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MULTIVARIATE NON-NORMAL
DISTRIBUTIONS AND MODELS OF DEPENDENCY
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The univariate and multivariate normal distributions play a central role in
statistical modeling. However, there are many natural phenomena that do not
behave according to the normal law. In particular, there is a need to model
multivariate binomial, Poisson, exponential, gamma, and beta distributions, for
example. There are many ways to create bivariate (or multivariate) distributions
with given marginals, so that it is important to understand the underlying ratio-
nale for these extensions. The present review outlines a number of methods that

have been used to create “natural” multivariate non-normal distributions.

1. Introduction. Although independence plays a central role in
random sampling, there are may phenomena in which multiple observations
are dependent. Whereas independence is a singular concept, dependence pro-
vides a rich outlet for alternative ways in which dependency can be gener-
ated. Among the many forms that lead to dependence are sampling plans
from urn models, of which sampling without replacement is the simplest and
most elementary. Exchangeability, Markov chains, autocorrelated time series,
contingency tables are other examples of dependency.

In this review we discuss several avenues that have been used to create
multivariate dependent models. This review is not designed to be exhaustive,
and depends to a great degree on subjective choices. We also do not provide
an exhaustive set of references; rather we give a few references that will permit
the reader to trace other results.

For simplicity of exposition we limit ourselves to the bivariate case; the
extension to higher dimensions is often clear from the bivariate case.

2. Characterizations.
There is a large literature on characterizations of distributions. The books
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by Kagan, Linnik and Rao (1973), Calambos and Kotz (1978), and Kakosyan,
Klebanov and Melamed (1974) provide good initial surveys. The underlying
theme is to extend a univariate characterization to a bivariate version. In
some instances there is no single such extension, so that several bivariate
versions may result. The extension may yield a known distribution, but may
also yield a new distribution. We single out several examples to illustrate the
central ideas. These relate to characterizations of the normal and exponential
distributions.

2.1 The normal distribution

2.1a Characterization by independence

One of the oldest characterization univariate results is that the indepen-
dence of the mean Z = 3_ z;/n and the variance s> = £(z;—7)?/n of a random
sample z4,--- , 2, characterizes the normal distribution.

To generate a multivariate version let zi.---,z,, where z; = (z;1,---,

T;jp), be a random sample from a p-variate distribution. The independence
of the mean vector T = (T1, -, Tp), Tj = Balje/n, j =1,---,p, and the
covariance matrix § = (s;5), $ij = Yo(Zia — Ti)(Zja — Tj)/n, characterizes
the multivariate normal distribution.

Other characterizations involving independence relate to the indepen-
dence of linear forms. Typical of these is the following. Let )f 1,7y Xn

be mutually independent p-dimensional random row vectors, and Tet
Ay, ,An, B1,---, B, be non-singular p X p matrices. If ¥A; X/ is indepen-
dent of ¥B; X/, then the X; are normally distributed (see Ghurye and Olkin,
1962).

For a history and details of related characterizations, see Kagan, Linnik
and Rao (1973).

2.1b Characterization by maximum likelihood

If {F(z — p)} is a translation family of distributions such that for all
samples of size 2 and 3, a maximum likelihood estimator (MLE) of x is the
mean vector, then F' is a multivariate normal distribution with mean zero. (A
lower semi-continuity condition on the density f is also required.)

This result in the univariate case is due to Teicher (1961); the multivariate
case is contained in Marshall and Olkin (1993). The proof is based on showing
that the inequality

[[i@-2>[[f@i-w, Vu,n=23,
1 1

implies that f is the multivariate normal density.
2.1c A “characterization” based on the identical distribution of
the maximum
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Anderson and Ghurye (1977) answer the following questions. Suppose
max{Xy, -+ ,X,} and max{Yy,---,Y,} have identical density functions, un-
der what conditions will the set of densities of the X’s and Y's be the same.

They also treat a bivariate case that is illustrative of their paper. Sup-
pose Fy,--- , F, and Gy, -+ ,G,, are nonsingular bivariate normal c.d.f.’s, each
with zero means and correlations py,---,pn and 71, -, 7y, respectively. If
7 >0, i=1,---,m, and [[{ Fi(z,y) = II;" Gi(z,y), then m = n and
{p1,-+* ,pn} = {m1, -+ ,7n}. (Anderson and Ghurye (1993) treat a slightly
more general version than the above.)

2.2 The exponential distribution.
The exponential distribution has a rich range of characterizations. We
discuss only two such that exhibit some directions that have been studied.

2.2a Loss of memory

Perhaps the oldest result concerning the exponential distribution states
that, given that a system has survived to time s, the conditional probability
of surviving an additional time ¢ is equal to the unconditional probability of
surviving to time ¢. That is,

P{X>t+s|X >s}=P{X >t} Vs, t.
This yields the functional equation
F(s+1t) = F(s)F(t),

where F(s) = P{X > s}. This functional equation is the well-known Cauchy
equation, for which, under a variety of regularity conditions, yields the solution
F(s) = exp{-s}.

A number of multivariate extensions of the univariate case have been
proposed. If we extend the univariate version in a straightforward manner, we
obtain

P{X>ti4+8,Y>t+s|X>s,Y>s}=P{X>t,Y >t}
or equivalently,
F(si41t1, sa+13) = F(t1, t2)F(s1, s2)  Vsi, ti.

This is a stringent set of conditions, and the only solution is the case of inde-
pendence of X and Y. However, a weakening on the conditioning to

P{X>th+s,Y>th+s|X>s, YV >s}=P{X>t,Y >t}

or equivalently,
F(s+t1, s+1t2) = F(s, s)F(ty, t2)
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does yield a solution. With marginal exponential distributions we obtain the
bivariate exponential distribution

F(z,y) = {exp - [/\1:1: + A2y + A1p max(z, y)] }

This distribution was obtained by Marshall and Olkin (1967). For a further
discussion of this distribution and other characterizations see Azlarov and
Volodin (1986); also see Ghurye and Marshall (1984) for further developments
concerning the functional equation.

2.2b Minima

The minimum for the exponential distribution plays a role similar to
that of the mean for the normal distribution. The minimum of independent
exponential random variables is exponential, and this property characterizes
the exponential distribution.

This fact can be used to generate a bivariate version. Let U,V,W be
independent exponential random variables, then

X =min(U,W), Y =min(V,W)

has a bivariate exponential distribution. Indeed, it is surprising that the result
of this construction leads to the same distribution as obtained by the loss of
memory property.

2.2¢ Order statistics

There are a host of characterizations of the exponential distribution based
on order statistics. For example, Ferguson (1964) shows that if X and Y are
independent (with absolutely continuous distributions), then the independence
of min (X,Y) and X — Y characterizes the exponential distribution.

The independence of spacings of order statistics implies that the under-
lying distribution is exponential. These characterizations have not yielded
multivariate versions; the extension of univariate order statistics to vector
order statistics appears illusive in this context.

3. Multivariate Beta Distributions. Whereas the normal and ex-
ponential distributions seem to have “natural” extensions, there is no obvious
generalization of the univariate beta distribution.

3.1 A matrix extension

The analysis of variance makes use of the fact that if U and V are inde-
pendent, each having a gamma distribution, then U/V has an F-distribution
(ignoring constants), and U/(U + V') has a beta distribution, independent of
U+V.

Because the Wishart distribution is the distribution of the sample co-
variance matrix, it is a multivariate version of the gamma, or chi-quare, dis-
tribution. This permits the following extension: If U and V are indepen-
dent p X p random matrices, each having a Wishart distribution with the
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same scale, then W = V™12V ~1/2 has a multivariate F-distribution, and
Z = (U+V)Y2U(U +V)~/2 independent of U + V, has a multivariate beta
distribution with density function

f(Z) = constant |Z|®|[ - Z|°, 0<Z<I, a,b>0.

(Here U 1/2 is the unique positive definite square root of U, and A < B means
that the matrix B — A is positive definite.)

3.2 Bivariate gamma variates.
An alternative direct extension is to start with (Uy, V1) and (Uz, V2) in-
dependent, each having a bivariate gamma distribution. Now define

U U, )
X,Y)= , .
( ) (U1+Vl U+ Vs

Then (X,Y) has a bivariate beta distribution. There is considerable flexibility
in this formulation in that there are many bivariate gamma distributions.
However, the form of this joint distribution has not been studied even for the
simplest bivariate gamma distribution.

3.3 The Dirichlet-Liouville distribution
The Dirichlet density

k
b
f(:cl,---,:ck)zconstantnm? (1—21:1-) , 0 <y, Zmi<1
]

has surfaced from many contexts as being an important distribution. One of
its distributional origins is the following: If Uy, U,---,Uy are independent
gamma variates with the same scale parameter, then X; = U,/ E(’j Ui, 7 =
1,---,k, has a multivariate Dirchlet distribution.

A matrix version arises in a parallel manner: If Uy, Us,--- , U are inde-
pendent random matrices, each having a Wishart distribution with the same
scaling matrix, then X; = (Zg Ui)_l/ZUj(Zg U;)~/2 has a Dirichlet distri-

bution: k
b
f(X1,-, Xk) = (constant)HlXﬂa’ I- EXJ" ,
1

where 0 < X;, > Xi < I.
The construction Y; = Uy, 172 U;Uy 172 yields a matrix version of the F-
distribution:

k
f(Y1,-++,Y%) = (constant) [[ V¥ /I + BYi|’,  0< Y.
1
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Other general versions arising from Wishart matrices are given in Olkin
(1959); see also Gupta and Richards (1992).

4. Sampling Methods. The Bernoulli distribution plays a central role
in sampling procedures. Different sampling procedures lead to the binomial,
hypergeometric, geometric, negative binomial distributions. Limits can then
be invoked to yield the Poisson, geometric, gamma, and normal distributions.
In this sense, this family has a cohesiveness.

A bivariate family can be generated by starting with a bivariate Bernoulli
distribution and employing similar sampling plans, and then invoking limits.
In this way we generate bivariate binomial, bivariate geometric,bivariate Pois-
son distributions, and so on.

We now display but two of these. Our starting point is a bivariate
Bernoulli distribution:

P{(U,V):(i,j)}=p,-j, i,j=0,1; OSPij, Epij =1.
For a sample of size n,let X = Y U;, Y = ) V;. Clearly, X and Y each has
a binomial distribution. The joint distribution is
P(X=z,Y=y)= Z c(a,w’y)p%pfo—apgl—ap&—z—y+a’
[e4

where z,y = 0,1,---,mn,

c(eyz,y)=n!/[al(z-a)l(y—a)!(n—z—-y+a)!].
and the sum is over all integers o for which o > 0,z —a > 0, y —a > 0,
n—2—y+a > 0. By letting p;; = A;;/n and taking limits we obtain a
bivariate Poisson distribution:
AN N

al(z-a)l(y—a)!

—=X11=2A10—Ao1

P{X::c,Yzy}:Z

It is interesting that this distribution was developed early, M’Kendrick
(1926), in the context of two types of infrequent injuries inflicted on soldiers.
(See Marshall and Olkin (1985) for more details using this construction.)

This bivariate distribution also arises from the construction

X=U+W, Y=U+W,

where U,V, W are independent, each having a Poisson distribution with pa-
rameters Ajg, A\o1, A11, respectively.

This latter construction points out a fundamental problem with many
multivariate non-normal distributions, namely, that the number of parame-
ters becomes large. To see this, note that we require seven (generally 2!)
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independent Poisson random variables to create a general trivariate Poisson
distribution:

X=U1+W, + Vis+ W,
Y =U; + Viz + Va3 + W,
Z=U3 + Vo3 + Vi + W.

Here U,,U,,Us, Vi3, Vi3, Va3, and W are independent Poisson random vari-
ables.

This problem also occurs in generating a trivariate exponential distribu-
tion using minima. Now we require

X = min(Uy, Vig, Vi3, W),
Y = min(U29V127‘/237W)’
7z = min(U37‘/237V13aW)7

where Uy, Uy, Us, Vig, Vi3, Vos and W are independent exponential random
variables.

These two examples illustrate why normality, which has p(p + 3)/2 pa-
rameters, is easier to deal with. Problems of estimation become considerably
more difficult for many non-normal distributions.

4.1 Urn models

The basic Pdlya-Eggenberger sampling procedure starts with an urn con-
taining a red and b black balls. A ball is drawn, replaced together with s
additional balls of the same color. For simplicity let s = 1.

If X is the number of red balls drawn in the first n trials, then

Pix=s) = 1) Betpenseth),

where B( -, -) is the beta function.

It is interesting that by changing the sampling scheme and by taking
limits, this model leads to the binomial, negative binomial, beta, Poisson,
gamma, and normal distribution.

There are many ways to generate bivariate versions. Perhaps the most
direct is to let the urn consist of a red, b black and ¢ white balls. With X the
number of red balls, and Y the number of black balls in the first n trials, we
obtain the distribution

n)B(a+z,b+y,c+n—x—y)

P{X =2, Y=y} = (z,y B(a, b, c) ’

where B(ay,--- ,ax) = [[¥ T(a;)/T(XF a:).
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In an alternative construction, let the urn contain a;; balls marked (¢,7),
t,7 = 0,1, and let Z;; denote the number of balls of type (¢,7) in the first n
trials. Now define X to be the number of balls with first digit 1, and Y the
number of balls with second digit 1, that is,

X = Zn + Zyo, Y =Zu+ Zo:.
Then the joint distribution of (X,Y) is

P(X=z,Y =y)
_Zc(x o n)B(au+a,a10+a:—a,a01+y—a,aoo+n—x—y+a)
- o $ B(au,alo,aohaoo)

’

where

c(z,y;a,n)=a!/lal(z-a)!(y—a)!(n—2z—-y+a)!]

a>20z—-a>20,y—a>20n—-z—-—y+a>0.

These, and other distributions arising from the Pélya-Eggenberger urn
model are discussed in Marshall and Olkin (1990a, 1993b). Other aspects of
urn models are provided by Johnson and Kotz(1977).

5. Families with Given Marginals. Considerable effort has been
expended to create usable general bivariate families with given marginals.
That these families have limitations is to be expected, since they apply to
many different situations.

Two such general families are those of Farlie-Gumbel-Morgenstern:

H(z,y) = F(z)G(y)(1 + aF(2)G(y))
and Gumbel:
[-log H(z,y)]™ = [~ log F(z)]™ + [ log G(y)]™,

where F =1 — F.

One mechanism by which many families can be uncovered is provided in
papers by Genest and Mackay (1986) and Marshall and Olkin (1988). We
state one such result: Let ¢(s,t) denote a bivariate Laplace transform and
$1(8) = ¢(s,0) ¢2(t) = #(0,t) the marginal Laplace transforms.Then

H(z,y) = ¢(¢1 ' Hyi(z), d5" Ha(y))

is a bivariate distribution with marginals Hq, Hy. A simpler version is the case
that ¢ is a univariate Laplace transform, which yields that

H(z,y) = ¢(¢~ Hi(e) + ¢7 Ha(y))
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is a bivariate distribution with marginals H;, H,. Genest and Mackay (1986)
given examples that yield a number of known general families. In particular,
the choice of ¢(s) = exp{—s'/™}, m > 1, yields Gumbel’s family above.

For a compendium and discussion of families of distributions, see Hutchin-
son and Lai (1990).

6. A Hierarchy Using Mixtures. Mixture models provide a sim-

ple device for generating multivariate distributions. For any density f(z,6)
depending on a parameter 8, we can generate a new density by mixing on 6:

@) = [ £z 10)9(6) ds.
For example, with
n iz —
f(a:|0)=()0’”0 , 0=1-89,
x

g(6) = 6°76 "/ B(a,b),

we obtain

_(m\ Bla+z, n—2x4b)
h(z) = (m) B(a,0) .

A direct generalization of this construction is obtained from

h(z,y) = /fl(a: | 6)f2(y | 0)g(6)dé.

For example, with fi(z | 8) and g(6) as above and

Fa(y]6) = ( m) v Y
Y

we obtain

n\ (m\ Blat+z+y,n+m—-2z—y+b)
oo (7) (1) Beztnmtmosossn

Of course, in general 6 need not be univariate, so that we could have

m@m=/MM@bWQM@@’

where 8 is a vector and g is a multivariate distribution. For example, let z

and y }Ta,ve Poisson distributions
h(z]8) =6 [z,
faw ] 8) = 3% [y,
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and ¢(#) has a bivariate gamma distribution:

m1n(01,€2)
g(8) = (constant)e 1?2 / (6; —t)*"1(8y — t)b‘ltc‘letdt,
~ 0

Although these constructions readily arise from this mixture construction, the
resulting distributions may not be useful in practice.

Finally, we note that 2 and y are independent in the above constructions.
Instead, we could start with z,y dependent:

ha9) = [ Fe, | 0)g(8)de.

An example is the case that f(z,y | 8) ~ N(6,X) and g(8) ~ N(u, ¥).

The multivariate F-distribution of Section 3.1 can be generated as a mix-
ture. Let S be a p X p covariance matrix having a Wishart distribution

f(s | ©) = constant|$| " |0|F 75O

and let
9(0) = constant|0| I‘I’l 3 e‘crew

then

h(s)= [ 15| @)g(e)de

il
:cons’cant———w—
S+ ¥|=

The multivariate t-distribution can also be generated using mixtures.

There are some byproducts of mixtures that are important; one is the
notion of association. Random variables T3,--- ,T, are said to be associated,
or their joint distribution is associated, if

COV(f(Tl,-'- aTn)a g(Tla aTn)) 2 0

for all f and g increasing in each argument. Consider the mixture

H(z) = / F(z | 6)dG(6).

It was shown by Ahmed, Leén and Proschan (1981) that under certain regu-
larity conditions on F, if F(z | 6) is associated for each fixed 8, and if g(8)
is associated, then H is associated. This result provides a powerful general
mechanism to show association.
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A general discussion of mixture models is contained in Marshall and Olkin
(1990D).

7. Ecological Correlations. There is a considerable literature in the
social sciences concerned with aggregation and models for disaggregation. The
term ecological correlation appeared in a paper of Robinson (1950) in which
he demonstrates that correlations can vary for different levels of aggregation,
which can lead to errors in inferring individual behavior from group behavior.

We describe one such model due to Goodman (1953) which provides a
method for estimating individual behavior from grouped data. Consider k
groups in which each group yields a 2 X 2 table

Success Failure

c Ty
c 11—z
Yi 1—y;
We observe the proportions z; and y;, ¢ = 1,--- ,k. (In some instances

Success may refer to the proportion voting for a candidate, C is a character-
istic, such as race or gender. Here x mat not be known, but obtained from
census data.) If we assume that the group cell proportions are constant

Success Failure

C 0 1-0 z;
lod t 1-t 1—2z;
Yi 1-—y,'

then we can generate a regression model
yi =0z; + (1 —z;) = a + Pz,

A general discussion of issues and methods of aggregation and disaggre-
gation is provided by Hannan (1971).

8. Scaling of Matrices and Joint Distributions of Discrete Ran-
dom Variables. The purpose of scaling arises in many different contexts.
One of the early origins is to determine where it is preferable to solve the linear
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system Az = b or one of the alternative systems A’Az = b, or D1ADsz = b,
where D, and D, are diagonal scaling matrices.

The first comparison for solving Az = b versus A’Az = b can be an-
swered by comparing the condition number of the two systems, namely, ¢(4) =
B(A)D(A™Y) with c(A'A) = ®(A'A)D((A’A)™!), where & is a norm. For a
broad class of norms @, it can be shown that ¢(A) < ¢(A’A), which suggests
that it is preferable to solve Az = b. (See Marshall and Olkin (1979) for
further details.)

In a probabilistic context suppose that we have a discrete bivariate dis-
tribution as exemplified by an m X n contingency table. The probabilities are
pij with marginal distributions p;+ and p4;, ¢ =1,---,m; j=1,---,n. The
question is whether there exists scaling values a; and b; so that the bivari-
ate distribution a;b;p;; has target marginals s1,---,sp, and #1,--- ,t,. When
s; = t; = 1, the new matrix (a;b;p;;) is doubly stochastic.

This problem can be formulated as follows: Given a matrix P = (pij), pij
> 0, do there exist diagonal matrices D, =diag(a;,- - ,an) and D, = diag
(b1, -+ ,bs) such that D,PDy is doubly stochastic. Under mild conditions
the answer is in the affirmative, as shown by Sinkhorn (1964). There is now
a considerable history on this problem (see e.g., Marshall and Olkin (1979),
Rothblum and Schneider (1989)).

9. Fréchet Bounds. The determination of distributional bounds
plays a central role in generating multivariate distributions. The classical
result of Fréchet and Hoeffding (see Marshall and Olkin (1979)) states that
every bivariate distribution H(z,y) with given marginals Fi(z) and F5(y) is
bounded by two bivariate distributions:

H; = max{0, F, + F; - 1}, Hy = min{F, F>},

namely,
H; < H < Hy.

An implication of this is that the respective correlations pr,, pu, p satisfy the
same inequality:
pL<p < pu.

The correlation inequality holds for other measures of dependence such as
Kendall’s tau. Consequently, we can determine the range of correlations of a
bivariate gamma family, say, by determining the correlations of Hy and Hy,
which depend only on the marginal distributions.

A direct extension to the multivariate case is that H; = max{0, F; +
co-+ Fr—(k-1)}, Hy = min{F,,--- , Fx} . However, now H need not be a
multivariate distribution. This has led to a range of formulations and results.
In particular, a reformulation in terms of a transportation problem has been
fruitful.
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The multivariate version also leads to new questions. For example, given
compatible and consistent bivariate distributions F5, Fi3, F53 what are bounds
for H. Another class of problems is to determine bounds for the joint distri-
bution H with given marginals Fj, F, that possesses an additional property,
such as, unimodality or with a given correlation.

A problem that has recently received attention is given marginal distri-
butions Fj, F> and any bivariate distribution G(z,y) find the bivariate distri-
bution H(z,y) with marginals F;, F5 such that

H(z,y) < G(z,y).
The solution is given by Hoffman and Veinott (1990):

H(z,y) = iri[G(u,v) + Fi(z) + Fa(y) — Fi(v) — F(v)).

v<y
(See also Olkin and Rachev (1990).)

10. Generating Correlation Matrices. There are now algorithms
for generating a wide variety of non-normal distributions. Some of the con-
structions discussed in this paper suggest methods for generating samples from
non-normal populations. For example, the method of Section 2.2b can be used
to generate bivariate exponential distributions. The sampling methods of Sec-
tion 4 and the mixture models of Section 6 can also be used to generate
bivariate families.

Some numerical analysis simulations require generating a random correla-
tion matrix R with the constraint that its expected value is a given matrix C,
and that it be positive definite with minimum eigenvalue A. A construction
is provided by Marsaglia and Olkin (1983) as follows. Define R = C + X,
where X = (z;;) is symmetric, z;; = 0,z;;,7 # j, are generated in the in-
terval |z;j| < a;j, where A = (a;;) is any given symmetric matrix, a; =
0, max; E]- |a,‘j| < A

In another context Anderson, Olkin and Underhill (1987) discuss methods
for generating random orthogonal matrices. This problem has a history of
alternative procedures.

An excellent compendium of methods for constructing non-uniform ran-
dom variables is contained in Devroye (1986).

11. Physical Models. Determining distributions from physical mod-
els is a satisfying method in that the distribution is designed for a particular
situation. Because of the complexity of physical phenomena, this course is
more unusual than one might hope for. However, there are a number of ex-
amples in which distributions have been tailored specifically to applications.
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An early example is the work of M’Kendrick (1926), discussed in Section
4. The bivariate exponential distribution of Section 2.2 was used in the study
of cancer at two sites (see Klein, Keiding and Kamby, 1989). Freund (1961)
considered a model in which there are two components A and B, each having
an exponential life distribution with parameters a and f, respectively. The
failure of component A alters the 3 parameter ot §’, and similarly, the failure
of B alters a to o'

A general method for generating physical models is via shock models. In
such models a shock may destroy a component, or it may destroy it with some
probability. It is also possible to impose intensities on the shock. This permits
considerable latitude in the dependency relation between the two variables.
The bivariate exponential distribution of Section 2.2 can be generated in this
way. For a general discussion of shock models, see Friday and Patil (1977).

12. Summary. We have provided a brief panorama of problems
inherent in the generation of bivariate (or multivariate) distributions, and a
number of general procedures used to produce bivariate distributions. An ex-
cellent compendium of bivariate distributions and methods used to generate
them is contained in Hutchinson and Lai (1990). Of course, the now clas-
sical reference on distributions by Johnson and Kotz (1970, 1972, 1992) is
indispensable in any study of special distributions.
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