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This article surveys fair—division or cake-cutting inequalities in probabil-
ity and statistics, including bisection inequalities, basic fairness inequalities,
convexity tools, superfairness inequalities, and partitioning inequalities in
hypotheses testing and optimal stopping theory. The emphasis is measure
theoretic, as opposed to game theoretic or economic, and a number of open
problems in the area are mentioned.

1. Introduction

The main purpose of this article is to present a unified study of a class of
partitioning inequalities in the theories of probability and statistics; it is not
meant to be a complete review of the subject. The emphasis is measure theo-
retic with emphasis on both constructive (algorithmic) and non—constructive
techniques, including generalizations of classical “cake—cutting” inequalities,
the ham sandwich theorem, and classical statistical problems such as Fisher’s
Problem of the Nile, the problem of smiliar regions, and the classification
problem.

The overall framework is as follows. There are a finite number of (count-
ably additive) probability measures p = (p1,...,1,) defined on the same
measurable space (€2, F), and a class IT of F-measurable partitions of (2 is
specified. (Recall that (A;)% is an (ordered) F-partition of Q if U¥4; =
Q,AiNAj =0fori#j, and A; € F for all i.) From this collection of
partitions II a single partition is sought which will satisfy some objective
such as bisection or minimax-risk property. It may help the reader to keep
in mind either a cake—cutting or a hypotheses-testing interpretation of this
setting throughout the following sections.

In the cake—cutting interpretation, Q is a cake which must be divided
among n people having values 1, ..., p, (that is, u;(A) is the relative value
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of piece (measurable subset) A to person j), and II describes the permissible
divisions (e.g., into parallel slices, or convex connected pieces, or general
Borel sets). The basic measure-theoretic assumptions of nonnegativity and
(countable) additivity seem natural in this setting: the value of any piece
is at least zero (otherwise the piece could be discarded); and the value of
the union of several disjoint pieces is the sum of the values of the individual
pieces.

In the hypotheses testing interpretation, a single observation is made
of a random variable X taking values in 2, and it must then be decided
from which of n known distributions p,, ..., %, the observation came; this is
known as the classification problem. In this case, the decision rule “if X € A;,
guess that the distribution of X is y;” corresponds to a partition of 2, and the
expected risk associated with this decision given that the true distribution
is p; is given by 1 — pi(A;) = P(X ¢ A; | true distribution of X is y;).

The organization of this article is as follows: Section 2 addresses bisec-
tion results including ham sandwich theorems and medians; Section 3 the
basic fairness inequalities; Section 4 the convexity tools, with special empha-
sis on Lyapounov’s theorem and extensions; Section 5 various superfairness
inequalities; Section 6 inequalities in statistical decision theory related to
the classification problem; Section 7 partitioning inequalities in optimal—
stopping theory; and Section 8 a list of open problems.

It should be emphasized that the results in this article are focused on
probabilistic and statistical partitioning inequalities, and do not include dis-
cussion of related fair-division results in other areas such as combinatorics
(cf. Alon and West (1986)), economics (cf. Kirman (1981), Samuelson (1980),
Svensson (1983), Weller (1985), Young (1987)) or game theory (cf. Kuhn
(1973), Legut (1990)).

2. Bisection

The Bisection Problem is the question of the existence of a single (F-
measurable) subset A of © which bisects 2 simultaneously with respect to
each of the measures p1,..., s, that is

(1) pi(A)=1/2 foralli=1,...,n.

In general such a set does not exist (e.g., if 3 = p2 is a Dirac measure
assigning mass 1 to a single point w in Q), but the ham sandwich theorem
of Steinhaus (cf. Stone and Tukey (1942)) guarantees that there is even a
half-space simultaneous bisection in certain cases, namely
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(2) if p1,...,pn are uniformly distributed (probability measures) on
bounded Borel subsets of & = IR™, there is halfspace H1 satisfying
pi(H*)=1/2forall i = 1,...,n.

The classical proof of (2) uses the Borsuk-Ulam fixed point theorem,
and relies heavily on the fact that the number of measures is no more than
the dimension of the space. The hypotheses of (2) can be weakened (Stone
and Tukey (1942)) to “uq,...,u, are probability measures on IR™ satisfying
wi(H) = 0 for every hyperplane H and all ,” but the conclusion may fail if
the measures have atoms.

On the other hand, hyperplane bisection in a median sense is always
possible for arbitrary (including atomic) probability measures in this setting,.
Say that a hyperplane H = ", a;z; — b in R" is a hyperplane median for
pif w(H*Y) > 1/2 and p(H~) > 1/2, where HY = {r = (r4,...,7,) € R":
Yiiair; > b and H- = {r € R" : 3 I-,air; < b}. Using the Borsuk-
Ulam theorem applied to a “midpoint-median” function, it was shown in
Hill (1988a) that

(3) every collection yy,...,u, of arbitrary Borel probability measures on
1 = IR™ always has a common hyperplane median.

Using countable additivity, it can be seen that if p—bisection of every
measurable set is possible, then the range of p is convex (and conversely);
cf. Dubins and Spanier (1961) and Section 4 below. Stone and Tukey (1942)
have shown that for any two nonatomic Borel measures on the closed unit
circle S! there is always an interval which bisects each of the measures
simultaneously. For an interesting example of combinatorial bisection also
based on the Borsuk-Ulam theorem, the reader is referred to Alon and West
(1986).

For general a € [0,1] the question of the existence of a set A satisfying
ui(A) = a for all ¢ (as opposed to the exact bisection in (1)), is called the
Problem of Similar Regions (Feller (1938)), as such a set A is in some gross
sense a smaller copy of Q itself, and this question has been related to the
efficiency of tests of statistical hypotheses by Neyman and Pearson (1933).
In contrast to (2), it is not always possible to find a hyperplane H satisfying
wi(H*) = a for @ # 1/2, even if the measures are continuous (Hill (1988a)).
On the other hand, it follows from convexity (Section 4 below) that if the
measures are all nonatomic, then for each a € [0,1] there is a measurable
set A, satisfying p;(Ay) = a for all i < n.
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3. Basic Fairness Inequalities

The basic question of the existence of a fair division is that of the exis-
tence of an (F-measurable) n—partition (4;)%, of Q satisfying

(4) pi(Ai) > 1/n foralli=1,...,n.

The cake—cutting interpretation of (4) says that cutting the cake into
pieces Ay, ..., A, and distributing it so that the i** piece is given to person
¢ guarantees that each person receives a portion which he considers, by his
own measure, to be at least one n** of the total. The hypotheses—testing
interpretation of (4) is that the decision rule corresponding to the partition
(A:)7 has expected risk at most (n—1)/n. Just as bisections (1) do not exist
in general, neither do fair divisions in the sense of (4). They do, however, if
all the measures are nonatomic (Steinhaus (1949)), and more generally if at
most one of the measures has atoms (Hill and Kennedy (1990)):

(5) if p1,...,4n—1 are nonatomic, then there is a measurable partition
(Ai)T with p;(A;) > 1/n for all i < n.

For n = 2, the demonstration of (5) is the classical “cut-and—choose”
algorithm: the first person (the person with the nonatomic measure) iden-
tifies a subset A which bisects his own measure of Q (i.e., p1(4) = 1/2),
and the second person chooses between A and the complement of A. Kirby
(1988) has recently applied this idea to obtain an algorithm for nuclear arms
reduction.

For n > 2, there are several well known algorithms to demonstrate (5).
One algorithm, called a “sliding knife” solution, is a modification of an
algorithm of Knaster and Steinhaus (1946, 1953) by Dubins and Spanier
(1961). Although stated under the hypothesis that all n measures are con-
tinuous (that is, absolutely continuous with respect to Lebesgue measure on
Q C IR™), the procedure also works if at most one of the measures has atoms.
In this algorithm, a long knife is passed slowly parallel to itself over the cake
Q until one of the participants feels that the increasing portion under the
knife is exactly one n** the total value, at which point he says “stop,” and
the cake is cut at that point and that slice is given to the person who said
stop (ties are broken in any manner), and the remaining n — 1 participants
continue the process. For continuous measures, any starting orientation of
the knife will suffice, and for the more general nonatomic case, it follows
from Jones (1989) that almost all starting angles will suffice (a “sufficient”
starting angle is one in which at most one measure of the corresponding
increasing slice at that angle is discontinuous).

Fink (1964) has given an algorithm demonstrating (5) which general-
izes the cut-and—choose algorithm and which has two advantages over the
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sliding—knife solution: first, implementation of the algorithm does not re-
quire a priori knowledge of the number of participants; and second, the al-
gorithm is essentially finite, as opposed to the continuous—evaluation method
of the sliding—knife solution. In Fink’s algorithm the first person bisects the
cake Q according to his own measure. The second person arriving chooses
between the two pieces cut by the first player, and if a third person ar-
rives then each of these first two players trisects his own portion, and the
third person selects one portion from each. The algorithm continues in this
manner (e.g., quadrisection at the next stage), until no new arrivals appear
and the algorithm termminates. (Note that the single measure with atoms
must “arrive” last in order to guarantee the solution in (5).) A variation of
this algorithm requiring at most O(nlogn) cuts for parallel slices in R™ is
described in Even and Paz (1984).

The bound 1/7 in (5) is easily seen to be best possible (taking p; = p2 =
... = M), and the corresponding best possible bound for nonatomic finite
(e.g., non—probability) measures is one-nt* the harmonic mean of the total
masses (Hill (1985)), a probabilistic analog of which is

(6) if X1,X2,...,X, are nonnegative continuous random variables on
(2, F, P) with finite means, then there is a measurable partition (A4;)}
of Q satisfying [,. X; > (EX1)™' + ...+ (EX,)™!)"! for all i, and
this bound is best possible.

Although an algorithmic proof of (6) is possible in some special cases,
such as when the { EX;} are all rational numbers, proofs of the general case
seem to rely on non—constructive results such as the convexity conclusions
in Section 4 below.

If more than one of the measures y;, ..., 1, has atoms, then the conclu-
sion of (5) may fail, but if an upper bound is known for the maximum atom
size of the measures, the following best possible fairness bound is known
(Hill (1987a)); taking limits as & — 0 yields (5) as a corollary.

(7) If pa,...,pn each have atoms at most @ > 0, then there exists a
measurable partition (A;)} of Q satisfying pi(A4;) > Vu(a) for all
i = 1,...,n, where V, : [0,1] — [0,n71] is the unique nonincreas-
ing function satisfying V,(a) = 1 - k(n - 1)a for o € [(k+ 1)k~ 1((k +
1)n — 1)1, (kn —1)71]. Moreover, this bound is attained for all n and
a.

The function V,, is piecewise linear and satisfies V() ,/ n~1 as a \ 0;
see Hill (1987a) for the graphs of V, and V3. The proof of (7) is largely
combinatorial and nonconstructive in nature.

Analogs of the fairness inequalities in this section for game theory and
economics can be found in Crawford (1977), Crawford and Heller (1979),
Demko and Hill (1988), Kuhn (1973), and Legut (1985).
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4. Convexity Tools

For nonatomic measures, the basic partitioning-inequality tool is the cel-
ebrated convexity theorem of Lyapounov (1940) which states that the range
of every countably—additive, finite-dimensional, vector-valued measure is
closed and convex. Many proofs of this theorem and various generalizations
have appeared (e.g. Armstrong and Prikry (1981), Artstein (1990), Black-
well (1951a), Dvoretzky, Wald and Wolfowitz (1951), Elton and Hill (1987),
Gouweleeuw (1991), Halmos (1948), Karlin (1953), Lindenstrauss (1966),
Margolies (1978)); that of Lindenstrauss (1966) based on the Krein-Milman
Theorem being perhaps the shortest, and that of Artstein (1990) perhaps
the most elementary. Since 0 = p(@) and 1 = (1,1,...,1) = pu(Q) are in the
range of u, Lyapounov’s theorem immediately guarantees that if the mea-
sures are all nonatomic, measurable bisecting sets (1) and fair divisions ((4)
with equality) always exist; a little extra effort yields (6) (also with equality).

In non-probabilistic applications, the convexity theorem has had wide-
spread application (see Akemann and Anderson (1990)) in combinatorics,
control theory (to prove the basic bang-bang principle; LaSalle (1960)) dif-
ferential equations, economics, functional analysis, graph theory, and logic.
Another curious probabilistic implication of the convexity theorem appar-
ently first obtained by Blackwell (1951b) is: given any finite collection of
continuous (Borel) probability distributions on the real line, there is a sub-
o-algebra G of the Borels with the property that, restricted to G, those
measures are identical non-atomic probability measures.

A generalization of Lyapounov’s convexity theorem due to Dvoretzky,
Wald, and Wolfowitz (1951) (see also Dubins and Spanier (1961)) which is
particularly useful in the present setting is the following:

(8) if p1,...,pn are nonatomic, then for each k,
{(ui(Aj))}‘zll;:l : (A;)¥ is a measurable k-partition of Q}
is a compact and convex subset of n X k real matrices.

The proof of (8) is based upon Lyapounov’s theorem and an idea of
stringing together measures attributed to Blackwell (1951a). Application of
(8) yields an affirmative solution to R. A. Fisher’s “Problem of the Nile”
(1936) for nonatomic measures pi,...,uUn; namely, the existence for each
natural number k of a measurable k—partition (A;)¥ satisfying

pi(Aj) =1/kforall i < nandall j <k,

and more generally, for each k and each set of positive numbers ay,...,ax
with 3" a; = 1, a k-partition satisfying p;(A;) = o; for all ¢ < n and all
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j < k. Some information concerning the minimal number of “cuts” required
to obtain such a partition (in the case k = n; a; = 1/k) is contained in
Legut (1991) and in Stromquist and Woodall (1985); Legut (1991) gives a
qualitative characterization of the partitions for continuous measures.

The “closed” conclusion of Lyapounov’s theorem holds even if the mea-
sures have atoms, but the “convexity” conclusion fails in general. On the
other hand, if a bound on the maximum atom size is known, then the follow-
ing generalization by Elton and Hill (1987) of the convexity theorem gives
a bound on how non—convex the range may be; intuitively, if the atoms are
all very small, the range of p will be close to convex:

(9) if p1,...,pn each have atoms at most a@ > 0, then the Hausdorff dis-
tance from the range p to its convex hull is at most an/2.

(Recall that the range of p is the subset of R™ given by {p(A) : A € F},
and the Hausdorff distance between S; C Sz is d(51,52) =
SUP,¢s, infyes, |2 - 9l.)

Thus (9) affords approximate solutions to the bisection and fair—division
problems (as well as the Problem of the Nile), in the case of measures with
atoms no bigger than a. For example, it implies that if p;,uo,us each
have atoms no larger than 1/100, then there is an “almost bisecting” set A
satisfying 97/200 < p;(A) < 103/200 for all i < 3.

The convexity conclusion of Lyapounov’s theorem may fail if the number
of measures is infinite (Feller (1938)). If the hypothesis of countable addi-
tivity is weakened to finite additivity, the convexity conclusion still holds
(Margolies (1978), Armstrong and Prikry (1981)).

5. Superfairness Inequalities

If py,...,pn are identical measures, then any partition (A;)} satisfying
the fairness inequality (4) necessarily holds with equality for all z. On the
other hand,

(10) if p1,...,pn are nonatomic and p; # p; for some ¢ # j, then there is a
measurable partition (A;)} of Q satisfying pi(A4;) > 1/n for all ¢ < n.

The result (10) was apparently first stated by Knaster and Steinhaus
(1953), proved by Urbanik (1955) for the case the measures all have the same
null sets, and proved independently by Dubins and Spanier (1961) for the
general nonatomic case. Although both these proofs used Lyapounov’s Con-
vexity Theorem (note that the strict inequality conclusion > 1/n requires
a much more subtle argument than the weak inequality > 1/n), Woodall
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(1980) has modified Fink’s (1964) fair-division algorithm to yield an al-
gorithm to generate the superfair partition appearing in (10). Woodall’s
algorithm, however, requires more information than just u; # p; for some
¢ # j; it requires knowledge of a set A, real numbers @ # (3, and exact
indices ¢ and j satisfying p;(A) = a # 8 = p;(A).

Woodall’s algorithm proving (10) does not give any bound strictly greater
than 1/n, but such bounds are possible if the total masses of the supremum
or infimum of the u;’s are known. (Here \7 pi is the smallest measure

1=1

n
dominating each p;, and A p; is the largest measure dominated by each p;;
=1
it is an easy exercise to show that such measures always exist.) The superfair

inequality of Elton, Hill and Kertz (1986)

(11) if py,..., pn are nonatomic, then there is a measurable partition (A4;)}
of O satisfying p;(A4;) > (n — M + 1)7!, where M is the total mass of
n
V i,
=1

is best possible, and improves (10) since M > 1, with equality if and only
if g1 = ... = pn. The proof in Elton, Hill and Kertz (1986) is partly
constructive, and Legut (1988) contains an easy nonconstructive proof based
on Lyapounov’s convexity theorem. Using the convexity theorem and an
“inversion principle,” an analog of (11) for the infimum was obtained by Hill

(1987b):

(12) if pg,...,Hn are nonatomic, then there exists a measurable partition
(A;)7 of Q satisfying ui(A;) > (n + m — 1)71, where m is the total
mass of K i

=1

The bound in (12) is also best possible, and improves (10) since m < 1,
with equality if and only if py = ... = p,. If n = 2, (11) and (12) are
equivalent since m + M = 2, but for n > 2 neither (11) nor (12) implies the
other.

The superfairness inequality (10) can also be generalized in another di-
rection. If {a;}} are nonnegative numbers with a; + ...+ a, = 1, then the
same hypothesis as in (10) guarantees the existence of measurable partition
(A;)} of Q satisfying pi(A;) > a; for all ¢ < n (cf. Dubins and Spanier
(1961)). The weights {o;} can be viewed in the cake—cutting framework as
representing non—uniform shares to which each participant is entitled and in
the hypotheses—testing framework as non—uniform loss functions.
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6. Inequalities in Hypotheses Testing

In the classification problem setting, using decision rule (partition) (A;)}
against gy, ..., U, results in a maximum expected risk of max;<, P(X ¢ A; |
dist(X) = p;), and the objective is to minimize this risk. That is, a partition
(A;)7T of Q is sought which will attain the minimaz risk

R(p) = inf{m<ax P(X ¢ A; | dist(X) = p;) : (A;)} is an F—partition of Q}.

Since infmax P(X ¢ A; | distX = p;) = infmax(l — pi(4:)) = 1 -
sup min p;(A4;), it follows that R(p) = 1 — max{min;<, pi(A;) : (4:)7 is an
F—partition of 2}, so the fairness and superfairness inequalities above can
all be translated immediately into minimax risk inequalities. For example,
the analog of (11) (cf. Elton, Hill and Kertz (1986)) is

(13) if p1,...,H, are nonatomic, then the minimax risk R satisfies n=1(n —
M) < R(p) < (n =M +1)"}(n — M), where M is the total mass of

V pi
=1

Both bounds in (13) are sharp (the lower bound is easy, and the upper
bound follows from (11)), and are attained.

In a similar application of the convexity theorem to the classification
problem, Dvoretzky, Wald, and Wolfowitz (1951) showed that if p1,...,un
are nonatomic, then given any randomized decision function and loss func-
tions L;; there exists a non-randomized decision function (i.e., partition)
with exactly the same expected risks for each 1.

In a special case of the classification problem called the location—
parameter problem, @ = R! and the measures y; are translates of one an-
other (for example p; is N(a;,1) for each 7), and the classification problem
is now that of guessing which parameter was underlying the observation
X. Based on concentration parameters of the (location-parameter) distri-
butions, sharp bounds for the minimax risk were obtained by Hill and Tong
(1989) using the convexity theorem. For example, letting p(u;,d) denote the
tail-d concentration of py (see Hill and Tong (1989)),

(14) if pq is continuous and p;(A) = pi(A — (1 — 1)d) for all A and 7 =
1,...,n, then R(w) < (T3 ¢') / (T34 ¢/, where g = 1— p(p1, d).
Moreover this bound is best possible and is attained for all », all d and
all ¢ < 1.

And, letting A(p,d) denote the Levy d-concentration sup,, u([z,z +d]) of
M,
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(15) if py is continuous and p2(A) = p1(A—d) for all A, then there is a test
for testing Hy : dist(X) = py versus Hj : dist(X) = u, which satifies

max{e,} < (1-2)/(2 - A)

(where o and § are the type I and type II errors, respectively, and
A = A(p1,d).) Moreover, this bound is attained for all d and all \.

Again, a key element in the proof of (15) is the convexity theorem; Legut
and Wilczynski (1991) have found improvements of (14) using a similar ar-
gument.

The convexity theorem was also used by Hill (1987a) to establish a pro-
portionality principle for partitioning problems, which essentially says that in
a general class of partitioning problems, the worst case is when the measures
are proportional. One corollary of that principle related to the classification
problem is

(16) if X,,Xs,...,X, are independent continuous random variables on
(92, F, P), then for each positive integer £ < n and each set of k dis-
tinct integers K = {1 < ¢; < ... < iy < n}, there is a real Borel set B
satisfying

n n

k _ n—k
P(X,-eBifandonlyifieK)Z(k) (" k) :

and this bound is best possible.

7. Partitioning Inequalities in Optimal-Stopping Theory

The classical problem in optimal-stopping theory is: given a sequence
of integrable random variables X = (X3, X3,...,X,) on (,F,P), find a
stopping time ¢ which maximizes FX,;. Here the stopping times are required
to be adapted to an increasing filtration of o—algebras 73 C F, C ... C
F. C F, where typically F; is the o-algebra o(Xy,...,X;) generated by
X1,...,Xj. In other words, a stopping time ¢ corresponds to an n—partition
(A7 of Q satisfying A; € F; for each j < 1; the correspondence is simply
{t = j} = Aj. Thus the set II of allowable partitions of {2 for optimal
stopping is more restricted, by these o—algebra constraints, than for the
above fair—division problems. Still, many of the convexity tools apply in
optimal stopping, where for example it was shown by Hill and Pestien (1983)
using Lyapounov’s theorem and an idea of Blackwell (1951a) that even in
a finitely additive setting, the function ¢ — EX; has convex range on the
nonatomic components of the distributions.
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A useful analog to the Lyapounov convexity result for optimal stopping
is (Hill and Kennedy (1990))

(17) if X3,...,X, are integrable random variables on (Q,F, P), and X; is
continuous, then the stopping time range of X

{(/ Xl,...,/ Xn) : t is a stopping time for X}
t=1 t=n

is a closed convex subset of IR™.

With no restrictions on X;, the stopping time range may fail to be con-
vex, although the randomized-stopping rule range is always convex. Note
the contrast between (17), where the nonatomic assumption is only required
for the first distribution, and (5), where nonatomicity is required for all but
one of the distributions.

Using (17), the separating hyperplane theorem and the classical prophet
inequality of Krengel and Sucheston (1978), the following sharp minimax
partitioning inequality (18) in a prophet problem (optimal stopping) setting
was proved in Hill and Kennedy (1990). Here 7 is the set of stopping
times for Xi,...,X,, and § is the set of stopping functions which are F,
measurable, that is, s € S has the property that the decision to stop at time
j may depend on the whole sequence Xj,..., X, as opposed to just the first
j variables. In this sense, a player allowed to use stopping times from S
is like a prophet, in that he can use information about future variables to

decide when to stop (cf. Hill and Kennedy (1990) for the formal definition
of §).

(18) ¥ X;,X3,...,X, are integrable nonnegative random variables on
(R, F, P) and X; is continuous, then

sup min X; < 2sup min X,
seES * s=1 teT ¢ t=1

and the bound 2 is best possible. If X; is not continuous, the inequality
may fail, but does hold (and is best possible) if 7 is replaced with the
collection of randomized stopping times.

A probabilistic interpretation of (18) is that if the objective is to max-
imize the minimum expected reward of stopping at ¢ = 1,...,n then a
prophet (or player with complete foresight) may never do better than twice
that of an ordinary player restricted to using non-anticipatory stopping
times. The convexity result (17) is also used in Hill and Kennedy (1990)
to prove a stopping time analog of the partitioning principle in Hill (1988b);
typical corollaries of which are (6) and
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(19) if Xy,...,X, are integrable nonnegative random variables on (2, F, P),
then there is a randomized stopping time ¢ satisfying

n

H _Xi > n_nﬁEXia

i=17/t=t i=1

and this bound is best possible.

8. Open Problems

The main purpose of this section is to record a number of open problems
related to the partitioning inequalities mentioned above.

ProBLEM 1. Find a finite algorithm for generating a hyperplane median
guaranteed by (3) for general distributions.

PRrOBLEM 2. Find an efficient algorithm for generating a hyperplane median
based on a finite set of data points. (If there are k n—dimensional data points
in R™, then it is easy to see that at least one of the (:) hyperplanes will be
a median, but checking all possible hyperplanes is certainly not optimal.)

The algorithms of Steinhaus, Banach and Knaster and of Fink guarantee
a fair solution (i.e., p;(A;) > 1/n for all 7), but do not guarantee a first-
choice solution in which each participant gets the piece he values most highly,
i.e., satisfying

(20) pi(Ai) > pi(A;) foralli<nand j<n.

Of course convexity (e.g., (8)) guarantees the existence of a partition
satisfying pi(A;) = 1/n for all ¢ < n and all j < n (and hence satisfying
(20)) but Gamow and Stern (1958) raised the question of finding an algorithm
generating a first—choice solution. Stromquist (1980) and Woodall (1980)
independently found an algorithm for n = 3.

ProBLEM 3. Find (or demonstrate non—existence of) a finite algorithm
yielding a first—choice partition (20) for n > 4.

PrOBLEM 4. Find the best possible inequality generalizing (6) and (7),
that is, find the largest constant k = k(n,a,||]|,-..,]||en]]) so that if
K1, .., have atoms at most a, then there is a partition (A4;)} of Q satis-
fying min; p;(A;) > k.

PRrROBLEM 5. Find necessary and sufficient geometric conditions on a set S C
R"™ so that S is the range of a nonatomic vector (probability) measure. (By



128 Theodore P. Hill

Lyapounov’s theorem, S must be convex and compact; by general principles,
S must be centrally symmetric, contain the origin, and lie in the positive
orthant. For n = 2, these five conditions are also sufficient, but they are not
sufficient for n > 2. Bolker (1969, 1971) attributes this question to Blaschke,
and proves non—geometric characterizations.)

PRrOBLEM 6. Find necessary and sufficient conditions on p = (g1,...,4n)
so that the range of p is convex. (By Lyapounov’s theorem, nonatomicity
of the {u;} suffices, but even for n = 1 it is not necessary, as can be seen
by looking at a purely atomic measure with atoms of size 51,; for all £ > 1.
Gouweleeuw (1991) has partial results in this direction.)

ProBLEM 7. Find natural topological and geometric generalizations of the
convexity theorem; for example, if 2 is a polyhedron in IR", is the range of
nonatomic measures over subpolyhedra convex? What about open simply
connected sets? (The problem seems to be that taking limits is not always
possible here; the limit of polygons need not be a polygon, nor must the limit
of connected sets be connected. Approximate convexity is known in some
cases, such as the fair-border results in Hill (1983) and Beck (1987), and
Samuelson (1980) has a geometric fair-division scheme for coastal water-
ways. Note that if  is a convex subset of R", the sliding—knife fair-division
algorithm, as well as algorithms of Stromquist (1980) and Woodall (1980)
generate partitions consisting of convex pieces. Gardner’s problem (1978) is
purely geometric.)

ProBLEM 8. Find the best possible constant in the generalization of Lya-
pounov’s theorem to measures with atoms (9). (The bound an/2 is not
sharp for small n, but is known to be of the correct order in n; the best

possible bound is at least n/8 for general n and at least n/4 if n is a power
of 2 (Elton and Hill (1987).)

PrOBLEM 9. Find the best possible bound generalizing both superfairness
inequalities (11) and (12); that is, find the largest k = k(n, m, M) depending
on the number of measures n, and the masses m and M of the infimum and
supremum, respectively, so that if y;,...,u, are nonatomic with || Vv p;|| =
M and || A pi|| = m, then there is a partition (A;)} satisfying p;(4;) >
k(n,m,M).

ProBLEM 10. Find finite algorithms for generating the superfair partitions
guaranteed by (11) and (12).

PROBLEM 11. Prove (or give a counterexample) that the minimax risk result
(14) holds if p is replaced by the Levy concentration A.

PROBLEM 12. For a general class of problems, find a proportionality prin-
ciple for general measures (the proportionality principle in Hill (1988b) was
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for nonatomic measures, but in many partitioning problems for general mea-
sures (e.g., Hill (1987a)), the worst case is also known to be when all the
measures are proportional, i.e., equal, in the case of probability measures. A
basic superfairness property generalizing (10) should hold.)
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