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In part I of this study it was shown that Σi < Σ 2 => Pvx(C) > PΣ2(C)

under various convexity and symmetry assumptions on the set C C R/\
where PΣ denoted the p-variate normal distribution with mean vector 0
and positive definite covariance matrix Σ. In Part II extensions of these
results to the family of elliptically contoured distributions are considered.
The proof of the concentration inequality of Fefferman, Jodeit, and Perlman
(1972) for convex centrally symmetric sets C is examined to determine
whether it can be extended to sets C with other convexity and/or symmetry
properties. Whereas it does not appear that this proof remains applicable,
in the bivariate case (p = 2) an alternate geometric argument not only
extends the concentration inequalities for convex G-invariant sets C and
for G-decreasing sets C in Part I to elliptically contoured distributions, but
also enlarges the class of groups G for which the concentration inequality
for G-decreasing sets is valid. Also, sharpened forms of these concentration
inequalities are presented for elliptically contoured distributions that are
not absolutely continuous with respect to Lebesgue measure.

5. A Concentration Inequality for Convex Centrally
Symmetric Sets

In Part I of this study2 it was shown that

(5.0) Σ ! < Σ 2 ^ P

under various convexity and symmetry assumptions on the set C G I t p ,
where P Σ denoted the p-variate normal distribution with mean vector 0 and
positive definite covariance matrix Σ. It is evident that such concentration
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inequalities for multivariate normal distributions in Theorems 3.1, 3.2, and
3.3 of Part I remain valid when P Σ is taken to be a scale mixture over
λ > 0 of normal distributions on Mp with mean 0 and covariance matrix
λΣ, e.g., a multivariate Student-t distribution. Like the normal distribution
itself, such a scale mixture is both unimodal and elliptically contoured. It is
somewhat surprising that the first of these theorems, and possibly the other
two as well, remain valid for all elliptically contoured distributions without
assuming unimodality.

Fefferman, Jodeit, and Perlman (1972) substantially strengthened the
concentration inequality in Theorem 3.1 for convex centrally symmetric sets
C G 1RP by extending it from normal to elliptically contoured distributions
(see also Das Gupta et al (1972), Theorem 3.3). Surprisingly, their proof
is also based on Anderson's convolution theorem, Theorem 2.1, as was the
proof of Theorem 3.1 in the normal case, although Anderson's theorem is
now applied in a quite different way. In this section we review their proof
in detail to determine whether or not it can be extended to sets C with
other convexity and/or symmetry properties. Whereas it does not appear
that their method of proof remains applicable, in the bivariate case (p = 2)
an alternate geometric argument not only extends Theorem 3.2 (for con-
vex (?-invariant sets) and Theorem 3.3 (for G-decreasing sets) to elliptically
contoured distributions but also enlarges the class of groups G to which The-
orem 3.3 applies. These bivariate results are given in Theorems 6.1 and 6.2
of Section 6. In Section 7, sharpened forms of the concentration inequalities
in Sections 5 and 6 are presented for elliptically contoured distributions that
are not absolutely continuous with respect to Lebesgue measure on H p and
which therefore may assign nonzero probability to the boundary of C.

DEFINITION 5.1 The random vector X e Etp has an elliptically contoured
distribution, denoted by X ~ ECP{Σ), if its characteristic function φ(t) =
E{exp(it'X)}y t e R p , has the form φ(t) = j(tfΣt) for some function 7,
where Σ is a p X p positive definite matrix. Equivalently,

(5.1) X ~ ECP(Σ) &X = Y}I2Z,

where Σ 1 / 2 is the p x p positive definite matrix such that (Σ 1 / 2 ) 2 = Σ
and where Z is an orthogonally invariant random vector in ΊRP. If X
has a probability density function / on TR? then X ~ ECP(Σ) iff f(x) =
|Σ|"1/25f(x/Σ~1x) for some function #; in particular, the multivariate normal
distribution NP(O,Σ) is ECP(Σ).

The following notation is used: B and S denote the unit ball and unit
sphere in R p, v denotes the uniform probability measure on S, and D =
Diag(di,... ,dp) denotes a p x p diagonal matrix with 0 < d% < 1 for i =
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1,... ,p, so D is a contraction. The class of all convex centrally symmetric

sets in R p is denoted by C\.

THEOREM 5.1 (FefFerman, Jodeit, and Perlman (1972)). Suppose that X ~

ECP(Σ). IfC eCi and C is closed, then Σ1<Σ2=ϊ PΣ1(C) > PΣ2(C).

PROOF By (5.1),

(5.2) X ~ ECP(Σ) => PΣ(C) = PΣ(X G C) = P(Z e Σ - ^ C ) ,

where Σ~ 1 / 2 = ( Σ 1 / 2 ) " 1 = ( Σ " 1 ) 1 / 2 . Since Z is orthogonally invariant,

Z = RU, where ϋf and U are independent, 17 is uniformly distributed on

the sphere S = {x eW> : ||x|| = 1}, and 0 < R < oo. Therefore

(5.3) PΣ(C) = £{P[tf G Λ - ^ - ^ C l Λ ] } = £{i/(-R"^- 1 / 2C)}.

Since C G Ci ^ R~λC G Ci (provided i2 > 0) it therefore suffices to compare

*/(Σ;~1/2C) and ί/(Σ~1/2C) for C G d.
By the Singular Value Decomposition

(5.4) Σ ~ 1 / 2 Σ i / 2 =

where φ and Γ are p x p orthogonal matrices, D = Diag(c?i,... ,cJp), and

di , . . . , dp are the singular values of Σ^ ' Σχ . Since 0 < Σi < Σ2, 0 < d{ <

1 for i = 1,... ,p, so D is a contraction. Because v is orthogonally invariant,

/2C) = v(K)

(5.5)
KΣ~ 1 / 2 C) = v(φ'DTΣ-ll2C) = v(DK),

where

(5.6) K = ϋf(C;Σi,Γ) = ΓΣ~ 1 / 2 C G Ci.

Thus the desired result is equivalent to the following assertion: for every

closed K G C\ and every diagonal contraction mapping D,

(5.7) v{K) > v(DK).

This inequality is nontrivial since DK need not be contained in K. By
means of the Divergence Theorem, however, it can be shown that 3

(5.8) JL

3The equality = in (5.8) may hold only for almost every d, , so a more careful argument is
needed which makes use of the assumption that C, and hence K, is closed. First, if K is not
bounded, consider the bounded set K* = K Π (m""1^), where m = min(dι,..., dp) < 1.
Then A"* G C!,i/(iΠ = i/(ϋT), and v{DK*) = i/(I>iί), so it would suffice to establish
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where Iβ denotes the indicator function of the set E and θ{ is the unit vector
with 2-th component 1. Since both B and DK G Ci, Anderson's Theorem
2.1 implies that

(5.9) φ(θ) = f IDK(x - θ)dx
JB

is centrally symmetric and ray-decreasing in 0, hence has a local (in fact,
global) maximum at 0, so the second derivative in (5.8) is nonpositive.
Therefore v(DK) is nondecreasing in each dt , i = 1,... ,p, which establishes
(5.7). D

In Section 3 of Part I we saw that for multivariate normal distributions,
the method of proof of Theorem 3.1 could be used to establish Theorems 3.2
and 3.3 simply by replacing Theorem 2.1 by Theorems 2.2 and 2.4 respec-
tively. Unfortunately this is not so for elliptically contoured distributions.
In the proof of Theorem 5.1, Anderson's Theorem 2.1 was applied to show
that Ψ in (5.9) has a maximum at θ = 0 when C (and therefore DKW) G C\.
In order to extend Theorem 3.2 to elliptically contoured distributions by this
method, it would be necessary to apply Theorem 2.2 to show that φ has a
maximum at θ = 0 when C G CQ, where G is a compact subgroup of the
orthogonal group Όp that acts effectively on Πtp, CG is the class of all convex
G-invariant subsets of Etp, and Σi is G-invariant (for detailed definitions,
see Section 3; recall from (5.6) that Jί, and hence φ, depends on Σi) . Now
it can be shown4 that

1/2
(5.10) Σi is G — invariant =>• Σ / is G — invariant

— 1/2

=> Σj is G — invariant,

so

(5.ii) cecG^ Σ ^ 1 / 2 C eCG=> K G C 5,
where K is defined in (5.6) and
(5.12) G = TGT' = {TgT'\g G G}

(5.7) with K replaced by K*. Thus we may assume that K is in fact compact. Since K
is compact, convex, and centrally symmetric, by considering its supporting hyperplanes
we see that it is the decreasing limit of a sequence of compact convex centrally symmetric
polyhedra in 1RP, so we may assume that K is such a polyhedron. Then we may construct
a sequence of smooth centrally symmetric unimodal functions u€ which converges to Iκ
everywhere in R p except possibly on dK as e —• 0, but v{dK) = 0 since K is a polyhedron.
If we now replace IDK(X) = Iκ(D~1x) by u€(D~1x) in (5.8) then = becomes = for every
di, so Jsu€(D~1x)di/(x) is nondecreasing in each d;, hence so is v(DK). (See Fefferman
et ai (1972) for further details.)

4If Σi is G-invariant then so is /(Σi), where / is any polynomial with real coefficients.
But (Σi ) 1 / 2 = /(Σi) where / is any real polynomial such that /(λ, ) = (λ,) 1 / 2 for j =
i, ...,/>, where λi , . . . , λp are the eigenvalues of Σi. (The coefficients of / may depend on
λi,...,λp and hence on Σi.) Similarly, (Σi)" 1 and (Σi)" 1 ^ 2 are G-invariant. (We thank
Steen A. Andersson for this observation.)
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is also a compact effective subgroup of Όv. Unfortunately, although the
linear transformation K -* DK preserves convexity it need not preserve
G-inυariance (unlike Theorem 5.1 where G = G = {±/} with / the p X p
identity matrix), so we cannot conclude that DK G Cg and thus are unable
to apply Theorem 2.2 to φ in (5.9). Similarly, when C G MG (the class of
all G-decreasing subsets of Etp) with G a compact effective reflection group,
then G is also a compact effective reflection group but we cannot conclude
that DK G -Mg, hence cannot apply Theorem 2.4 to extend Theorem 3.3
to elliptically contoured distributions.

Despite these difficulties, we conjecture that the concentration inequal-
ities for the classes CQ and MG in Theorems 3.2 and 3.3 remain valid for
elliptically contoured distributions. To support this conjecture, in Section
6 we present an alternate geometric argument, similar to that in Section 1
of Fefferman, Jodeit, and Perlman (1972), which establishes these results
in the bivariate case, i.e., when p = 2. In fact Theorem 6.2, the extension
of Theorem 3.3 thus obtained, is strictly stronger than Theorem 3.3 in the
bivariate case in that it applies to a larger class of groups G (acting on R 2 )
than the class of effective reflection groups.

REMARK 5.1 If —/ G G then CG Q C\, SO in this case the extension of
Theorem 3.2 to elliptically contoured distributions is implied by Theorem
5.1 without the assumption that Σi is G-invariant (also see Remark 3.1 of
Part I). D

REMARK 5.2 Because it suffices to show only that ψ in (5.9) has a local
maximum at θ = 0, the method of proof in this section may succeed in ex-
tending Theorems 3.2 and 3.3 to elliptically contoured distributions provided
that suitable local versions of Theorems 2.2 and 2.4 can be found. Note too
that one of the sets in (5.9), namely 5, is a ball, so the full generality of
these latter theorems would not be needed. Furthermore, even the existence
of a local maximum at θ = 0 is not necessary; it would suffice to show that
C is locally concave at θ = 0. •

6 Bivariate Concentration Inequalities for Elliptically
Contoured Distributions

In this section unless otherwise noted, p = 2, B and S denote the closed
unit disk and unit circle in 1R2, respectively, v denotes the uniform measure
on S with u(S) = 1, and D = ΌidLg(dι^d2) is a contraction (0 < dijcfe ^ 1)
Lemma 6.1 presents the basic geometric construction by means of which we
shall extend Theorems 3.2 and 3.3 to elliptically contoured distributions in
the bivariate case. This argument, based on that on pp. 114-5 in Fefferman
et al (1972), is an alternative to that used to derive (5.7) in the proof of
Theorem 5.1 above (but see Remark 6.3).
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Figure 6.1. The arc A, the strip L = L(A), and the ball B = B° U S.

DEFINITION 6.1 For any closed arc A C S with 0 < arclength(A) < TΓ,

define L = Z(A) to be the closed centrally symmetric strip such that LΠS =
(-A) U A (see Figure 6.1.) Then X can be expressed as the disjoint union

(6.1) Z = Z-UZ°UZ+,

where L° = Z°(A) = Z(A) Π B° with 5° the open unit disk, Z~ = i~(A) D
(-A), and Z+ = L+(A) D A; note that Z~ and Z+ are both c/ô ed sets.
Note too that if Au...,Am are disjoint then Z+(Ai),... , i + (A m ) (hence
also I W A ! ) ] , . . . , ^ ^ ) ] ) are disjoint.

LEMMA 6.1 Let K be a closed subset ofΊR? with KnS = ϋ{Aj\j = 1,..., m},

α disjoint union of closed arcs such that 0 < arclength(Aj) < π. Define

Li = L(Aj), Lj = L-(Aj), and Lj = L+(Aj). If

(6.2) K\B° C UZ+

(6.3) i/(ίΓ) > v(DK).

PROOF If we define

(6.4) K(j) = (K\B°)ΠL^

(see Figure 6.2) then K(l),... ,/ί(m) are disjoint and (6.2) implies that

(6.5) K\B° =

Express K as the disjoint union K = (K\B°) U (K Π 5°). Since D is
a contraction, D 5 0 Π 5 = 0, hence iλίί Π S = D(K\B°) Π 5, so i/(DA') =
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Figure 6.2. A set K (shaded) that satisfies (6.2).

u[D(K\B°)} = u{UD[K(j)]} by (6.5). By (6.4), however, D[K(j)} C D(Lj),
hence

(6.6)

v{DK) <

= v{K).

The second equality in (6.6) follows from (6.1), the inclusion D(L°) C 5°,

and the relation LJ = — L^ (implied by the central symmetry of Lj):

(6.7) = u[D{L-)\ = 2u[D(Lf)}.

The second inequality in (6.6) follows since the width of the strip DLj cannot
exceed that of Lj a s ϋ i s a contraction. Thus (6.3) is established. D

REMARK 6.1 In Lemma 6.1 suppose in addition that K is star-shaped with
respect to the origin. Then for each x £ K\B° the closed line segment [0,x]
intersects the unit circle 5 at a unique point y(x) 6 K Π S = LJAj. Thus if
we define
(6.8) Kj = {xe K\B° I y(x) € Aj)
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Figure 6.3. A star-shaped set K (shaded) that does not satisfy (6.9).

(see Figure 6.3), then Ku...,Km are disjoint and UJRΓ,- = K\B°. It is
readily verified that K(j) C Kj and that (6.2) is equivalent to the condition
that for each j = 1,..., m

(6.9) KjCLJ. D

REMARK 6.2 For the validity of Lemma 6.1 it is not necessary that the strips
Lj = L(Aj) be centrally symmetric, only that Ljf)S = (Aj)UAj where AJ is
any closed arc such that the relative interiors of AJ and Aj do not intersect.
Note that this condition still implies that v(AJ) = v(Aj) since Lj is a strip.
Again Lj can be decomposed as in (6.1), where now LJ = L~~(Aj) D A~ and
Lf ΞΞ L+(Aj) D Aj. Similarly, decompose DLj as ( £ Z J ) - U ( £ Z J ) 0 U ( J D Z J ) +

where (DL)° = Z)Z (Ί 5°. Then the proof of Lemma 6.1 remains valid
with the following three modifications: (i) the first equality in (6.6) must be
replaced by the inequality <, for now Lf,..., i £ (hence D(L~£),..., D(Z+))
need not be disjoint; (ii) although LJ φ —Lj if Lj is not centrally symmetric,
it follows from the fact that D is a contraction that D(LJ)Γ\S = (DLj)" ΠS
and D(LpΠS = (DLj)+ Π5, hence v[D{LJ)} = v[{DLj)'] = v[(DLj)+] =
i/[D(L+)]; (iii) v(DLj) < v(Lj) since the strip DLj is both narrower and
closer to the origin than Lj . •

Theorems 6.1 and 6.2 below extend Theorems 3.2 and 3.3 from normal
distributions to elliptically contoured distributions in the bivariate case. To
prove these extensions we shall apply Lemma 6.1 and Remark 6.1 to the
set K = ϋf(C;Σi,Γ) defined in (5.6). If G is a compact subgroup of the
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orthogonal group O2 that acts effectively on R 2 and C 6 Co (or MG) then
K G Cg (or MQ) (see (5.11) or (6.14)) so K is star-shaped (apply Lemma
3.1 of Part I), hence to apply these results it must be verified that K satisfies
(6.9). This will be accomplished in the proofs of Theorems 6.1 and 6.2 by
means of the convexity (or monotonicity) and G-invariance of K. (G is
defined in (5.12).)

Before proceeding with the statements and proofs of Theorems 6.1 and

6.2 we describe the compact subgroups G C O 2 acting on R 2 . It is well
known (e.g., see Grove and Benson (1985), Theorem 2.2.1) that if G is finite
then either G is the cyclic group CJ of order n generated by the rotation
through angle 2π/n or else G is the dihedral group H2 of order 2n generated
by CJ and a single reflection in R 2 , where n = 1,2,.... The group C£ ( ^ 2 ) i s

the group of all rotations (all rotations and reflections) that leave a regular
ra-gon invariant, and G is a finite reflection group iff G = Ή2 for some n > 1.
Thus

where V2 is the group of sign changes of coordinates in IR2 (recall Section
2 of Part I). Thus C\ and H\ do not act effectively on R 2 , C\ and H\ act
effectively but not irreducibly, while C£ and Tίξ a c t effectively and irreducibly
for n > 3 (see Section 3 of Part I for definitions). Finally, the only infinite
compact subgroups of O2 are O2 itself and <SC?2, the subgroup of all proper
rotations of R 2 , both of which act effectively and irreducibly.

THEOREM 6.1 Suppose that X ~ £ C 2 ( Σ ) . IfCeCo and C is closed, then

Σi < Σ2 =>- PΣ1(C) > PΣ2(C) provided that Σi is G-invariant and G acts

effectively on R 2 (i.e., G φ C\ or H\).

P R O O F AS in the proof of Theorem 5.1, the desired result is equivalent to

the assertion that (5.7) holds for every closed K E Cg and every contraction

£>, where G is defined in (5.12).

If G = 02 or SO2 then G = G and Cg is simply the class of all open or
closed disks centered at 0, so DK C K and (5.7) is trivially valid. Thus we
may assume that G = C% or TC2, n>2. If n is even, however, then - J 6 G
and the desired result is already a consequence of Theorem 5.1 (see Remark
5.1). Since 7ί£ D C% it therefore suffices to establish (5.7) when G = C£ for
n > 3 and n odd (for, G D G1 =*> CG C C&).

In fact, the following argument establishes (5.7) when G is the rotation
group CJ for any n > 2. First, note that G = G and that we may assume
that K G CG 1S compact, convex and G-invariant, hence is the limit of a
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Figure 6.4. The set K G C G (shaded); G = C£, π = m = 3.

decreasing sequence of closed convex G-invariant polygons (recall Footnote
3). Thus it suffices to establish (5.7) when K is such a polygon.

In this case either K Π S = S and (5.7) is trivial, or K Π 5 = 0 so
DKΠS = 0 and (5.7) is also trivial, or else KΠS = UAj, the union of m > 2
disjoint closed arcs Ai , . . . ,A m , some possibly degenerate at single points
(see Figure 6.4; note that — Aj does not necessarily appear in {Ai,..., Am}
if n is odd). For j = 1,. . . , m, let α, = exp(iflj) and /?j = exp(iφj)(i = >/^Λ)
denote the endpoints of arc Aj in counterclockwise order. Without loss of
generality assume that

(6.10) 0 < 0i < ψι < θ2 < ψ2
θm < ψm < 2τr,

i.e., A i , . . . ,A m are arranged in consecutive counterclockwise order on the
unit circle S. Since K is CJ-invariant so is UAj, hence m is a multiple of n
and for each j = 1 , . . . , m,

(6.11)

where θm+ι = #i + 2π,

j = l , . . . , m ,

(6.12)

0 < 0 i + i - θj < 2π/n < π

0 < φj+\ — ψj < 27r/n < 7Γ,

= ψι + 2τr. By (6.10) this implies that for each

0

0 < - ψj < 2π/n < π.
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βj-i

Figure 6.5.

In particular, 0 < arclength(Aj) < τ for j = 1,.. . ,ra. Also, because K 6
CQ C MG and G acts effectively on IR2, the line segment [0, x] C K whenever
x £ K (apply Lemma 3.1 of Part I), hence K is star-shaped with respect to
the origin. By Lemma 6.1 and Remark 6.1, therefore, in order to establish
(5.7) it suffices to show that K satisfies (6.9), where L+ = L+(Aj) and Kj
is defined in (6.8).

The inclusion (6.9) is trivial if aj = βj so assume that ctj φ βj, i.e., that
θj < ψj. If (6.9) fails, consider x G Kj\L+. By definition of Kj, x must lie
in one of the two shaded wedge-shaped regions indicated in Figure 6.5. If
x lies in the upper shaded region, consider the triangle T with vertices x,
βj, and αj+i.5 Clearly T C K, since K is convex and a:, /3j, α J + i 6 K. But
T must intersect the open arc (/3j, αj+i), hence this arc has a nonempty
intersection with K, which contradicts the fact that this arc is contained in
S\K. If it is assumed that x lies in the lower shaded region in Figure 6.5,
replace βj, αj+i by αj, βj-ι to get a similar contradiction. Thus (6.9) is
confirmed. •

REMARK 6.3 This method of proof does not extend in any obvious way to
the multivariate case p > 3. To see this, suppose that K is a closed convex
G-invariant polyhedron in H 3 ; let B (or S) denote the closed unit ball (or
sphere) in R 3 and v denote the uniform measure on S. As in the above proof
it suffices to consider the case where K Π S = \JAJ , the union of disjoint
closed subsets Ai,..., Am of 5. Since K is star-shaped, again the sets Kj are
well-defined by (6.8) and UKj = K\B°. Unlike the case p = 2, however, the

δIt is essential to verify that Figure 6.5 accurately depicts the location of α, +i, i.e.,
that ofj+i lies in the half-open arc (βj, —otj]. But this is equivalent to the condition φj <
0J+1 < 0> + JΓ, which follows from (6.12). (Note that we define <*m+i = <*i,0m+i = θ\+2π).
Similarly, βj-ι lies in the half-open arc (αj, —βj]. (Define βo = βmi φo = ψm - 2x.)
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sets Aj no longer need have a simple form, so it is not apparent how to define
sets £ + , . . . ,Z+ such that L] n B° = 0, i t n S = Ah v[D(L$)] < i>(Z+),
and such that (6.9) holds. (If it is possible to find such sets i t then (5.7)
would follow as in (6.6).) Nonetheless we conjecture that Theorem 6.1, like
Theorem 5.1, is valid for p > 3. (Also see Remark 5.1.) •

REMARK 6.4 If Σi is not assumed G-invariant in Theorem 6.1 then K =
ϋΓ(C;Σi,Γ), although still star-shaped, need not be G-invariant. In this
case it is easy to find examples where the sets Kj constructed from the arcs
Aj as in (6.8) do not satisfy (6.9) - for example, take G — C\ and C an
equilateral triangle centered at 0, then choose Σi such that K is an isosceles
triangle with altitude(A') >> 1 >> base(ϋί). Nonetheless, we conjecture
that Theorem 6.1 remains valid (when p — 2) even if Σi is not G-invariant.
By Remark 5.1, this is true (in fact, true for all p > 2) if —/ £ G. However,
Example 3.1 of Part I shows that Theorem 6.1 may fail when p > 3 if Σi is
not G-invariant and —/ £ G, even if the probability distribution is normal. •

For the bivariate case (p = 2), Theorem 6.2 below not only extends
Theorem 3.3 from normal distributions to elliptically contoured distributions
but also applies to almost every effective subgroup G of 02, including the
rotation groups CJ, n > 4, whereas Theorem 3.3 applies only to the reflection
groups 7̂ 2 J ^ > 2 (as well as to Ό2 itself).

Recall (Section 3, Part I) that the class MG of all G-decreasing subsets
of IRP is closed under unions, whereas CQ is not, although both are closed
under intersections. In fact,

(6.13) C G MG <* C - U{CG(x)\x G C},

where CG(X) denotes the convex hull of the G-orbit of x; note that CG(X) G
CG is a closed convex G-invariant polygon for every x £ R p. Recall also that
every C G MG is G-invariant. It is readily verified from (6.13) (recall (5.6)
and (5.10)-(5.12)) that if Σi is G-invariant, then

(6.14) CeMG^ Σ~ 1 / 2C G MG =* K G M5.

THEOREM 6.2 Suppose that X ~ £C 2(Σ). If C G MG and C is closed,
then Σi < Σ2 =̂  Pzx{C) > PΣ2(C) provided that Σi is G-invariant and G
acts effectively on IR2 (i.e., GφC\ or H\)9 but also G φC\ or C\.

PROOF If G = O2 or SO2 then MG = CG and the result is trivial. Two
cases remain.

(i) G = CJ, n > 4. Again G — G. As in the proof of Theorem 6.1,
the desired result is equivalent to the assertion that (5.7) holds for every
compact K G MG and every contraction D = Diag(di,d2) (0 < dι^d2 < 1).
Such a set K is the limit of a sequence {K\} of finite unions of closed convex
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Figure 6.6. The set K € MG (shaded); G = C£, n = m = 4.

G-invariant polygons6, so it suffices to establish (5.7) when K itself is a finite
union of such polygons.

Again we need consider only the case where K Π S = UAj, a finite
disjoint union of closed arcs. Define CCJ, 0j, /?j, φ^ Z+, and Kj as in the
proof of Theorem 6.1 but replace Figures 6.4 and 6.5 by Figures 6.6 and
6.7, respectively. If the inclusion (6.9) can be established then (5.7) again
follows from Lemma 6.1 and Remark 6.1. All arguments in the previous proof
continue to hold with the following two exceptions: (a) since n > 4, replace
7Γ by τr/2 as the upper bound in (6.11) and (6.12); (b) since K 6 MG need
not be convex, the verification of (6.9) in the final paragraph of the proof of
Theorem 6.1 must be modified as follows.

6Since G = C? is irreducible if n > 3, Lemma 3.2 of Part I implies that [CG(X)]° # 0
if x Φ 0, where ° denotes "interior". It follows from (6.9) that for each λ > 1,
U{λ[Cσ(i)]°|x € K] is an open covering of the compact set K, hence there exists a
finite subcovering U{λ[C G (x0]Ί* = 1,..., n}. Then Kχ = U{XCG(xi)\i = 1,..., n} is a fi-
nite union of closed convex G-invariant polygons such that K C K\ C XK. Thus Kχ -+ K
as λ I 1. [In case (ϋ) below, G = Ήζ is again irreducible if n > 3 so this argument remains
valid. If n = 2, then G is not irreducible but again [CG(X)]° Φ 0 unless x lies in the wall of
a fundamental region (see Footnote 8) in which case we define [CG(X)]° to be the relative
interior of CG(X) ]
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Figure 6.7.

First note that G = , where 5 is the rotation
through angle 2π/n about 0 in R 2. Again we may assume that ctj φ βjy i.e.,
that θj < ψj. If (6.9) fails, consider x G Kj\Lf. By definition of Kj, x must
lie in one of the two shaded wedge-shaped regions indicated in Figure 6.7.
If x lies in the upper shaded region, then its image gx must lie in the open
region outside B and strictly between the infinite rays Qj and Rj emanating
from 0 and passing through βj and -α j respectively7. Thus the half-open
line segment [x, gx) must intersect the ray Qj at some point z outside B.
This implies that the triangle T with vertices 0, x, and gx intersects the open
arc (βj,otj+ι) C S\K. Since G acts effectively on R 2 , however, 0 G CQ{X)
(see Lemma 3.1 of Part I), hence T C CQ(X) C K (recall that K G MG),
a contradiction. If it is assumed that x lies in the lower shaded region in
Figure 6.7, simply replace gx by g~ιx and (βj, α J + 1 ) by (αy, /?j_i) to reach
a similar contradiction. Thus (6.9) is again verified.

(ii) G = 7̂ 2 ? n ^ 2. Since CJ C Ή^ this case is covered by (i) when n > 4,
but the following argument is valid for all n > 2. Note that if F 1 ? . . . , i<2n

7It is again essential to verify that Figure 6.7 accurately depicts the location of gx, i.e.,
that gx lies strictly between the rays Qj and Rj. If we write x = |z|exp(i77) with θ3 < η <
ψj then gx = |z|exp«[*7 + (2x/n)], so it must be verified that φj < η + (2τr/n) < 0, -f x.
But this follows from (6.12) with π replaced by τ/2. Similarly, g~1x lies in the open region
outside B and strictly between the infinite rays — Rj and —Qj.
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Figure 6.8. The set K e Λ4G (shaded); G = «J , n = 2, m = 6.

are the fundamental regions8 for the finite reflection group G = H2, then
ΓFi,.. .,ΓF2n are the fundamental regions for the finite reflection group
G = ΓGT', where Γ G C?2. Thus, by means of an orthogonal change of basis
we may assume that G = G.

As in (i), it must be shown that (5.7) holds for every compact K 6 MG
and every contraction D. Again we may assume that K is a finite union of
closed convex G-invariant polygons (see Footnote 6).

As before we need consider only the case where K Π S = UAj, a finite
disjoint union of closed arcs. Define cy, 0j, βj, ψj, £+, and Kj as in the
proof of Theorem 6.1, but now replace Figures 6.4 and 6.5 by Figures 6.8
and 6.9, respectively9. To establish (5.7) it again suffices to verify (6.9). All
arguments in the proof of Theorem 6.1 continue to hold (including (6.11)
and (6.12) since Ή% D C£) with the exception of the verification of (6.9),
which must be modified as follows.

Again we may assume that ctj φ βj. Neither α^ nor βj can lie in the wall

8 The reader may review the elementary geometric structure of the reflection groups %"
in Grove and Benson (1985, pp. 8-9), in particular the representation JR.2 = U{gF\g £ Ήζ},
where F is the closure of any fixed fundamental region F for TίJ Such a region is an open
convex cone in IR2 that subtends an angle of π/n at 0 and which is oriented such that
the reflections across its two boundary rays, or walls, generate the group H™. There are
exactly 2n disjoint fundamental regions F\,..., F2n, and for each g £ ΉJ> {#Ή > , ΰ^n)
is some permutation of {Fi,... ,/2n} Additional properties of finite reflections groups
utilized in the present paper may be found in Chapter 4 of Grove and Benson (1985) and
in Section 3 of Eaton and Perlman (1977).

9In Figure 6.8, n = 2 and the 2n = 4 fundamental regions (whose walls are indicated
by heavily dotted lines) coincide with the four (open) quadrants of H 2 .
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Figure 6.9.

of a fundamental region10. Either (a) ctj and βj lie in the same fundamental
region or (b) OLJ and βj lie in adjacent fundamental regions, for otherwise
the union of the arc Aj and all its G-images would completely cover S.
(Cases (a) and (b) both occur in Figure 6.8.) In case (b), aj and βj must
be equidistant from the common wall between them (see Figure 6.9).

If (6.9) fails, consider x G Kj\Lf. By the definition of Kj, x must lie
in one of the two shaded wedge-shaped regions indicated in Figure 6.9. If x
lies in the upper shaded region, then

(6.15) (x-βj)\βj-ctj)>0

and x lies in the same fundamental region (call it F) as βj. Let W denote the
first wall of F encountered when traversing 5 in a counterclockwise direction
starting at βj and let r denote the unit vector normal to W that points into
F. Define g = I - 2rr', i.e., g is the reflection across the wall W, hence
g € G. Then

(6.16)
(x - - 2(r'x)(r'βj - r'α,-)) > 0

10Suppose that aj lies in the wall of some fundamental region. Since K is G-invariant,
the reflection of the closed arc A3 across that wall is contained in K, hence the closed arc
consisting of the union of Aj and its reflection is contained in K ΠS. But βj lies in the
interior of this closed arc, which contradicts the fact that βj is not an interior point of
KΠS. Similarly, βj cannot lie in the wall of a fundamental region.
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by (6.15) and the two inequalities r'βj < T'OLJ, r'x > 0.11 Thus, by (6.15)
and (6.16) both x and its reflected image gx lie strictly on the same side
of the strip _Lj, and both lie outside B. Because gx G gF which is disjoint
from F, gx cannot lie in the upper shaded region that contains x (see Figure
6.9). Therefore the half-open line segment [x,gx) must intersect the ray Qj
at some point z outside B. As before, this implies that the triangle T with
vertices 0, #, and gx intersects the open arc (/?j, αj+i) C S\K. Since G
acts effectively on R 2, however, 0 G CG(X) (by Lemma 3.1 of Part I), hence
T C CQ(X) C K (since K G Λ4G)> & contradiction. If x lies in the lower
shaded region in Figure 6.9, replace F by the fundamental region containing
ctj and replace (/?j, CKJ+I) by (OLJ, βj-i) to reach a similar contradiction.
Thus (6.9) is again verified. •

REMARK 6.5 Examples 3.2 and 3.3 in Part I show that the assumption that
Σi is G-invariant cannot be discarded in Theorem 6.1. Example 3.4 shows
that the conclusion of Theorem 6.2 is false if G = C\ = {±/}, in which case
MG = Λ4i is the class of centrally symmetric sets that are star-shaped with
respect to the origin in H 2 . (This counterexample easily may be extended
to G = {±1} acting on W with p > 3). •

REMARK 6.6 If G = Cf then the crucial inclusion (6.9) fails for some
(but not all) sets K G Λ4G\CG> hence the above proof fails to establish the
inequality (5.7) for such sets. It is uncertain, however, whether or not (5.7)
(and hence the conclusion of Theorem 6.2) is true for such sets. To see
this, consider the three sets K in Figures 6.10-6.12. For the first two sets
(6.9) does hold so (5.7) is true, while for the third set (6.9) fails but (5.7) is
uncertain. We conjecture that (5.7) is true for every K G ΛIG, hence that
Theorem 6.2 is valid also for G — C\. If this is true then Theorem 6.2 would
be valid for every effective subgroup G of O2 except {±/}. With somewhat
less confidence we conjecture that when p > 3, Theorem 6.2 is valid for
every effective subgroup G of Op except those G for which there exists a G-
invariant subspace V C ]RP of dimension > 2 such that the restriction of
the action of G to V is {±/}. As with Theorem 6.1, however, the method
of proof used above to establish Theorem 6.2 in the bivariate case does not
extend in any obvious way to the multivariate case p > 3 (recall Remark
6.3). •

1 1 The scalar product τ'υ is the (signed) distance from the vector v to the wall W.
Because βj £ F and since the angle subtended by F at 0 is < 7τ/2, βj is closer to W than
(Xj (consider the cases (a) and (b) separately), so the first inequality holds. The second is
immediate since x G F.
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Figure 6.10. K G MG\CG (shaded), G = C\; (6.9) holds, (5.7) true.

Figure 6.11. K € MQ\CG (shaded), G = C|; (6.9) holds, (5.7) true.



302 Michael Ώ. Perlman

Figure 6.12. K <Ξ MG\CG (shaded), G = C\\ (6.9) fails, (5.7) uncertain.

7 A Sharper Inequality

We return to the general case p > 2 and let B, 5, v, and D be as defined

in Section 5. Theorem 5.1 implies that for every (not necessarily closed)

κc
(7.1) u(K) = v{K°) + v(dK) > v{DK),

where K, if0, and dK denote the closure, interior, and boundary of ϋf,
respectively (see (5.7)). FefFerman, Jodeit, and Perlman (1972, Section 3)
sharpened this inequality by showing that if D φ I then (7.1) remains valid
with the term v(dK) deleted, even though u(dK) may be positive and/or
v(KΌ) may be 0. Therefore, when C E C\ the contribution of the boundary of
C plays no role in the concentration inequality (5.0) for elliptically contoured
distributions even though such distributions need not be absolutely contin-
uous with respect to Lebesgue measure on R p , hence may assign nonzero
probability to the boundary of K.

In this section we extend this sharpened result from C\ to the classes
Co and MG in the bivariate case and show further that if Theorems 6.1
and 6.2 can be extended from IR2 to Htp for p > 3 then for many groups G
the sharper forms of their concentration inequalities will follow as corollaries.
This requires a non-trivial modification of the argument of Fefferman, Jodeit,
and Perlman (1972, Theorem 2), again because the transformation K -» DK
need not preserve the G-invariance of K unless G = G = {±1} (see the
paragraph containing (5.12)).

The following four lemmas contain the technical core of the argument.
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Recall that AC = AC, (AC)0 = AC0, and d(AC) = A(0C) for any set
C C IRP and any nonsingular linear transformation A: ΊRP —• IRP. If {Ct} is
a family of subsets of IRP indexed by a real parameter / > 0, we write Ct] C
to indicate pointwise monotone convergence of the indicator function of Ct

to that of C and Ct —> C a.e. [v] to indicate pointwise convergence of the
indicator function of Ct Π S to that of C Π S a.e. [v\. If 2} is a contraction,
note that £)* = Z) + *(/ - D) is also a contraction for every 0 < t < 1 and
that £>ί I D as ί | 0.

LEMMA 7.1 Ze£ C be a family of subsets C C IRP with the following four
properties:

(i) tC eCVt>0.
(ii) IfC°φΦ then tC ΐ C° a.e. [i/] as t | 1.
(itϊ,) If C° = Φ then v(DC) = 0 /or even/ contraction D φ I.
(iv) IfC°φΦ then for each contraction D φ I, DtC° -» £>C α.e. [u] as

t | 0 .
ΓΛen Λ̂e following three conditions are equivalent:

(a) v(C) > v(DC) VC eC and V contractions D.
(b) i/(C°) > ί/(i?Co) VC G C and V contractions D.
(c) v(C0) > v(DC) VC eC and V contractions Dφl.
If in addition, (υ): C eC => C eC, then (a) <3> (a7): i/(C) > v(DC) V

closed C £ C and V contractions D.

P R O O F The implications (c) => (α) and (c) => (6) are immediate.
(a) => (b): If C° = 0 then (6) is trivial. If C° / 0 then u(tC) > u(tDC)

by (i) and (a). Now let t j 1 and apply (ii) to obtain (b).

(b) =» (c): If _C° = 0 then (c) is trivial by (iii). If C° φ 0 then i/(C°) >

v{DtC°) -> i/(23C) as ί I 0 by (b) and (iv).
(a) & (a!): obviously (a) =^ (a ;); under assumption (v), clearly (ar) =ϊ

(a). D

LEMMA 7.2 For any compact subgroup G C Op that acts effectively on IRP,
the class CQ satisfies conditions (i)-(v) of Lemma 7.1.

P R O O F Suppose that C G CQ The convexity of C implies the convexity of
C and tC (cf. Eggleston (1966), p. 9), while the G-invariance of C implies
the G-invariance of C and tC, so conditions (i) and (v) are satisfied. If
C° = 0 then C convex => C lies in a proper subspace of Etp, hence DC is
z/-null for every D, so (iii) holds.

To verify (iii), assume that C° φ 0. Since G is effective, 0 G C 1 2 , hence
C is star-shaped with respect to 0. Thus /C, and therefore tC, increases as

12For any x G C define XG = fG9
x dμ{g), where μ is the Haar probability measure on

G. Clearly gxG = XG V# E G1, SO XG = 0 as G is effective. But XG G CO(ic) C C since
C G ̂ Gj so 0 G C (Note that this also provides a proof of Lemma 3.1.)
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t t 1. Also, if x G C° then τx G C° for some r > 1, hence x G r^C0 C
r " 1 ^ C U{tC\t T 1}, so C° C U{ίC|ί ΐ 1}. Next we show that 0 G C°.
If not then 0 G #C, so the convex set C must be supported at 0 by some
(p - 1)-dimensional subspace, i.e., C C {y e Έlp\afy > 0} for some a φ 0.
Thus, since C is G-invariant, a!(gx) > 0 Vx G C and V# G G, so a'xo =
fGa'(gx)dμ(g) > 0 (see Footnote 12). But XQ = 0 as G is effective, hence
a\gx) = 0 Vx G C and V^ G G. In particular α'x = 0 Vx G C, contradicting
the assumption that C° φ 0. Thus it must hold that 0 G C°. Therefore
tC = ίC + (1 - ί)0 C C° if 0 < t < 1 (cf. Eggleston (1966, Corollary 2, p.
10)), so U{ίC|ί T 1} C C° and (ii) is verified.

To verify (iv), assume that C° φ 0 and D φ I. Let χt and χ denote the
indicator functions of the sets DtC° and DC, respectively. If x G JDC° then
x G A C 0 for all t near 0, while if x £ DC then x £ DtC for all t near 0,
so in both cases χt(x) -> χ(a?) as / | 0. If x G d(DC)(C DC) then either
x G ί?tC o for all t near 0, in which case again Xt(x) —• x(^) as ί | 0, or else
there exists a sequence ίn I 0 such that x £ DtnC° for every n, in which
case χt(x) -f* χ(x) as t j 0. Therefore, in order to complete the verification
of (iv) it must be shown that ί^(Δ) = 0, where

(7.2) Δ = {x G l{DC)\ 3tn [ 0 such that x 0 DtnC° for every n).

Since ^({xlx^ = 0 for some i = l , . . .,p}) = 0, it suffices to show that
i/(Δ Π {x\xi φ 0, i = 1,... ,p}) = 0. We shall show that ι/(Δ Π R + ) = 0
where IR+ = {x G W\xi > 0,z = 1,... ,p}; the other 2P - 1 cases follow
similarly. Set K = DC and xn - D(Dtn)"1x in (7.2). Since 0 < xn | x
when x G IR+ (note that xn φ x since D φ I) we have that

(7.3) Δ Π IR+ C {x G δA' Π1R+ | 3xn | x such that

x n ^ K° for every n} = Δ +

and shall show that i/(Δ+) = 0.

Let Q = {x = ( x i , . . . , x p ) | 0 < Xi < 1, i = l , . . . ,p} denote the closed
unit cube in R p , let 0t be the unit vector with i-th component 1, and for
€ > 0 let Li(x,e) = [x — €0i,x) denote the half-open line segment connecting
x — €0t and x. For e > 0 define Q(x,e) = (x — εQ)\{x} and £(x,e) =

(7.4) L(x,e) C Q(x,e) C convex hull[i(x,€Λ/p)].

Fix x G Δ + . By (7.3), Q(x, ε) £ tf° Vc > 0, hence by (7.4) and the convexity
of K°, L(x,€y/p) t K° Vc > 0. Therefore, there exist i G { l , . . . , p } and
a sequence {£n} | 0 such that x - δnθi $. K° Vn, hence there exists i G
{1,. . . ,p} such that Li(x,Xi) Π K° = 0 (since x G 9/ί and Ar° 0 0 - apply
Eggleston (1966, Corollary 2, p. 10)). Thus

(7.5)
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where Δ t = {x G dK Π B + |Z t (a;,3t ) Π A'0 = 0}. (In fact, equality holds in
(7.5).) In order to show that ^ ( Δ + ) = 0, it therefore suffices to show that
i/(Δi) = 0,i = l , . . . , p .

The remainder of the proof now parallels the treatment of cases (iii) and
(iv) in the proof of Theorem 2, Fefferman, Jodeit, and Perlman (1972). First
consider Δ i Since K is convex and x G dK, Δ i = A U B where

A = {x G dKΠ K + | Lι{x,e) C dK for some e > 0}

B = {xedKΠ IR + I Zi(a?,a?i) Π tf = 0}

(note that i Π 5 = 0). Because the projection of A onto {x\x\ = 0}
lies in the boundary of the projection of K onto Ho = {x\x\ = 0} 1 3 , which
boundary has (p— l)-dimensional Lebesgue measure 0, it follows that v(A) =
0. Finally, B is contained in the graph of a positive convex function (the
"lower boundary" of K Π Et + ) so v(B) = 0 (apply the Lemma following
Theorem 2 in Feίferman, Jodeit, and Perlman (1972)). Similarly, ί/(Δz ) = 0
for i = 2 , . . . ,p. •

By (6.13), C G MG iff C is an (arbitrary) union of sets in CQ- Since
the boundary of such a set may be irregular, in order to extend Lemma 7.2
to C G ΛΛG it is necessary to impose an additional smoothness assumption
on C. One such condition, which covers most sets occurring in applications,
is the following: define MG to be the collection of all C G MG such that
dC = d(C) = UMj, a finite or countable disjoint union of smooth (p - 1)-
dimensional manifolds Mj (hence dC is piecewise smooth). Furthermore, it
is necessary to impose a stronger assumption on the group G itself.

LEMMA 7.3 For any compact subgroup G C Op that acts irreducibly on WP,
the class MG satisfies conditions (i)-(v) of Lemma 7.1.

P R O O F Suppose that C G MG By (6.13), C satisfies (i) since CG(tx) =
tCG(x). To verify (v), consider x G C. Then there exists a sequence {xn} C
C such that xn -* x. Since

CG(x) = Wigix + --• + otkgkφ > 1, gi G G, a{ > 0, ^ α, = 1}

and ||<7ί&n—fl̂ H = ||̂ rx — ̂ |j for each g G G, it follows that
\\xn - x\\ —>• 0? where δ denotes the Hausdorff metric (cf. Valentine (1976),

13If not, then there would exist x £ A such that the projection x — x\Θ\ of x onto Ho lies
in the interior of the projection of K onto Ho. This would imply that there exist y G K and
δ > 0 such that the projection y — y\θ\ of y onto Ho satisfies y — y\θ\ = (1 -f δ)(x — a?i0i).
Also, since a: G ;4 there would exist e > 0 such that the closed triangle with vertices x,
x — e#i, and y is contained in A'. But since 0 G ϋΓ°, this would imply that the open line
segment (x — e#i, x) C K°, contradicting the fact that x G A.
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p. 36). But C G O Π ) C C for every n, hence CGOB) Q C. Thus C 6 MG and
(v) is satisfied.

Since G is irreducible, C° = 0 implies that C = {0} (apply Lemma 3.2),
so (iii) is trivial. To verify (ii), assume that C° φ 0. It follows as in the
second paragraph of the proof of Lemma 7.2 that tC increases as t j 1 and
C° C U{ίC|< T 1}. To show that U{tC\t | 1} C C° it suffices to show
that tC C C° if 0 < t < 1. For ar e C\{0} choose a sequence {zn} C C
such that z n —• x; then as above, ^CG^Π), CQ(X)) —• 0. Because C G ( ^ Π )

and CQ(X) are bounded convex sets with non-empty interiors (since G is
irreducible), it follows that δ([CG(xn)]°, [CG(X)]°) = δ{CG{xn\ C G ( Z ) ) -* 0.
But tx G [CG(X)]° because 0 G [CG(&)]° (since G is irreducible), so 3 n such
that 1 4 tx G [CG(zn)]° C C°, as claimed.

To verify (iv), as in the proof of Lemma 7.2 it suffices to show that
*/(Δ+) = 0, where Δ+ is given by (7.3) and K = DC. Since dK = D(βC) =
U(J9Mj) = UiVj, it is enough to to show that v(Δf) = 0, where Δ+ is defined
as Δ + in (7.3) but with dK replaced by the relative interior of Nj, a smooth
(p — l)-dimensional open manifold. Since for every x G Δ^" it holds that
Q(x,e) <£ K° Ve > 0, it can be shown that

C{xe [rel intiNj)] Π IR+ | N(x)

where N(x) is the outward normal vector to Nj at x. But S(x) G IR+ for

each x G IR+, where S(x) denotes the outward normal vector to the sphere

S at x. Therefore the sphere S and the manifold Δ̂ ~ intersect transversely,

so their intersection must be a manifold of dimension < p — 2 (cf. Guilleman

and Pollack (1974), Theorem, p. 30; Do Carmo (1976), Ex. 17, p. 90), hence

i/(Δ+) = 0 as required. •

LEMMA 7.4 Suppose that G — G\ x x Gt, a direct product of compact
irreducible groups acting on H i x x IR*, where Σ dim(Hz ) = p. Then the
class AAG satisfies conditions (i)-(v) of Lemma ΊΛ.

P R O O F The first and third paragraphs of the proof of Lemma 7.3 carry over
to this case without change, while the second paragraph must be modified
as follows:

For each i = l , . . . , t define JRt = {0}x x {0} xIR, X {0} X x{0} and
note that z/(IRz ) = 0. Since each G{ acts irreducibly on 1R, , C° = 0 implies
that C C UR t , so (iii) is immediate. To verify (ii), assume that C° φ 0. As
in the second paragraph of the proof of Lemma 7.2, tC increases as t | 1 and

14This requires the following fact: if An, A are nonempty, convex, open sets in 1RP such
that δ(An,A) -+ 0, then A C \JAn. (For y G A, choose n such that δ(An,A) < \\y-dA\\. If
y £ An then 3 a hyperplane H that separates An and y. This would imply that 3z G AΓ\N,
where N is the line normal to H through y, such that \\z — An\\ > \\z — y\\ > 6(ATl1A)i

contradicting the definition of 8(Ani A). Therefore y E An.)
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C° C U{tC\t t 1}. To show that v(\j{tC\t | 1}\C°) = 0 it suffices to show
that ί C C C ° U (UlRi) if 0 < t < 1. For x G C\(uίt i) choose a sequence
{xn} C C such that # n -» a;; then as above, #(CG(xn), C G ( Z ) ) —• 0. Because
CG(XΠ) and CG(X) are bounded convex sets with non-empty interiors (since
s n , a? g URi), it follows that ί([Cσ(a?n)]°, [Cσ(a?)]°) = 6{CG(xn)> Cσ(s)) ->
0. But to G [Cσ(a?)]° because 0 G [Cσ(aO]° (since a? g UlR;), so 3 n such that
(see Footnote 14) to G [CG(XΠ)}° Q C°, as claimed. D

When p = 2, Lemma 7.2 applies to all compact subgroups G C 0 2 except
£?2 and 7<2? Lemma 7.3 applies to all compact subgroups of O2 except C\,
Tί\, C\, and H^ while Lemma 7.2 applies to H^- Thus, from the equivalence
of (a ;) and (c) in Lemma 7.1 we obtain the following sharpened versions of
Theorems 6.1 and 6.2:

THEOREM 7.1 Suppose that X ~ EC2(Σ). If C G CG, then Σ α < Σ2,
Σi φ Σ 2 => - P Σ I ( C ° ) > P Σ 2 ( C ' ) provided that Σi 2*5 G-invariant and G acts
effectively on IR2 (ϊ.e., G φ C\ or H\).

THEOREM 7.2 Suppose that X ~ EC2(Σ). If C G Λ I G , <ften Σ x < Σ 2 ,

Σi φ Σ 2 =» ^Eαίc 0 ) > Ps2(C r) provided that Σx is G-invariant and G

is irreducible or is the direct product of irreducible compact groups (i.e.}

G φ C\, H\, or C%), but also G φ C\.

Finally, Feίferman, Jodeit, and Perlman (1972, p. 118) presented several
sufficient conditions for the strict inequality v(C°) > v(DC) to hold when
D φ I and C E Ci Their discussion remains valid when C G CQ and G
acts effectively, and when C G MG and G is irreducible or is the direct
product of irreducible compact groups. (When C G MG, their argument
on p. 118 showing that dC C C° must be replaced by our arguments in the
proofs of Lemmas 7.3 and 7.4 showing that tC C C° and tC C C° U (UlR»),
respectively.)
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