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LOCALLY BEST INVARIANT TESTS FOR MULTIVARIATE

NORMALITY IN CURVED FAMILIES WITH μ KNOWN

BY TAKEAKI KARIYA AND EDWARD I. GEORGE

Hitotsubashί University and University of Texas at Austin

This paper is a continuation of Kariya and George (1992) and derives the

LBI tests and their asymptotic null and nonnull distributions in such curved fami-

lies as an arithmetic normal mixture, a geometric normal mixture, an exponential-

d family, when location parameter μ is known.

1. Introduction and Summary. Generalizing the arguments in
Kuwana and Kariya (1991), Kariya and George (1992) formulated a testing
problem in an elliptically contoured curved family, derived a general form of
the LBI (locally best invariant) test and the null and nonnull distributions of
the LBI test, and proposed a measure of the local departure of an elliptically
contoured curved family from normality. In this paper, we treat the special
case where location parameter μ(E Rp) is known, because the LBI test is quite
different from the one when μ is unknown and because the location invariance
is not available in a multivariate linear model with iid errors as will be dis-
cussed below. In an arithmetic normal mixture, a geometric normal mixture,
and an exponential-d family as subfamilies, the problem is discussed in details.

In our model, a deviation from the normal family with mean μ known

Nμ = {Np(μ,Σ):Σ£§(p)}. (1.1)

is described by a real parameter θ where a specific value, say θ — 0, corresponds
to the normal family Nμ in (1.1). where S(p) denotes the set of p x p positive
definite matrices. Since Np(μ, Σ) is a location and scale family of (μ, Σ), it is
natural to consider the location and scale family with pdf 's of the form

pβ(x \μ,Σ) = \Σ\-l/2fe{{x ~ μ)"Σ.~\x ~ μ)), (1.2)
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where /#(•) is known for each parameter θ G /. We take pβ to be a normal pdf

when θ = 0 so that fo(z) = (2π)~p/2 exp[-*/2]. Hence the family described

by the pdf's in (1.2) may be regarded as a "curve" passing through the normal

family (1.1). We also assume that §gfθ(z) is continuous in (s,0) E [0,oo) X /.

Note that every pdf in (1.2) is elliptically symmetric. For general properties

of such distributions, we refer the reader to Kelker (1970), Kariya and Sinha

(1988) and Fang and Zhang (1990). For each curved family (1.2), we consider

the problem of testing

H : θ = 0 v s K:θ>0 (1.3)

based on an iid sample (a?i, , xn), and derive the LBI test and its asymptotic

null and nonnull distributions.

Then fθ(-) is specialized and the following three classes are considered in

details:

(1) Arithmetic mixtures: p#( ) = (1 - θ)po(-) + θq(-)

(2) Geometric mixtures: pθ( ) = c(θ)po(')1"θq(')θ

(3) Exponential-d family: pβ{ ) = c(θ)exp(—^dg( )).

where q(x\μ,Σ) = |Σ|~1/25r((a; — μ)fΣ"1(x — μ)) with known #, and dβ(z) is

a linear function of powers of z such that do(z) — z. In the classes (1) and

(2), the LBI tests are shown to measure the difference between the functional

forms of /o and g. Normal-ΐ mixtures and normal exponential power mixtures

are considered as special cases. An important special case of (3) obtained

by dβ(z) = zθ+1 is the family of exponential power distributions treated by

Kuwana and Kariya (1991). In Kariya and George (1992), it is shown that

when μ is unknown, the exponential-c? family with ^gdθ(z)\β=o = -kz2 yields

Mardia's kurtosis test (1970) as the LBI test. We also show this for the case

where μ is known.

Since μ is assume to be known, without loss of generality we assume μ = 0

in the sequel (by replacing x by x - μ). It should be noted that for a given

curved family (1.2), replacing μ by x in the LBI test when μ is known does not

yield the LBI test when μ is unknown. Indeed, the LBI test under unknown μ

is rather complicated (see Kariya and George (1992)). To state another reason

why we consider the case where μ is known, let a multivariate linear model be

U = ZΊ + E (1.4)

where U = (ui, ,un)
f : n X p,Z = (^i, , 2 n ) ; : n X k is nonrandom,

7 : k X p is unknown and E = (ei, , e n ) ; : n x p is an error matrix with e '̂s

iid and E(eι) — 0. It is often assumed that e 's are iid iV(0, Σ). To check this

assumption in our setting, we need to derive the LBI test under (1.2). However,

even though η/'zi is a location parameter in each U{ = η'zi + e« , there is no
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group-invariance structure which gets rid of the nuisance parameter 7 under
the iid assumption for e 's with (1.2) except for the normal case θ = 0. It is
noted that (7, E E) is not a sufficient statistic for (1.2) except for θ = 0, where
7 = (Z'Z^Z'U and E -V - Zη. Consequently no LBI test is available for
the model (1.4). In such a situation, the procedure we propose here is that
assuming η1 Z{ is known, we derive the LBI test based on a = Ui — η!zι and
then substitute ei = u\ - η'zi for e*. This problem is briefly discussed in the
last section.

2. The LBI Test for Normality. In this section we derive the general
form of the LBI test of H : θ = 0 vs K : θ > 0 under the family pθ in (1.2)
with μ = 0. Let X — {x\, ,x n ) ' •' n X p and let Gl(p) denote the group of
p X p nonsingular matrices acting on X and (0, Σ) by

g-X = XA' and g - (0,Σ) = (0,AΣA') (2.1)

respectively where g = A G Gl(p). Clearly the problem of testing (1.4) under
(1.2) when μ = 0 is left invariant under (2.1) and a maximal invariant is

W(X) = -XS-χXf = YY' with
n

^ S - ^ 2 and S =-X'X. (2.2)

Also a maximal invariant parameter is θ. This implies that the distribution
of W\ denoted by Pj^, depends on θ only so that we can assume Σ = / in
our invariant analysis. Furthermore, any G7(p)-invariant test φ of H : θ = 0
versus K : θ > 0 will be a function only of W. The following result provides
a characterization of the locally best invariant (LBI) test.

THEOREM 2.1. Let π(φ,θ) be the power function of a GI(p)-invariant
test φ of H : θ = 0 vs K : θ > 0 under pθ in (1.2) when μ = 0. Let
h(YA'\θ) = U]=iPθ(Ayj\0,I). Suppose for all θ in a neighborhood ofθ = 0,

| - / h(YA'\θ)\detA\»->dA
W JGl(p)

= ί ξ-h(YA'\θ)\detA\n-vdA. (2.3)
JGI(P) vv

(i)Tie slope ofπ(φJθ) at θ = 0 is given by

^*(Φ,θ)\θ=o = πE0[φ(W)K(W)} (2.4)

where

J 2 2 ) (2-5)
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with

^ * ) | ί = 0 = f'o(z)/fo(z) α f'0(z)exp[z/2] (2.6)

and b ~ χ^,χ 2 -distribution with d.ί. (degrees of freedom) n.

(ii) E0K(W) = 0.

(iii) Tie test which rejects H for large values of K(W) is LBI for H vs

K.

PROOF. The proof is similar to the one given in Kuwana and Kariya

(1991), and hence it is outlined. By Wijsman's Theorem (1967) or Andersson

(1978), the power function of φ is given by

τr(0, φ) = j φ(W)q(W\θ)dP?, (2.7)

where q(W\θ) = H(Y\Θ)/H(Y\Q), with

H(Y\Θ)= ί h(YA'\θ)\detA\nv(dA) (2.8)

JGl(p)

and v(dA) = \άetA\~pdA. Here using the continuous differentiability of

Pθ(-\0,I) and the compactness of the space JD of Y, H(Y\Θ) is bounded on

JD X [0,ε] for some ε > 0. Thus the differentiation of TΓ at θ = 0 can be

performed beneath the integral sign and making use of (2.3), the derivative of

q at θ = 0 leads to the derivative inside the integral sign;

)). (2.9)

3=1

Since h(YA'\O) = (2π)-nP/2exp[-|trAΆ], we obtain

%)] (2-10)

where EA{ ) is the expectation of under the pdf f(A) oc exp [ - | t r AΆ]\

det A\n~p where JGl/p\ f(A)dA = 1. Arguing in the same way as in Kuwana

and Kariya (1992), we obtain

A'AVJ)] = Eb[9(b\\Vi\\2)] (2.H)

where b ~ χ2

n. Substituting (2.11) into (2.10) yields (2.4).
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The special case φ = a inserted into (2.4) shows EQ[K(W)] = 0. Finally,

maximizing EQ[Φ(W)K(W)] since the alternative is θ > 0, the LBI result

follows from the generalized Neyman-Pearson Lemma.

The function Φ(z) = ^ log fe(z)\θ=o i n (2.6) is the efficient score at θ = 0

for testing H : θ = 0 vs K : θ > 0 for the one dimensional family z ~ fe(z)\

see Cox and Hinkley (1974). Thus K(W) in (2.5) may be interpreted as

an averaged efficient score statistic in the direction of the alternative. Note

that as long as /Ό( ) is available, K(W) can be computed by Monte Carlo

approximation under b ~ χ2

n. The following alternative expression for K(W)

is obtained by transforming b into c — 6(1 — ||2/j||2).

COROLLARY 2.1. Tie LBI test statistic K{W) in (2.5) may be ex-

pressed as

withb~χ2

n.

Next we obtain asymptotic distributions under p$ in (1.2) of statistics of

the form
1 n

~ 2) (2.13)

with b ~ χ^ and \\yj\\2 as in (2.2). These results will then be applied to the

test statistic K{W) in (2.5) which is a special case of T when H = Φ.

THEOREM 2.2. For T(w) in (2.13), suppose H : R^ R satisfies

(a) H(z) is continuously twice differentiate,

(b) ^[JΓ(| | a ! l | |»)]M; ί[ | |x 1 | |»JΓ(| |« 1 |H] lEβ[ | |x 1 | | 2Jff'ί | |x 1 | | a)] < oo and

(c) there exists a function of the form G(u) = Σk=-N αk^k for some

NUN2 such that \H"(u)\ < G(u) and E4||a;i||46?(||a?i||2)] < oo.

Then a s n ^ oo,

y/n[T(W) - μ(θ)} -+ 7V(0, υ(θ)) (2.14)

where

= Eθ[H(\\Xl\\2)] and

(2.14a)

PROOF. The proof is completely analogous to Kuwana and Kariya

(1991), and so omitted here.
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The asymptotic null distribution of T is directly obtained from Theorem
2.2 with θ = 0, while the asymptotic nonnull distribution under contiguous
alternatives is given by

COROLLARY 2.2. Suppose T(W) satisfies (SL)-(C) of Theorem 2.2.
Then the asymptotic nonnull distribution of yfn[T{W) - μ(0)] under the
contiguous alternatives θn = ω/y/n with ω > 0 is N(ωμf(0),υ(0)) where

PROOF. Write Λ/E[T(W)-μ(0)] = Λ/ίί[
—μ(0)]. The result follows from limn_,oo y/n[μ(ω/y/n) — μ(0)] = ωμf(0) and

^oo v(ω/y/n) = v(0).

3. Specific LBI Tests.

(I) The LBI Test Against Arithmetic Mixtures
The following result yields the LBI test when μ = 0, against the family

of arithmetic mixture alternatives;

Pθ(x\0, Σ) = (1 - βJlΣΓ^/oίs'Σ-1*) + fllΣΓ^tys'Σ-1*) (3.1)

where g(xfx) is a fixed pdf on Rp.

THEOREM 3.1. Suppose

d e t A|n-pdA < oo. (3.2)

Then the LBI test of H : θ = 0 vs K : 0 > 0 in (3.1j rejects JT for large values
of

(3.3)

where 6 - x^ a n ( J ^ . = \\yj\\2/(ι _ | | f f j | | 2 ) .

PROOF. It is easy to see that (2.3) of Theorem 2.1 will hold for (3.1) as
long as (3.2) is satisfied. The two expressions are immediately obtained from
Theorem 2.1 and Corollary 2.1 using K(W) = 1 + T(W).

The first expression of T{W) in (3.3) shows that the LBI test compares g
and /o by a weighted average of likelihood ratios. The second expression for
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T(W) can be further specified when g( ) is analytic on [0, oo) and so expanded
as

oo

g(z) = Y^akz
k/kl with ak = dkg(z)/dzk\z=0 (3.4)

k=0

COROLLARY 3.1. When g(z) satisfying (3.2) is of the form (3.4), the
LBI test for H vs K in (3.1) is that which rejects H for large values of

)n/2 [ Σ r*fo*
it=0

where Vj = \\yj\\2/(l - \\yj\\2),rk(Vj) = τ $ $ » t f ^d βk = (27r)"/22*αfc.

PROOF. The proof is straightforward.

The LBI test statistic in (3.5) has the following interesting interpretation.

(1) When g(z) is analytic on [0, oo), the entire form of g(z) is determined
by the derivative coefficients α^'s at z = 0. In th case of a normal pdf,
akN = (2π)~p/2(-2)~k and hence βk in (3.5) measures the difference between
the fixed pdf g for which βk = (-l)kOLkl&kN and the normal pdf /0 for which

βk = (-1)*.
(2) The value WJJ = \\yj\\2 — \χljS 1Zj(< 1) is regarded as the distance

of the j-th observation Xj from the origin relative to the sample covariance
matrix S. If θ is close to 1 in (3.1) and if g(z) has a heavier (or thinner) tail
relative to the normal case, them the ||yj||2's and hence the 77/s tend to be
larger (or smaller) as a whole. Thus the ||j/j||2's and 77/s reflect the mixture
parameter θ of fe in (3.1) and the form of g. And if θ is close to 1, the ||2/?||2's
and 7/j's will reflect more of the form of 5, whereas if θ is close to 0, they will
tend to exhibit more of the features of the normal case / 0 .

(3) Hence the deviation of g from normality is detected by the weights
rk(Vj) o n βk m (3.5). When \\yj\\2 and hence ηj is large, rk(ηj) will put more
weight on the βk for large k. Thus, when some | |i^| |2 is large, the ratios
βk = Qik/oikN of higher derivatives are more likely to be tested against the
deviation form normality when n is fixed. Conversely, when all the ||2/j||2's are
small, the lower derivatives get more weights for testing normality because the
||2/j||2's do not contradict with the null hypothesis in higher order derivatives.
Also, as n becomes larger, the increased weight due to a large \\yj | |2 becomes
more pronounced through the term (1 + ηj)n/2. Hence as n gets large, the
higher derivatives get more weight for testing normality.

Finally, the asymptotic null and nonnull distributions of T(W) in (3.3)
with H(z) = g(z)/fo(z) under assumptions (a)-(c) are

<>/n[T(W)-ϊ\-+N(0,υ(Q)) for 0 = 0

yMT(W)-l]->N(ωμ'(0),v(0)) for θn=ω/y/ϊϊ (3.6)
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where

and

EXAMPLE 3.1. Normal-/ arithmetic mixture. Suppose the mixing
distribution for g in (3.1) is the multivariate t distribution with m degrees of
freedom

Γ(m + P)/2 Γ 1
| Σ | (xm)P/»Γ(m/2)

To insure that condition (3.2) of Theorem 3.1 is satisfied we shall require
m> n-p. From (3.3), the LBI test is that which rejects H for large values of

T{W)=\jrEbH{b\\yj\γ) with
n i i

where 6 ~ χ^. this expression for T{W) can be evaluated by Monte Carlo
approximation.

Unfortunately here ^[ίf( | |x j | | 2 )] 2 = oo for all 0, so that condition (b)
of Theorem 2.2 is not satisfied. Thus, these results cannot be used to obtain
asymptotic distributions for T(W).

EXAMPLE 3.2. Normal-exponential power arithmetic mixture. Sup-
pose the mixing distribution for g in (3.1) is a member of the exponential
power family

^TXU{>^ (3 9)

Note that condition (3.2) of Theorem 3.1 is satisfied by (3.9) as long as a > 0.
From (3.3), the LBI test is that which rejects H for large values of

H{Z) = Γ(p/2α)

where b ~ χ2

n. This expression for T(W) can be evaluated by Monte Carlo
approximation.
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Finally, when a > 1, the asymptotic null and nonnull distributions of
T(W) here may be obtained from Theorem 2.2 and Corollary 2.2 (or (3.6))
since in this case assumptions (a)-(c) are satisfied. These assumptions are not
satisfied when a < 1.

(2) The LBI Test Against Geometric Mixtures
The following result yields the LBI test when μ = 0, against the family

of geometric mixture alternatives

Pθ(x\0, Σ) = I Σ Γ 1 / V M / o ί s ' Σ - 1 * ) ] 1 " ' ^ ^ - 1 * ) ] ' (3-11)

where g(x'x) is a fixed pdf on Rp.

THEOREM 3.2. Suppose

ί TΊ giy'jA'Ay^l det A\n^dA < oo. (3.12)
JGI(P) fJί

Then the LBI test of H : θ = 0 vs K : θ > 0 in (3.11) rejects H for large
values of

(3.13)

where b ~ χ2

n and C is a constant.

PROOF. It is straightforward to check that (2.3) of Theorem 2.1 will
hold for (3.11) as long as (3.12) is satisfied. Calculation of Φ in (2.6) yields
9(z) = log [g(z)/fo(z)] + Cf for some constant C",as Σ]=1Eblog [fo(b\\yj\\2)] =

/2

As opposed to T(W) in (3.3), the first expression in (3.13) shows that
here the LBI test compares g and /o by a weighted average of log likelihood
ratios. Asymptotic null and nonnull distributions of T(W) in (3.13) can be
obtained from Theorem 2.2 and Corollary 2.2 with H(z) = log[g(z)/fo{z)]
when assumptions (a)-(c) are satisfied.

EXAMPLE 3.3. Normal-^ geometric mixture. Suppose the mixing dis-
tribution in (3.11) is the multivariate t distribution with m degrees of freedom
in (3.7). From Theorem 3.2, the LBI test rejects H for small values of

T(W)=^-^-y Eb]og\l + -\\yj\\t\ (3.14)
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where b ~ χ2

n. The asymptotic distributions of T(W) can be obtained from
Theorem 2.2 and Corollary 2.2. Assumptions (a)-(c) are easily verified using
H(z) = (m + p)log(l + z/m), H\z) = (m + p)/(m + z), and H"(z) = -(m +
p)/(m + z)2. Note that μ(0) and υ(0) may be computed using (2.14a).

EXAMPLE 3.4. Normal-exponential power geometric mixture. Suppose
the mixing distribution in (3.11) is a member of the exponential power family
in (3.9). From Theorem 3.2, the LBI test rejects H for small values of

- ( 3 1 5 )

The asymptotic distributions of T(W) can be obtained from Theorem 2.2
and Corollary 2.2. Assumptions (a)-(c) are easily verified using H(z) =
za,H'(z) = 0LZa-χ, and H"(z) = α(α - l)za~2. For example, under H :
θ = 0,y/H[T(W) - μ(0)] -> N(0,υ(0)) where μ(0) = [2αΓ(f + α)/Γ(f)] and

v(0) =Vn 0[\\xi\\2a - *\\xiM)]
(3) The Exponential-d Family and Mardia's Test
When μ = 0, the exponential-d family is given by

pβ(a:|0,Σ) = i Σ Γ ^ c ^ e x p ( - i d ^ x ' Σ " ^ ) ) , (3.16)

where dβ(z) is a liner function of powers of z such that do(z) = z. Note that
when this family satisfies (2.3) of Theorem 2.1, the LBI test against (3.16)
rejects H for large values of

T(W) = ΣEb \~dβ(b\\y£)\ 1 . (3.17)

The asymptotic null and nonnull distributions of (3.17) may then be obtained
from Theorem 2.2 and Corollary 2.2 when assumption (a)-(c) are satisfied.

We now show that Mardia's kurtosis test is LBI (when μ — 0) against the
subfamily of (3.16) obtained by restricting to dβ(z) satisfying

ffldβ(z)\β=0 = -kz2 (3.18)

for some constant k > 0. For example, d$(z) = z(l — θz)2 is such a function.

THEOREM 3.3. Consider an exponential-d family (3.16) satisfying
(3.18) and (2.3) of Theorem 2.1. The LBI test for H : θ = 0 vs K : θ > 0
rejects H for large values of

'jS-1xj)
2 with S=l-Σxix'i ( 3 1 9 )
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PROOF. The proof is straightforward.

4. Approximate LBI Test in a Linear Model. As is discussed in
Section 1, when the errors et 's in a multivariate linear model (1.4) are iid with
pdf (1.2), no group-invariance structure is available to delete the unknown
parameter 7. In this section, we propose the following procedure:

(i) Regard X = E = U - Zη with 7 = {Z'Z^Z'U as I a n d 5 = ±E'E
as S in Section 2.

(ii) Then substituting X and S for X and S in one of the LBI tests in
Section 3, we obtain an approximate LBI test.

In particular, Mardia type test in this case is given by

with
n f—'u °

which is regarded as an approximate LBI test when et 's follow the exponential-
d family (3.16) with (3.18). While in the case of exponential power distribution
with dg(z) = z1+θ in (3.16), the approximate LBI test is

as in Kuwana and Kariya (1991). It is remarked that the LBI test when μ is
unknown is very complicated in this distribution and that when θ = — | , the
distribution becomes multivariate double exponential distribution with thicker
tails.

REFERENCES

ANDERSSON, S. A. (1978). Invariant measures. Technical Report No.129,
Stanford University, Department of Statistics.

Cox, D. R. and D. V. HINKLEY (1974). Theoretical Statistics. Chapman and
Hall, London.

FANG K. T. and Y. T. ZHANG (1990). Generalized Multivariate Analysis.
Science Press Beijing, Hong Kong.

HENZE, N. (1990). The asymptotic distribution of Mardia's mesure of multi-
variate kurtosis. Technical Report, Institute fur Mathematische Stochasti-
kastik, Hannover University, West Germany.

HENZE, N. and B. ZIRKLER (1990). A class of invariant consistent test for nul-
tivarite normality. Technical Report, Institut fur Mathematische Stochasti-
kastik, Hannover University, West Germany.



322 LOCALLY BEST INVARIANT TESTS

KARIYA T. and B. K. SIN HA (1988). The Robustness of Statistical Tests.
Academic Press.

KARIYA T. and E. GEORGE (1992). LBI tests for multivariate normality in
curved families and Mardia's test. To appear from Sankhya.

KELKER, D. (1970). Distribution theory of spherical distributions and a loca-
tionscale parameter generalization. Sankhya A43, 419-430.

KUWANA, Y. and T. KARIYA (1991). LBI tests for multivariate normality in
exponential power distributions, Tie Journal of Multivariate Analysis 39,
117-134.

MARDIA, K. V. (1970). Measures of multivariate skewness and kurtosis with
applications. Biometrika 57, 519-530.

WIJSMAN, R. A. (1967). Cross-sections of orbits and their applications to
densities of maximal invariants. Fifth Berk. Symp. Math Statist. Prob 1,
University of California, Berkeley, 389-400.

THE INSTITUTE OF ECONOMIC RESEARCH

HLTOTSUBASHI UNIVERSITY

KUNITACHI

TOKYO 186, JAPAN

DEPARTMENT OF MSIS
CBA 5.202
UNIVERSITY OF TEXAS AT AUSTIN

AUSTIN, TX 78712-1175, USA




