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ABSTRACT

Bayesian inference techniques can be applied to hidden Markov mod-
els for drawing inference concerning many features of interest in the
unobserved signal. By resampling from the posterior of the signal con-
ditionally on the observation, optimal restoration can be performed
and local measures of variability can be found. The restoration es-
timate is qualitatively different from those of Iterative conditional
modes and simulated annealing. The restoration algorithm described
here is optimal with respect to a local loss function and consequently
has little known global characteristics. Specific problems of interest
in image analysis are studied in simple examples.
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1. Introduction

The recent interest in statistical imaging has to some extent focused on procedures
to re-estimate a signal from observation of a noisy reception thereof, Besag (1986) and
Geman and Geman (1984). In this paper we investigate a technique based on sampling
directly from the posterior distribution. These techniques are useful for both restoration
and inference for spatial features in the signal. Grenander (1981) suggested the inference
machine but this work has since received surprising little attention, we believe. Sampling
from the posterior distribution was mentioned in Geman and Geman (1984) and studied
in Marroquin, Mitter and Poggio (1987) in the context of restoration.

We believe that the method studied here is of particular interest when restoration
is of secondary interest or if analysis of residuals is desired. The local measure of
uncertainty of the restoration can be used to compare residuals, Haslett and Horgan

(1986, 1987).

The methods described here are applicable to most discrete models and many
models with continuous grey levels. The Gibbs sampler can be applied also for many
continuous Markov random fields, Andersen (1989) and Revuz (1975).

Although the special cases studied in this paper involve only spatially independent
noise more complicated degradation mechanisms can be accommodated by straight for-
ward generalizations. Geman and Geman (1984) give a much more general model for
which the results here are still valid. Line processes can be incorporated in several ways,
by letting the signal consist of two layers of Markov random fields or just treat the signal
as multidimensional, we shall not, however, venture into this.

1.1 The basis image models

We shall throughout this paper work in the following set up. Let T' C Z% be a
finite rectangular lattice, and let zr be an unobserved image on T we assume that
zp is a realization of a stationary discrete Markov random field X7, with respect to a
translational invariant neighborhood system; we avoid edge effects by thinking of T" as
wrapped around a torus in R%*!. The observation available is yr, and we assume that

p(Yr|Xr) = [] p(Y:lX0) (1.1)
teT

and furthermore we assume that the set of possible values of X; and Y; are A and B
respectively, where A and B are finite sets, the matrix U; = p(Y;|X;) is assumed to be
square and invertible.

For simplicity we also assume that the matrix U and the local conditional distribu-
tions of X7 are known; in practice this will of course usually not be the case, and we will
then need to estimate parameters on the basis of observing Yr, see Andersen (1988a,
1989), for further details. Adopting an empirical Bayes approach the prior distribution
for X7 is that of the Markov random field, inference for zr should thus be carried
out using the posterior distribution X7|Yr, and estimation of parameters for the prior
should be based on the marginal distribution p(Yr) of the observed image. Knowing
the matrix U means that the device through which we receive the signal is known.

The image models described above are usually chosen for their simplicity rather
than through realistic considerations of mechanisms generating the images. For more
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structured models an alternative was proposed by Grenander (1981) that allows for
locally highly specialized models.

2. Resampling methods for Markov random fields

Given a Markov random field the local conditional distributions are on the form

1
p(z:len,) = @) exp(z_\a ve(et;2H,)), (2.1)

where C; is the set of cliques with respect to the neighborhood system {H; : t € T'}, the
functions v, : A x A¥t — R are often called the clique potentials, a term taken from
statistical mechanics, where Markov random fields are known as Gibbs fields. z(zg,)
is the normalizing constant making the left hand side of (2.1) a genuine probability
distribution. One of the many niceties of Markov random fields is that replicates from
the distribution

p(zr) = %exp( > ve(zi;2m,)) (2.2)
cEC,

usually can be simulated using Metropolis algorithm:

1. Choose a starting value .'c5(19 ) , from the set of configurations AT.

2. Iteratively with n, pick a pixel ¢ at random (such that all pixels are visited

infinitely often) and let :c,(;_) = :c,_(;'__{?} and generate :::S") using (2.1).

It can be proved, by a Markov chain argument, that XS") is a recurrent Markov

chain with state space AT, The stable distribution of XS}' ), (as n — 00), exists and is
the Markov random field with local conditional distributions (2.1).

2.1 Local conditional distributions

As we argued in section 1 the relevant distribution for restoration of the observed
image yr is that of X7 |Yr, denoted here for convenience by p,..(zr); formally this may

be written as
p(yrlzr)p(zT) ’ (2.3)

p(yr)

where by the local conditional distributions of X conditional on Y7 are given by

pyr(zT) =

_ _ pyle)p(zilzn,)
Por(le) = 5 et pletlenn,) =

’
T,€

That is conditionally on Y7 the true signal is a Markov random field with non stationary
local conditional distributions given by (2.4). For models with spatially dependent noise,
p(yiler, yr- {1} = p(v|zH,, yu,, say, the posterior distribution is still a Markov random
field, only (2.4) involves more complicated components.
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2.2 Local optimality of resampling restoration schemes

Contrary to the restoration algorithms of simulated annealing and iterative condi-
tional modes the resampling restoration schemes typically will not produce a global or
local maximum posterior likelihood estimate. The optimality results we are to state and
prove here will be of definite subjective nature, such as minimum mean squared error,
minimum misclassification restoration etc. This, however, is also the key to the pixel
to pixel variation measure since we acquire more information about the distribution of
X7|Y7 than just a point estimate of the mode. By introduction of objective functions
and coupling of pixels we are in a position where we can make minimum cost decisions,
and for reasonably small blocks of pixels, B, say the full distribution of Xg|Yr can be
well approximated by simple Monte Carlo.

Definition 2.1. A structure identifier, F', say is a function from AT(= xT A;)— M,
te

where M is a metric space. O

The structure identifiers will play the role of statistics of interest in classical statis-
tics, such as sample averages, mean squared sample error, parameter estimators, shape
and size characteristics etc. Given a structure identifier, F', the resampling of images
form (2.3) facilitates approximation of the conditional distribution of F/(Xr)|Yr, that
is the a posterior distribution usually used for estimation and forecasting. Below we
define a special class of structure identifiers: The local objective functions.

Definition 2.2. A local objective function is a real valued additive structure identifier,
F', depending on z7, such that

For(2p) = z fr,o,(22)
€T

and
fre(z)=0, fiz(y) >0, forall z,y€ A, andt € T. a

With this definition in hand we are able to state and prove theorems of optimality for
the resampling estimation schemes.

Theorem 2.1. Let z3,...,z} be resampling replicates from (2.3) using Metropolis
algorithm as described above given a local objective function, defined by f : A2 — R
there exist functions ¢(*) : (AT)» — AT such that

B{Fx, (6"}, ..,33))} — min B{Fx, (4(Yr)} as n — o0

where the minimum is taken over all functions ¥ : AT — AT and the expectation is
over (Xr,Yr).

Proof. Note that

E{Fx, (¢")(a},...,2})} = E{E{Fx (¢") (a1, ..., 2}))[YT}}
=E{)_E{f, x, (6™ (},...,25))YT}}

teT
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where by it suffices to prove that
E{f,x, (671, 20)[Yr} — minE{f, x (4(vr))[¥r}, as n — co.
The right hand side is calculated by

> fie(@)p(z; X Y1) (2.5)
zeA

where ¥ minimizes (2.5). Since p;, the bootstrap empirical distribution function for X,
converges to p(.,X;|Yr) with probability one § minimizing

E ftz(ﬁ)ﬁt(z)
zeA

converges with probability one to ¥, where by the theorem follows, since A and B are
finite.

To appreciate the above theorem fully we turn to a few examples; let f; (y) =
1{z#y}, then the majority vote estimate (among the resampling replicates) converges
with probability one to the minimum mean misclassification estimate, as the number of
iterations per resampling replicate, and the number of bootstrap samples tend to infinity.
In the case where A and B are not finite, but complete metric spaces the theorem still
holds, added further assumptions for f and the local conditional distributions.

Corollary 2.1. Assuming that the Markov chain defined by Metropolis algorithm is
ergodic, i.e. that it has a unique stable distribution independent ofX(To). Let f; : A2 —
R be an objective function, such that f is convex and everywhere differentiable, then
there exist functions ¢ : (AT)" — AT such that

E{FXT (¢(n)(xI’ IAE) z;))} - rr}/}in E{FXT (¥(Yr))}, asn — oo,

where the minimum is taken over functions ¥ : AT — AT, and the mean is over
(Xr,Yr).

Proof. As above, only minimization of (2.5) is performed through differentiation. As

to conditions sufficient for the existence and uniqueness of the stable distribution for
the simulation Markov chain see Andersen (1989) and Revuz (1975). O

As a special case of corollary 2.1 we get a resampling approximation to the classical
two-filter and Kalman filter for times series models that are special cases of Markov
random fields on one dimensional lattices (Solo (1982) and Meinhold and Singpurvalla
(1983)), along with a natural generalization of these methods to no Gaussian cases and
spatial Gaussian and non Gaussian Markov random fields, see Andersen (1989), Ripley
(1981), Besag (1974, 1975) and Green, Jennison and Seheult (1985). For Gaussian
Markov random field models the mean squared error optimal restoration is identical to
the maximum posterior mode restoration.



6 Lars Smedegaard Andersen — I

Assume for instance that after obtaining the restored image special interest is fo-
cused on a region, B, say by resampling again an optimal estimate can be found for
zpg or any structure identifier thereof, with respect to local objective functions treat-
ing B as one single pixel; this can be carried out either marginally or conditionally on
X7_p = Zr_p, sampling from either Xg|Y7r or Xr|Y7 fixing Xr_p = Zr_p, respec-
tively. As B, the local region of interest grows larger, however, this becomes increasingly
computer time consuming for some choices of structure identifier.

Proposition 2.1. The local asymptotic measure of performance of the restoration:
Jim B{f:z,(Z.)|Yr}
is consistently estimated, but in general not unbiasedly, by

3 foe(@)Bi(z),
xGA

where p;(z) is the observed frequency of the event X; = z, among the resampling
replicates. O

In practise we need to choose the number of samples from X7|Yr = yr, and in
doing this we also set the internal precision of the stochastic approximation by Monte
Carlo. In general it is our belief that fewer samples of higher quality are preferable to
more samples of lesser quality, which in practice amounts to letting the local updating
procedure from Metropolis algorithm run longer and taking fewer samples. Using these
procedures, however, for simple structure identifiers does not require excessive computer
time.

Example 2.1. For restoration purposes local smoothing algorithms are known to
work very well for A categorical although local smoothing becomes less useful. We have
chosen the local conditional distributions such that

p(z: =i|zH,) _ _ ) . '
log {m} = o (n1(3) — n1(J)) + a2(n2(z) — n2(7)), (2.6)

where ny(7),7 = 1,2,3 is the number of pixels among the first four nearest neighbors
with pixel value “1”, ny(7) correspondingly is the number of pixels among the four second
nearest neighbors with pixel values “”. The error process is described by

_J1-p fy=2
p(ytlzt)_ {p if y, #fct .

Figure 2.1 (a), the original image was generated from (2.6) using 5 x 10° local up-
dates, and a; = 1.05,a2 = 0.90. Since T is wrapped around a torus, we have in
fact only three major connected patches. (b) is the corrupted image, p = 0.35, (c),
the minimum misclassification restoration using 200 resampling replicates and 5 x 10*
local updates per replicate shows 150 misclassifications, (d). Figure (e) shows this a
local variability measure, again picking out the interior boundaries very successfully
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- (f) shows this “estimated” interior boundary process overlaid the restored image.

a

3. Stochastic Inference

The practical inference problems of spatial statistics are many-sided and in image
analysis often highly context dependent—there are, however, basic problems in formalized
hypothesis testing since the hypothesis are not easily described in terms of the Markov
random fields models.

3.1 Examples

Example 3.1

Consider figure 3.1 below, (a) showing the original image, generated by the same
Markov random field as in example 2.2, super imposed on (a), in the smaller frame is
a black object drawn by hand. Figure 3.1 (b) shows the corrupted image: The original
image received through a symmetric noisy channel with 35 percent misclassified pixels.
In (c) is the restored image using the minimum misclassification estimation with 200
resampling replicates and 50,000 local updates per replicate; Lets assume that we were
interested in the posterior distribution of the area of B, the black object in the smaller
frame. In figures (d), (e) and (f) we have drawn up the approximated conditional
distributions of F1|Yr, F2|Yr and F3|Yr, respectively, where F) is the area of the
largest connected set of black pixels intersecting B, and F» is the largest area of the
smallest subsets of T" intersecting B and surrounded by a connected subset of non black
pixels; that is F3 is the area of the largest connected set of black pixels intersecting B,
and its interior; F3 is the naive estimate, counting the number of black pixels in the
smaller frame—from the plots in (d), (¢) and (f) it seems that F; and F, and Fj are
all biased toward larger volumes then the true of 163, by repetition of this experiment
from the same original image it seems that F) and F» are biased toward smaller volumes
while F3 seems biased toward larger volumes; the biases of course depend on the actual
realization of the error process. The true volume of B is 163, and the volume of the
estimated object B is 174, different from EF,|Yr, EF,|Yr and EF3|Yr. O

3.2 Optimality of decision rules

Having chosen the simple Markov random field image models as the general frame
work we must accept that all configurations over T are possible, the model parameters
can not be used to confine the true image to have a specific structure. For pattern
recognition and classification purposes this characteristic makes the introduction of
structure identifiers almost impossible to avoid; in order to make decisions on the basis
of images, using the Markov random field models, we must be able to classify any given
configuration on AT. As usual we also require the knowledge of a cost function.

With the resampling methods in hand we can, however, given a structure identifier
and a cost function prove optimality in terms of minimum loss.

Theorem 3.1. Let F : AT — {1,...,k} be a structure identifier, and let W be a
cost function such that W is invertible, W;; = 0 and W; ; > 0, then the classification

rule determined by the minimum cost identifier of F(zg)),i =1,...,n, with respect to
p(i|Yr), i=1,...,k is the minimum cost classifier of zp into

{F7Y(),..., F~Y(k)}
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Figure 22 a), Orginal image 100 x 100 pixels,

Figire 22 b),
realization of Markov random ficid after § x 10* local
updaies. parameters are a; = 1.05, a3 = 0.9

Observed

miclassification rate, symmetric noisy channel. Actuaily
observed misclassified pixels 36.3 percent.

on the basis of 200 replicate samples and 50000 local

image, errors are biack.
wpdates per sample. Misclassification rate 1.50 percent,
estimated misclassification rate 2.92 percent.

Figure 22 ¢), Esti

d local misclassifi

from 200 independent replicates. gy =p (=2 | Y1),
image shows g, (14, ).

Figure 22 f), The highest 5 percent estimated local

misclassification rates overlayed on the restored image.

Figure 2.2
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Figure 3.1 a), Original image on 100 x 100 square
lattice, the image comsists of a realization from the
Markov random field in example 2.2, and a black object
super imposed in the smaller frame.

Figure 3.1 ), the mini isclassification ;

wsing the algorithm, and the p from examp}
2.2. 200 bootstrap sampies with 50000 local updates per
sample. The super imposed object shows up clear in the
smaller frame. The nember of misclassified pixels is
187.

|

0S1

0Lt

061

ole

Figure 3.1 ¢), emperical distribution fnction of F3, the

mean value is 175.8.

Figure 3.1

061 (2} oS}

1] ¥4

06} (A% oSt

oLe

Figure 3.1 b). Corrupted image 35 per cen
misclassified pixels.

Figure 3.1 d), emperical distribution function of F, the
mean value is 1754.

Figure 3.1 f), emperical distribution function of F, the

P

mean valve is 1773.
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Figure 32 a), Realization of Markov random field, as in Figure 3.2 b), 35 percent corruption of a), symmetric
example 2.2; the black bail in the upper half of the noisy chaonel.
image was super imposed artificially.

Figure 32 c), Restoration using 200 resampled
replicates from Markov random fields model; example

22

2o

Figure 3.2

Proof. The proof is trivial since we can approximate the distribution function to
F(Xr)|Yr arbitrarily well by theorem 2.1. O
Example 3.3. Consider figure 3.2, in (a) is a realization of the Markov random field

from example 2.2-the ball intersecting the top frame was hand drawn and super imposed
such that the two black patches are separated by only two pixels; (b) shows the corrupted
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image and (b) the minimum misclassification restoration of (a), misclassification rate:
1.96 percent; we are interested in finding a minimum misclassification rule to answer the
question: Is the black patch intersecting the frame super imposed on figure 3.2 (c) one
or two objects? Let the misclassification costs be symmetric, we then need a function
F{1,2,3}T — {0,1}, by which we can classify any given image. We choose the following
simple suggestion:

F = 1 if the largest set of connected black pixels intersecting the top frame and the
largest set of connected black pixels intersecting the lower frame of figure 3.2 (a) is the
same.

F = 0 otherwise.

In 135 of the 200 replicates F' = 0 was observed. The procedure, thus, correctly
classified the observed image in figure 3.2 (b).

Figure 3.3 shows the minimum misclassification restoration given that the black
“blobs” are figure 3.3 (a) is really two objects, misclassification rate: 1.95 percent. Note
again that since the Markov random field models can not force global features for the
restoration there is no guarantee that F(Z7) = 0. In figure 3.3 (b) we have displayed
the pixels of disagreement between figures 3.2 (¢) and 3.3 (a) as black pixels overlaid on
figure 3.3 (a), there is a total of 13 black pixels in figure 3.3 (b). d

Figure 3.3 b), disagrecments between figares 3.2 ¢) and

Figure 3.3 a).
conditional on F(Xr)=0, restoration on the basis of 3.3 a) overlayed as black pixels on figure 3.3 a).

135 replicates.

Figure 3.3
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