kl—m))!((n-m)—(kz—m))!
n—m—(kQ—m)

« 5 N EFIPR(B AN (8, BN 2RI (08, B))
= P(ﬁn_m(Bl\§) =k, -m, ﬁn_m(BQ\ﬁ) = k2—m)

= P(mtN _ (B \B) =k, mtN__ (B\B) =k,). O
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LEMMA 3 (MARTINGALE PROPERTY). Let CCB be linearly ordered by inclusion such
that u(fB) >0 for all BEC; then, for each fixed n,

Nn(B)~nu(B) -
———————— is a martingale, i.e.,for each B, BEC with BCB one has

u(fB) BEC
\
N (B)-nu(B) N_(B)-nu(B)
E{ =——— [N (D) : €C2DCF | = = 22—
u((B) U u(CB)

Proof. Since (Nn(C))CEC is a Markov process (cf. Corollary to Lemma 1), it

follows that

N (B)-nu(B) Nn(B)*nu(B)
E{ ————— [N (D) : C3DCB | , = Ef —— INn('E) s
u(CB) U u(fB)
N (B)-nu(B) N (B)-nu(B
where E (—ll————————— IN_(B) ) (w) = I:(-ll.___gt£_z.iN (B) = m
u(¢B) ! u(tB) "
for all u)E{Nn(E) =m}, m=0,1,...,n.
Nn(B)—nu(B) _
Now, according to Lemma 2, E|-—-———— |[N (B)=m
u(fB) o

W(eB)  u(CB) w(EB)

m+N_ (B\B) nu(B) m+t(n-m)u(B) nu(B)
E n-m _ _
u(CB)

mu(CB) + (n-m)u(BNCE) ~ nu(B)u(LE)

L(CB)R(CE) (u(BOCB)=u(B)-u(B))

m-myu(B)+np(B)-mu(B)-nu(B)+mu(B)-nu(B)+nu(B)u(B)

u(fBIu(EB)

(1-u(B))(m-nu(B)) m-nu(B)

5

u(¢B)u((B) u(CB)
N _(B)-nu(B) N (B)-nu(B)
hence Bl IN@B) |z 2—— . O
u(¢B) o u(CE)

Let us make at this place a remark concerning the covariance structure of

(Nn(B))BeB supplementing the properties (2)-(4) on page 2:
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It is easy to check that for any BiEB, i=1,2,

(5) E(Nn(Bl)Nn(B2)) = nu(BlﬂB2) + n(n—l)u(Bl)u(BQ),
whence E(Nn(Bl)Nn(BQ)) = n(n-l)u(Bl)u(BQ) if BlﬂB2 = @
together with E(Nn(Bl)DE(Nn(B2)) = n2u(Bl)u(Bz) this yields
cov(Nn(Bl), Nn(B2)) = - nu(Bl)u(B2) $# 0 if BlﬂB2 = ¢ and
u(Bi) >0, i=1,2;
therefore, BfﬁBQ = @ does not imply that Nn(Bl) and Nn(B2) are indepen-
dent. (For the uniform empirical process, to be considered later, this
implies that it is not a process with independent increments.) This

situation changes if one considers instead the following

(6) POISSONIZATION: Let v be a Poisson random variable (defined on the same

p-space as the gi's) with parameter A and let for BEB

v(w)
M(B) = M(B,w) := I lB(Ei(m)), weQR.
i=1

Assume that v is independent of the sequence (Ei)iEN'
Then, for any pairwise disjoint BjEB, j=1,...,s, the random variables

M(Bj), j=1,...,s8, are independent.

Furthermore, for any BEB and any k€{0,1,2,...} one has

Owe)X

P(M(B)=k) = !

exp(-Au(B)).

Proof. Let us prove first the last statement:

2 2
P(M(B)=k) =PP( V { L lB(E-)=k, v=R}) = IP( L lB(E.)=k) P(v=4)
2k i=1 1 22k i=1 .
gy ok ek A
= I (k)u(B) (1-u(B)) E7—exp(-l)
22k ’
gk, k
g1 k gk A
= I reooT MB) (1-u(B)) —7— exp(-})
o TR rx
o owen* [ aaen™ L owen
(-k=:m) k! *P 50 m! Tk AN
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s s
As to the independence assertion let B :=(0(UB.), k := k., and
s+l 5=1 j 5=1 j
kstl := 2-k for f2k. Then
L
P(M(B.) = k., j=1l,...,8) =P( VU { = 1 (E.) = k., §=1,...,5+1; v=21})
J J g2k i=1 °§ J
L
= L PO 1y (&) = ki, 371,...,841) P(v=1)
g2k izl °j J
: % X k) ke -k Akl+."+ksxz"k
= B . -
Y3l klz"'ks!(g’-k)! H 1) “(BS) M(BS‘l'l) o exp( A)
k. o
s (w(B,)) (B, 1))
= I —————}____ exp(-A)- | & — ... (%), where
j=1 kj' n20 m

[....] = exp(Au(BS+l)), whence

s+l s
exp(-A) [....] = exp(-A( £ u(B.))) exp(Au(B )) = exp(-A( £ u(B,))).
521 3j s+l 5=1 i
Therefore
S Ome3))
(*) = 1 ——i%;%————-eXp(—Au(Bj)). u]

j=1 3’

Later we will consider for a given CCB the so-called EMPIRICAL C-PROCESS

Ber(Bn(C)) defined by

ceC

nl/

_ 2 .
BL(C) := (u (C)-u(c)), ceC.

Using (5) one obtains
cov(Bn(Cl), Bn(Cz)) = u(Cf‘CQ) - u(Cl)u(C2), Cl,C2EC.
n

2 .
(B(C1) = B(€)) = I ny(€),0)) with

Furthermore, nl/

ng Eni(cl’CQ) 1= 1Cl(gi) - 102(£i) - (u(Cl) - u(C2)) being independent and

identically distributed with E(ni) = 0 and
_ _ ) 2 )
Var(n,) = u(C Ac,) = (u(Cy) - u(c,))” < u(C,AC,), whence the following

Bernstein-type inequality applies (cf. G. Bennett (1962)):
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(7) Let NysNysees be a sequence of independent random variables with

E(ni) = 0 and Var(ni) = ci and suppose that suplnil < M for some

n n
constant O<M<w; let S_ := I n., and T2 = I 0?; then for all n and
n . i n . i
i=1 i=1

€>0

62/2
P(S 2ze) 2 exp (- — ).

n 2
Tn+EM/3

From (7) we obtain immediately

LEMMA 4. For every n and a>0 one has for any CiEC, i=1,2,

2
(i) P(|B_(C,)-B (C,)|za) £ 2exp (- na )
noLt T2 2nu(clAc2)+unl/2a/3
and for any C€EC
2
(ii) P([8_(C)|za) = 2exp (- a )

2u(C)(1-u(C))+an /2

We will conclude this section with a further fundamental property concer-

ning the so-called EMPIRICAL C-DISCREPANCY
D (Cou) := suplun(C)-u(C)I-
CeC

In what follows we shall write “un—u|| instead of Dn(C,u) and we assume

that |lun—u||is a random variable, (i.e. F,B-measurable), Then:

LEMMA 5. (|| “n'“|l)new is a REVERSED SUBMARTINGALE w.r.t. the sequence of
o-fields Gn iz o({un(B), un+l(B),... : BEB}) which means that for each m, n
with msn
E(llum~uli|0n) 2 flu_~ul| P-a.s.
Proof. As shown in Gaenssler-Stute (1977), 6.5.5(c), the following holds:
For each CEC the process (un(C)—u(C))nEIN is a REVERSED MARTINGALE w.r.t. Gn’
i.e., for each m, n with msn one has
EC(n (0)-u(e)[6) = u_(C)-u(e)s
therefore

E(sup|u_(C)-u(C)|]| G)
cec ™ I n
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2 sup| E((u_(€)-u(c)[6,)| = sup|u (c)-u(c)|. O
cec cec

Now, as in the case of submartingales, there holds an analogous CONVER-
GENCE THEOREM FOR REVERSED SUBMARTINGALES (cf. Gaenssler-Stute (1977), 6.5.10)
stating that for any reversed submartingale (Tn)nEN (on some p-space (2,F,P))

w.r.t. a monotone decreasing sequence (Gn)n of sub-g-fields of F satisfying

€N

the condition that inf E(Tn)>—w there exists an integrable random variable T
n

such that Tn-->Tcn P-a.s. and in the mean.

From this and Lemma 5 one obtains a rather simple proof of the following
result (cf. D. Pollard (1981)) which, in a similar form, was one of the main
results in Steele's paper (cf. M. Steele (1978)) proved there with different

methods based on the ergodic theory of subadditive stochastic processes.
LEMMA 6. Let (vn)]new be an arbitrary sequence of non-negative integer valued

random variables on (Q,F,P) such that vn:g © (wherezg-denotes convergence in
probability; also here and in the following all statements about convergence

are understood to hold as n tends to infinity). Then

luuli >0 Pea.s. ser fu, il B os
n

in particular, Hun—uii+-0 P-a.s. iff Hun*u|I:§ 0.

(Note that according to our measurability assumption on Hun-ull also the

RANDOMIZED DISCREPANCY Huv —u|l is a random variable; in fact,
n

{w:lluvn(w)(',w)—ulléa} = jé;z {vn=j}n{“uj—ul|§a} for each a20.)
+

Proof. 1.) Only if-part: vn:§ © implies that for any subsequence (vn,) of (vn)

there exists a further subsequence (vn") such that Vo > P-a.s.,whence

“uv -u|| > 0 P-a.s. as n" tends to infinity, and therefore “uv -ulrg 0.
n" n

2.) If-part: According to Lemma 5 the process (Hun-ulLG is a reversed sub-

n)nGN
martingale. It is uniformly bounded; therefore, by the convergence theorem for

reversed submartingales mentioned before, there exists an integrable random
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variable T_ such that |lun-u|| + T_ P-a.s. From this it follows as in part 1.)

of our proof that lluv -uH]—P; T_, whence, by assumption, it follows that
n

T,=0 P-a.s. m]





