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ABSTRACT

During a study of the characteristics of the Maximum Likelihood Es-
timator (MLE) method of image reconstruction from Positron Emis-
sion Tomography (PET) data, we have found that the requirement
that the reconstructed image, if it were a source, could have gener-
ated the original data imposes the stopping of the iterative procedure
at some point. This requirement appears to be in contradiction with
the concept of a maximum likelihood estimator until one realizes that
maximizing the likelihood results in reaching for the top of the mea-
surement probability distribution P(g\f) in Bayes' formula:

P(f\g) = P(9\f)P(f)/P(g)

where the results measurement vector g can be described by g = Hf+
n, with / being a source, H the response matrix of the measurement
system and n the noise vector in the measurement.

From a Bayesian point of view, we should maximize the Maximum
a Posteriori Probability (MAP) p(/|<7), i.e., the probability that the
source be / given a measurement g, and for that purpose one needs
to have the a priori source distribution P(f), which is not usually
available with any degree of reliability.

The use of the stopping rule does not reach for the MAP solution but
it uses some important physical prior information: it requires that
the iterations stop as soon as the image obtained has a characteristic
that we call "feasibility". We define a feasible image as one that could
have given the original data by the physical process that governs the
measurement.

We show that MLE reconstructions started from a uniform image field
pass through a region of feasibility in which the images represent a
good compromise between sharpness and smooth regions of high ac-
tivity, without the "noise artifact" having yet set in. The shape and
characteristics of the region of feasibility are described and implica-
tions for future work are described.
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1. Introduction

As part of the research program on cancer therapy with heavy ion radiation, it
has become important to ascertain the penetration distance of accelerated heavy ion
beams in the human body with accuracies on the order of 1 mm. It is one important
characteristic of those accelerated ions that their cell destructive power is concentrated
in the last few mm of their track. A well placed radiation dose in a small, inoperable
tumor can result in its eradication with a tolerable perturbation to surrounding tissues.
An error in the estimation of the energy absorbing power of the tissues that the beam
must traverse in order to arrive at the target can, however, result in serious damage
to a patient if a vital organ or structure is in the vicinity of the target volume. The
calculation of absorbing power is normally done by converting the approximate tissue
density information obtained from X-ray CT scans to electron density and it is known
that the process can result in combined errors of 3 to 5% over pathlengths of 20 cm, for
example.

Fortunately, it is possible to inject into patients accelerated ions that decay by
positron emission, like Ne-19, C-10 and others, so that the penetration distance of the
ions in the patient can be measured by detecting the coincidence gamma-rays resulting
from the positron annihilations, much like in the case of Positron Emission Tomogra-
phy (PET). Proper registration by X-radiographs in three dimensions between patient
position and a measurement gamma-ray camera can result in the determination of that
penetration distance with the desired accuracy.

The process of image restoration from positron emitting ions injected into the hu-
man body by a high energy accelerator has been under study at Lawrence Berkeley
Laboratory for a number of years [1], Figure 1 shows an anesthetized dog placed be-
tween the two banks of detectors of a Positron Emitter Beam Analyzer (PEBA) camera
(solid cubes above and below the animal) during early verification experiments. Each
detector bank consists of 64 Bismuth Germanate scintillation crystals with individual
photomultiplier tubes that transform the energy of the gamma rays detected to electri-
cal signals. The arrangement of the crystals is shown in Figure 2. The skewing between
rows and 90° rotation between banks results in a sampling distance at the central image
plane four times smaller than the center-to-center detector distance.

Since the plane of gamma ray emission is defined by the beam injection geome-
try, the image restoration problem is equivalent to time-of-flight PET with near perfect
knowledge of the point of emission in the direction perpendicular to the detector planes.
The function of the image restoration algorithm is then limited to deblurring and cor-
recting for the different sensitivities of the camera at different points in the image plane.
Because of the high spatial frequency sampling and the non-tomographic nature of the
problem, the matrix that characterizes the linear system has a very low condition num-
ber and a pseudo-in verse restoration method can be used.

In spite of the success of the pseudo-inverse restoration method, we were motivated
to attempt a Maximum Likelihood Estimator (MLE) reconstruction on the PEBA data
using the EM algorithm first developed for PET by Shepp and Vardi [2] for two rea-
sons: (1) we deal with a very small number of counts, so that the data exhibit strong
Poisson characteristics, and (2) early tests showed that MLE reconstructions were very
robust to even violations of the sampling theorem, so that we thought it possible to
obtain improved resolution by using pixels smaller than those tolerated by the linear
reconstruction method.
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Figure 1. Photograph of PEBA camera in.position at the BEVALAC treatment
room for an experiment with a live dog. A beam collimator appears at left and an
X-ray plate holder with cross-hairs for accurate positioning is also shown.

Our findings [3] were disappointing. Figure 3a shows a pseudo-inverse PEBA image
for a flat beam of Ne-19 ions that stopped inside a plastic cylinder within the field of view
of the PEBA camera. One portion of the beam was obstructed by a certain thickness
of calcium compound, generating the visible step in the image. Figures 3b through f
show the MLE reconstructions for 3, 9, 21, 100 and 200 iterations. As the number
of iterations grows we observe that we have called "image breakup", also described as
"noise artifact" by Snyder and Miller [4]. It became evident that, if we were to obtain
some benefit from the MLE reconstructions, we should investigate the nature of the
image breakup and avoid it by a well understood procedure.

2. A physicist's critical look at maximum likelihood

It is evident that, in the absence of any other information, the best estimate of
the mean of a random variable that can be obtained from a single measurement of
that variable is the result of the measurement itself. Maximum Likelihood image re-
construction for PET uses that idea for the purpose of making an estimate of an image
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Figure 2. Schematic description of the two 64-detector arrays of the PEBA camera.
The image plane is equidistant from the two detector banks and parallel to them.
The arrangement results in a sampling distance of s/4 for the image plane, where
s is the detector center-to-center spacing.

λ(l), λ(2),. . . , λ(B) whose projection into detector-pair (tube) data space is given by:

B

(1)
6=1

The transition matrix values p(b, d) are the probabilities that a gamma-ray pair
emitted from pixel b will be detected in tube d. The notation introduced by Shepp and
Vardi [2] is used throughout this paper. Maximum Likelihood obtains an estimate of
that image by maximizing the likelihood function:

L(λ) = P(n*\\) = (2)

in which n*(l), n*(2),..., n*(D) are the results of a single measurement of each of the
independent tube counts. It is evident from looking at Eq.2 that the maximum of that
function will occur when the values of λ*(cf) are as close as possible to n*(d). Because
of the nature of the radioactive disintegration process, the data n*(d) are not going
to be an absolutely accurate representation of the probabilities p(bf d); i.e., there is
Poisson noise in the data elements. The maximum of L will result in a varying degree of
"reconciliation" between the measurement data n* and resulting image projection λ*.

Early in our study of the MLE, first in the PEBA geometry and later with a true
PET configuration (ECAT-IΠ 512-detector ring at U.C.L.A. [5]), we realized that the
onset of the image breakup phenomenon occurred when the estimate λ* and the data
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Figure 3. Reconstructed images from a line source obtained by the injection of a
beam of Ne-19 into a plastic cylinder, with a partial obstruction of a Ca compound,
causing a step, (a) image obtained by pseudo-in verse method; (b) MLE, 3 itera-
tions; (c) MLE, 9 iterations; (d) MLE5 21 iterations; (e) MLE, 100 iterations; (f)
MLE, 200 iterations.

n* for tubes with high number of counts were being reconciled rather closely [3, β, 7].
The nature of Eq.2 is such that tubes with low counts are reconciled very early in the
iterative process (notice that \dL/dλ*\ is higher at low values of n* than at high values
for equal errors |λ* — n*|), leaving the detailed reconciliation of tubes with high counts
for the later iterations.

It then appeared fair to ask the question: Is it physically correct that the estimates
λ* should become so close to the tube data n*Ί A simple hypothetical example will
help clarify the nature of the question.

Consider Figure 4a to be a graph of one projection from a simple PET measurement.
The true, unmeasurable average of counts in each tube is represented by the solid line
with squares. One standard deviation is shown by the interval between the two solid
lines. The crosses indicate one realization of the Poisson processes with the means
indicated in each tube. They form a set of noisy data that can result from one single
measurement by a PET. instrument.

An MLE reconstruction, when carried to a large number of iterations, will try to
find an image whose projection is as close as possible to the initial data, as shown
hypothetically by the solid line in Figure 4b. We then ask the question: Could an
image whose projection is shown in Figure 4b have generated the original noisy data by



214 Llacer & Veklerov - XVI

Example of Projection Values

a Exact Source
Tub* Number

Δ Projection doto

70 -

160 -

150 -

140 -

130 -

120 -

110 -

100 -

90 -

80 -

70 -

A

Λ Λ^λ /
Λ r ° °
1 \ί

f a a

O Projection data
Tube Number

Imoge projection

00 -

170 -

160 -

150 -

140 -

130 -

120 -

110 -

100 -

90 -

80 -1

70 -

D

_ — • ^ ^ α o

o o
° α

u \

O Projection doto
Tube Number

— Image projection

XBL MT-J47S

Figure 4. Hypothetical example of the process of data generation and image re-
construction in projection data space, illustrating the question asked of whether a
reconstruction is physically consistent with the measured data.

a Poisson process?

If we calculate the mean standard error between the solid line of Figure 4b and
the corresponding measurement points, we find that number to be - 1 count for this
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hypothetical experiment. For means in the order of 100 counts and a Poisson process,
that mean standard error should be in the vicinity of 10 counts. We would conclude
that the image that gave rise to the projection shown in Figure 4b cannot have caused
the experimental data, although it had a high likelihood.

On the other hand, an image whose projection is shown by the solid line of Figure
4c will be of lower likelihood, but would be closer to the true image and have a mean
standard error of ~ 10 counts, in agreement with the physical process that generated
the data. It is the function of a reconstruction algorithm to obtain that line from the
available experimental points.

3. The concept of image feasibility

After having asked a physically meaningful question, we have proceeded to define
a feasible image as an image that, if it were a true radiation field in the image plane,
could have caused the experimental data obtained by the physical process that governs
the data acquisition mechanism.

Definition. The image λ(l),λ(2),... ,λ(J5) is said to be a feasible image with re-
spect to data n*(l), n*(2),... ,n*(D) if and only if the statistical hypothesis that n*(l),
n*(2),... ,n*(£)) are a Poisson sample with the means λ*(l), λ*(2),... , λ*(£)), respec-
tively, can be accepted (not rejected).

We can then ask: How large is the set of feasible images and where are they with
respect to the maximum likelihood image?

Let us consider the measurement data (projection) space and imagine that any
set of projections λ*(d), d = 1,..., D is achievable; that is, it can be obtained from a
distribution of intensities in the pixel space (we will reexamine this assumption below). If
any point is achievable, then the maximum likelihood solution is such that λ*(d) = n*(d)
for a l l d = 1,...,D.

We assert that all feasible images belong to a volume resembling an ellipsoidal shell
that surrounds the point with λ*(cf) = n*(d). Indeed, if an image is feasible, the mean
value of the quantity:

2

equals 1 for the Poisson distribution, because the numerator is the variance, while the
denominator is the mean. Therefore, for a feasible image:

All points satisfying (3) form the space between two ellipsoid-like surfaces. They would
be exact ellipsoids if the denominators were constants. The parameter ε reflects the
expectation that the region of feasibility has a certain width.

For the case of any set of projections being achievable, Figure 5 shows ellipses of
equal likelihood centered at the point of maximum likelihood, which for that case is the
same as the measurement vector n*(l) = 10, n*(2) = 20. It also shows the region of
feasibility for the simple case of D = 2. A value ε = 0.1 was used in the example. The
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measurement point n* is enclosed by the region of feasibility (3) and, in general, the
maximum likelihood point can be expected to be also enclosed. It is possible to show,
however, that in very pathological cases the latter may not be true.

CAUSALITY
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0.00 2.00 4.00 8.00 8.00 10.00 14.00 18.00 18.00 20.00
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Figure 5. Equal likelihood ellipses and feasibility shell with achievable regions for
a case with two-dimensional projection data space.

A closer look at the reasoning above shows that while all feasible images must
belong to the region (3), not all points of the region correspond to a feasible image.
This is because (3) was derived using only the property of the Poisson distribution that
its variance equals its mean. That condition is not sufficient for a distribution to be
Poisson. Hence, the true feasible images in the sense of the definition above form subset
of the region (3) which contains some gaps. The gaps are large, as can be deduced
from the following reasoning: A point may satisfy (3) even if n*(d) > X*(d) for all
d = 1,..., D. But n*{d) are measurements and λ*(d) are their means; therefore some
n*(d) should be larger than λ*(d), while others should be smaller. The simple sign test
[8] shows that the hypothesis that λ*(d) are the means of n*(d) should be rejected if for
D = 1000, for example, there are less than 450 measurements below their averages or if
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there are less than 450 measurements above their averages. This test eliminates most
of the points in the region (3).

Now let us return to the assumption that all points in the projection space are
achievable. If we consider that the matrix p(b,d) maps a ^-dimensional space of pixel
intensities into a D-dimensional space of measurements, D being typically greater than
By it is clear that not all sets of projections λ*(d) are achievable from a distribution of
intensities in the pixels. This fact further limits the region of feasibility (3) by placing
holes into the remaining parts of the region. It should be pointed out, however, that the
trajectory of likelihood in projection space obtained during the iterative reconstruction
process, if it crosses the feasibility region, will escape those holes, since the result of the
iterations is an image whose projections have to be in the solid part of the feasibility
region.

Figure 5 shows hypothetical achievable regions and a trajectory of likelihood points
for a reconstruction starting from the arbitrary vector λ*(l) = λ*(2) = 13. The trajec-
tory passes through the feasible region and continues towards the maximum likelihood.

On a historical note, the idea of feasibility has been known in a different context
in radio astronomy prior to our present work. Thus, it was used by Skilling and Bryan
[9] in 1984. However, Skilling and Bryan considered Gaussian rather than Poisson data.
As a result, their feasibility region is a regular ellipsoid rather than a shell, as it is
in our case. More importantly, Skilling and Bryan's definition of feasibility is based
on the Gaussian version of Eq. 3 which, as we know, provides only a necessary but
not sufficient condition for causality. Several variations on the same theme in case of
Gaussian data have been reported by other authors working in radio astronomy; see
Abies [10], Gull and Daniels [11] and Narayan and Nityananda [12]. The fact that not
any point of the Gaussian version of Eq. 3 statistically fits the data was noted by Reiter
and Pfleiderer [13].

4. Limited test for image feasibility

In order to answer the question of whether the image resulting from a particular
iteration of the MLE procedure, or any other reconstruction method for that matter,
can be physically meaningful in the sense indicated above, we have developed a limited
test for feasibility. We test collectively whether each of the projection data points n*(d)
can be an instance of a Poisson variable with the corresponding λ*(d) as mean. We
assume independence between each and all the λ*(d) and n*(d); i.e., we disregard the
fact that the tested λ*(d) have been obtained from the ensemble of n*(d) by a specific
iterative reconstruction method. With this simplifying assumption it is possible to
define a simple hypothesis test with a well defined number of degrees of freedom and,
consequently, with known confidence levels for our results, regardless of the method of
reconstruction. The test also contains a vastly reduced number of degrees of freedom
when compared to the fitting problem and is, therefore, much less strict than a likelihood
ratio test, for example. Full details of the development of the test are given by Veklerov
and Llacer [14]. We only summarize here the main ideas.

The first step of the test consists of scaling the differences X*(d) — n*(d) for each
data pair to a new variable x which is uniformly distributed between 0 and 1 if n*(d) is
a realization of a Poisson process with mean λ*(d). Next, a histogram with N bins is
generated with the values x for all the data pairs. We conclude by testing the hypothesis
that x is uniformly distributed between 0 and 1 by Pearson's procedure with N — 1
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degrees of freedom. The histogram testing function H is defined as:
N hi - D/N)3

D/N (4)

where ft, is the frequency of x falling in bin i and D/N is the expected frequency if x
is uniformly distributed.

5. Experimental results

We have carried out several groups of MLE reconstruction experiments with com-
puter generated data and with real data from the ECAT-III tomograph of U.C.L.A. [5]
for the experiments with computer generated data we first used the phantom shown
in Figure 6, with the relative amounts of radioactivity indicated. The generation of
projection data was carried out in two steps: (1) generation of the "source" image by
a random process based on the probabilities indicated in Figure 6 with a finite number
of counts, and (2) generation of the projection data by taking each count in the source
image and using a second random process based on the transition probabilities p(6, d)
to determine which detector tube would receive the count. The transition matrix used
both in the data generation and in the reconstruction was calculated with the param-
eters of the ECAT-III tomograph by the prescription of Shepp and Vardi [2]. All the
reconstruction experiments begin with a uniform image as the first guess.

.91

.•IS

. 0 1

. 0 5
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Figure 6. Source image of a "liver and heart" phantom with 32 million counts
obtained by a random process with probabilities corresponding to the relative ac-
tivities indicated. Image discretized in 128 x 128 pixels in all sources and recon-
structions.
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Figure 7 shows cuts through the source image, a filtered back-projection recon-
struction (Shepp-Logan filter) and MLE reconstructions at 9, 32 and 200 iterations for
the case with 2 million (2M) counts in the source image. Figure 8 shows the values of
the hypothesis testing function H of Eq. 3 obtained during the iterative MLE process
for the 2M case, as well as those for 8 million (8M) and 32 million (32M) counts. The
horizontal lines correspond to critical values of 0.1 and 0.01 for the test. During the
early iterations the histograms of x are high at the extreme bins and low at the center,
indicating excessive distance between values of H the histograms are rather flat, while
at high number of iterations the histograms of x are bunched in the center, indicating
that the projection values λ* are too close to the data n* for the image being tested to
be causal.

The images with acceptable values of H (below ~ 40) invariably exhibit a good
compromise between sharpness and noise in the regions of high activity. The image
breakup phenomenon or noise artifact has not yet set in. It is evident from Figure 8
that images with more counts take more iterations to get to their acceptable range. The
final results are correspondingly better.

We have tested a second computer generated phantom with considerable more im-
age detail than the first one, mimicking in some way complex brain structures. Figure 9
shows a 2M source image, a filtered back-projection (Shepp-Logan filter) reconstruction
and MLE reconstruction results at 21, 32, 45 and 100 iterations. The results of the
hypothesis testing are shown in Figure 10, indicating the first acceptable images to be
in the vicinity of iteration 40. Indeed, the reconstructions of iterations 32 and 45 appear
adequately sharp and clean.

The reconstruction experiments with real PET data have presented some difficul-
ties: although the resulting images exhibited the expected behavior as the number of
iteration increased, the values of H never became low enough to lead to accepting the
images as feasible. A detailed investigation has shown us that the success of the fea-
sibility test, as presently implemented, is highly dependent on knowing the transition
matrix p(δ, d) with high accuracy. With real tomographs, this knowledge cannot be
expected and we have had to relax the hypothesis testing to include a parameter that
is proportional to the estimated error with which we know the values of p(b,d). We are
now preparing to report our new results [15].

6. The stopping rule and Bayesian reconstruction

At this point in the development of our ideas it is important to pause and attempt
to understand the meaning of using a rule that stops the estimation of an image before
the maximum of the likelihood estimator for that image is reached. We will be helped
in that understanding by considering Bayesian reconstruction.

First, we would like to point out that it appears self evident that an image presented
to a radiologist for a clinical evaluation should be feasible as defined above; i.e., it
should be possible for the image, if it were a true radiation source, to have generated
the projection data. We feel that a radiologist could not have confidence in the results
of a reconstruction if the contrary were true. Second, we have shown that an MLE
reconstruction, starting from a uniform field as a first image guess, passes through a
region of feasibility as the iterative process progresses towards maximum likelihood and
we have devised a limited test to detect the passage through that region of feasibility. If
the iterative process is allowed to continue past feasibility toward maximum likelihood,
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Figure 7. Cuts through source and reconstructed images, (a) source image with
2 million counts; (b) reconstruction by filtered back-projection (Shepp-Logan fil-
ter); (c) MLE reconstruction, 9 iterations; (d) MLE, 32 iterations; (e) MLE, 200
iterations.

the image becomes non-feasible and should be rejected.

There seems to be something wrong about using a reconstruction algorithm based
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Figure 8. Value of the hypothesis testing function H vs. iteration number for MLE
reconstructions of the source distribution of Figure 6. Curve (a) is for 2 million
counts in the source image; (b) 8 million; (c) 32 million counts. The line at a value
of 36.2 is the limit below which the probability of accepting an image when it should
be rejected is 0.1. The line at 27.2 is the corresponding limit for a probability of
0.01. The confidence levels are based on the assumption that projection data and
reconstructed images are independent of each other.

on maximizing the likelihood and stopping it before that likelihood is maximized. The
main objection is that the MLE is known to lead to a unique solution and stopping
before the maximum could result in images that are different depending on the starting
point.

The drawing of Figure 5, describing qualitatively the shape of the feasibility region,
appears closely related to that of Figure 11 (taken from Hanson [16]) describing a
Maximum a Posteriory (MAP) reconstruction, in which a solution is looked for that
maximizes the Bayes criterion:

P(f\9)=p(9\f)p(f)/P(9) (5)

for g = Hf -f n. For the imaging problem, / is an image, H is a mapping into the
measurement data space, n is the noise in the image and g is the result of a measurement.
In a Bayesian reconstruction we would look for the image / which has the maximum
probability given the data g\ i.e., we would try to maximize p(f\g). In order to do
that we need to maximize the product p(g\f) p(/) The MLE solution addresses the
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Figure 9. Left to right, top to bottom: source image with 2 million counts, filtered
back-projection (Shepp-Logan filter) and MLE reconstructions for 21, 32, 45 and
100 iterations, presented with 16 levels of gray. The "best" image is between
iterations 32 and 45, determined by the value of the hypothesis testing function H
in Figure 10.
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Figure 10. Hypothesis testing function for the reconstruction of the phantom of
Figure 1, with 2 million counts in the source.

maximization of p(g\f) only; i.e., it tries to maximize the probability of g being the data
that would result from a given image and invariably leads to an image in which Hf is
too close to g for acceptability in terms of the physical data generation process.

MEASUREMENT
PROBABILITY

DISTRIBUTION
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PROBABILITY
DISTRIBUTION

MAXIMUM
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Figure 11. Contour plots of the probability distributions associated with prior
information and the available measurements displayed as a function of two com-
ponents of the image projection vector, for Gaussian distributions. (From Hanson,
Ref. 16).
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The prior probability p(f) is difficult to obtain in a general way. We will mention
here five attempts at defining /?(/), without claiming completeness. Miller and Snyder
[4, 17], have used sieves as a method of regularizing the MLE iterative procedure, with
images that do not exhibit the noise artifact and with adequate sharpness. Geman
and McClure [18] use a prior that requires a certain degree of smoothness in image
subregions. Levitan and Herman [19] have used a smoothed, non-negative filtered back-
projection reconstructed image to require that the MLE reconstruction does not deviate
excessively from it. Smith, Barrett and Paxman [20] use the method of simulated
annealing to, in effect, define a certain p(f) that allows for a number of pixel counts
that do not maximize the likelihood function. Finally, Skilling and Gull [21] have shown
that, if one accepts three fundamental axioms, the prior p(f) has to be a measure of
the entropy in the image. Evidently, more work needs to be done in this area both by
evaluating the presently proposed prior probability functions in terms of image quality
and feasibility and by developing better priors, if needed.

The use of the stopping rule makes use of prior knowledge about the statistics that
govern the physical process of a tomographic measurement but does not incorporate
that knowledge into a prior probability p(f).

7. Conclusion

In this paper we have shown the motivation that we have had to study the behavior
of the MLE method of image reconstruction in emission tomography and described our
observations on its behavior. From a physicist's point of view, we have shown that
the MLE alone does not lead to acceptable images because its reconstructions violate
a physical principle, which we have called "feasibility". This principle is in the form
of a priori knowledge that does not lend itself to casting into a prior probability to
regularize the MLE reconstruction. Instead, we have used that knowledge to stop the
MLE iterative procedure as soon as the feasibility condition is successfully met. We feel
that, at this time, the use of the stopping rule may be the most economical (in terms of
computing time) and simplest way to use a statistically based reconstruction method in a
practical medical environment. Further study of the characteristics of images obtained
by the stopping rule starting from different initial estimates in comparison with the
presently proposed regularization methods will help clarify its role in practical emission
tomography.
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