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ESTIMATION OF CONDITIONAL MULTILOCUS GENE
IDENTITY AMONG RELATIVES

BY ELIZABETH A. THOMPSON AND SiMON C. HEATH

University of Washington

Genetic Analysis Workshop 10 identified five key factors contributing to the
resolution of the genetic factors affecting complex traits. These include analysis
with multipoint methods, use of extended pedigrees, and selective sampling of
pedigrees. By sampling the affected individuals in an extended pedigree, we
obtain individuals who have an increased probability of sharing genes identical
by descent (IBD) at marker loci that are linked to the trait locus or loci. Given
marker data on specified members of a pedigree, the conditional IBD status
among relatives can be assessed, but exact computation is often impractical for
multiple linked markers on complex pedigrees. The use of Markov chain Monte
Carlo (MCMC) methods greatly extends the range of models and data sets for
which analysis is computationally feasible. Many forms of MCMC have now been
implemented in the context of genetic analysis. Here we propose a new sampler,
which takes as latent variables the segregation indicators at marker loci, and
jointly updates all indicators corresponding to a given meiosis. The sampler has
good mixing properties. Questions of irreducibility are also addressed.

1. Introduction. Relatives share common ancestors. A single gene in such
an ancestor may therefore descend via repeated segregations to each of the rel-
atives. Such genes, which are copies of a single ancestral gene within a defined
pedigree, are said to be identical by descent (IBD). Disregarding mutation, IBD
genes must be of like type. It is the sharing of IBD genes that underlies pheno-
typic similarities among relatives. The probabilities of patterns of gene identity
by descent are determined by the pedigree structure, and in turn determine the
probability distribution of observed data on individuals of the pedigree.

Genetic linkage is the dependent cosegregation of genes at different loci on
the same chromosome. Linkage detection and linkage analysis on the basis of
data observed on related individuals require the computation of multilocus prob-
abilities of observed phenotypic data on pedigree structures. Genetic Analysis
Workshop 10 identified five key factors contributing to the resolution of the ge-
netic factors affecting complex traits (Wijsman and Amos 1997). These include
analysis with multipoint methods, use of extended pedigrees, and selective sam-
pling of pedigrees. Here we consider an approach to linkage detection which uses
only data on affected individuals. However, calculation of multilocus probabili-
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ties on extended pedigrees is computationally intensive, particularly when there
are many unobserved individuals. In this paper we present a sampling-based ap-
proach for linkage detection which is well suited to sparse data at multiple loci
on individuals in an extended complex pedigree.

2. Gene identity and linkage likelihoods. There are many ways to
partition linkage likelihoods, the probability Pr,(Y) of phenotypic data Y under
a genetic linkage model ¥. Let Y consist of trait data Y7 and marker data Y ,.
The model (genetic map positions and marker alleles frequencies) is assumed
known for the data, Yy, at marker loci. In this paper, we shall focus on the
problem of linkage detection, in which no trait specific genetic model for the
trait data Y7 is assumed. However, the development is similar in the case where
hypothesized trait loci are explicitly modeled and linkage estimation is the goal
of the analysis (Thompson 1994b).

Let Bp denote the pattern of gene IBD at marker loci among observed
individuals. The likelihood for the genetic model on the basis of data Y =
(YT,YM) is

(2.1) Pry(Y) =Pry(Yr, Yu) o« Pry(Yr | Ym)
=Y Pry(Yr | Bu) Pr(Bu | Yu)
By

where the model i relates to the trait parameters and loci positions relative
to the known marker map. If desired, we may consider also IBD status Br at
putative trait loci, and partition the probability further:

Pry(Yr | Bu) =Y Pry(Yr | Br) Pry(Br | Bu).

Br

Even where no explicit trait model is assumed, there is an implicit assumption
in linkage analysis that a trait is genetically determined. Thus individuals of
like phenotype have higher probabilities of sharing genes IBD at trait loci, and
hence also at linked marker loci. Thus evidence for linkage is provided by marker
data Y, that give high posterior probability Pr(Bas | Y ) to patterns of gene
identity Bas which specify greater than expected gene sharing among affected
individuals.

A simple example may clarify this perspective. In homozygosity mapping
(Lander and Botstein 1987), data on unrelated inbred affected individuals are
used to map rare recessive traits. Since the individuals are unrelated, we may
consider separately the IBD pattern for each. An example pedigree is shown in
Figure 1; this pedigree resulted from a study of a rare recessive disease (Goddard
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Fic. 1. Ezample pedigree, showing the original trait data of a single inbred affected individual.

et al. 1997). The final individual was ascertained as being affected and the
offspring of a marriage between first cousins; it was later recognized that each of
his parents was also the child of a first-cousin marriage, as shown. The inbreeding
coefficient of the affected individual is f = 0.109375.

The IBD patterns of interest are whether the two genes of the inbred affected
individual are IBD (Br = 1) or not (B = 0). Since the trait is a rare recessive

PI‘,/,(YT I Br = 1) > PI‘,/,(YT l Br = O)
and if a marker M is closely linked to the trait locus T
PI‘,/,(BT =1 | By = 1) > PI‘(BT = 1) = f

where Pr(By = 1) is the prior probability of gene identity at a locus implied
by the pedigree structure, which in this case is simply the inbreeding coefficient
(f) of the affected individual. Finally, if the data Yy, specify homozygosity of
the affected individual at a polymorphic marker locus

Pr(By=1|Ym)>Pr(Buy=1) = f.

Homozygosity at multiple linked marker loci reinforces the inference that the
affected individual is IBD in this segment of the genome. Data on multiple af-
fected individuals, all homozygous in the same genome region, together provide
evidence that the hypothesized trait locus is also located in this region.

3. Exact computation of probabilities on pedigrees. In (2.1) the
terms Pr(By | Yar) are the conditional probabilities of marker loci IBD sta-
tus given marker data. In the current paper we shall not consider explicit trait
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models, but focus on the IBD information conveyed by marker loci, and the
estimation of Pr(Bys | Yar). Now

PI‘(BM | YM) = Pr(YM | BM) Pr(BM) / PI‘(YM)

and thus exact computation of the conditional probability requires the compu-
tation of Pr(Yys) the overall probability of the marker data observed on the
pedigree. We consider first, therefore, the evaluation of such probabilities. Since
now we consider only marker loci, we drop the subscript M.

Algorithms for the computation of probabilities on pedigrees have followed
one of two paradigms. The first, dating to the early days of human linkage
analysis (Fisher 1934; Haldane 1934), considers the probability of phenotypic
data Y as the sum over underlying genotypic configurations G:

(3.1) Pry(Y) =) Pry(Y | G) Pry(G).
G

Algorithms for the computation of this sum rely on the conditional indepen-
dence structure of genotypes on pedigrees, which permits the summation to be
performed sequentially through the pedigree structure. The best-known such
algorithms derive from the algorithm of Elston and Stewart (1971), and have
come to be known as “(pedigree) peeling” (Cannings, Thompson and Skolnick
1978). Generally, peeling algorithms are linear in the size of the pedigree, but
exponential in pedigree complexity as measured by the number of interlocking
loops. More seriously, they are exponential in the number of alternative (mul-
tilocus) genotypes an individual can have. Hence computation rapidly becomes
infeasible as the number of loci increases, especially if the loci are multi-allelic.
An alternative approach also dates back to the earliest days of linkage anal-
ysis (Sturtevant 1913; Fisher 1922). This method involves direct observation or
inference of the segregation events in an experimental cross, and hence scor-
ing of the recombination events. The segregation events can be specified by
“segregation indicators” S = {Sy, t=1,..,m, [ =1,...,L} where

Sy =0 if copied gene at segregation 7 locus [ is parent’s maternal gene

=1 if copied gene at segregation 1 locus [ is parent’s paternal gene.

Here 1 = 1,...,m indexes the segregations, and [ = 1, ..., L indexes the genetic
loci. Where not all segregation events can be precisely inferred, the probability
of observed data Y may again be considered as a sum:

(3.2) Pry(Y) =) Pry(Y | S) Pry(S).
S
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Algorithms based on (3.2) rely on the conditional independence structure of
the segregation indicators Sy, which permits the summation to be performed
sequentially along the chromosome (“chromosomal peeling”): such an algorithm
was developed by Lander and Green (1987). This approach is ideal for data on
experimental crosses, since, in the absence of missing data, computation is linear
in the number of loci. However, computation is exponential in the number of
meioses which cannot be directly observed.

4. MCMC estimation of probabilities on pedigrees. For multilocus
computations, on complex extended pedigrees, with many of the individuals
unobserved, exact computation is infeasible with either approach. Therefore, in
recent years, alternative Monte Carlo procedures for the summations in (3.1)
and (3.2) have been proposed. Most of these proposals have been of Markov
chain Monte Carlo (MCMC) algorithms, which rely on the same conditional
independence structures as do the exact algorithms. Most of the proposals to
date have considered (3.1), the objective being therefore to sample genotypes G
from their conditional distribution given the data Y. The simplest algorithms
involve single-site updating via a Metropolis (Lange and Matthysse 1989) or
Gibbs (Sheehan et al. (1989)] sampler. That is, the update proposal is of the
genotype of a single individual at a single locus.

Such algorithms work well on small examples, but do not mix adequately on
large pedigrees, especially where there are many unobserved individuals, and /or
data at many loci at which multilocus phase is not easily determined. More-
over, for multi-allelic loci, the partial constraints imposed by data may make
the single-site updating MCMC methods reducible. There have been numerous
proposals to ensure irreducibility of samplers, and to improve mixing. Some ex-
amples are the “heating” methods of Sheehan and Thomas (1993) and of Lin
et al. (1994), the “tunneling” method proposed by Sobel and Lange (1993), the
“mode-jumping” method proposed by Lin (1995), and the simulated tempering
approach developed by Geyer and Thompson (1995).

Thompson (1994a) proposed use of the alternative paradigm (3.2), in which
MCMC sampling is of the segregation indicators S conditional upon data Y.
Where there are many unobserved individuals on a pedigree, especially for multi-
allelic loci, the space of segregation indicators is much smaller than the space
of genotypes. It is generally much less constrained by data, except where com-
ponents are fully determined (see section 7). For the estimation of the posterior
probabilities of gene IBD patterns at marker loci, it has the added advantage
that the IBD pattern B is fully determined by the segregation indicators S.
Consider, for example, the segregation pattern on the pedigree shown in Figure
2. The founder genes are labeled 1, ..., 2n where n is the number of founders, and
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Fi1G. 2. The same pedigree structure as Figure 1, showing a particular single-locus realization of the
segregation indicators, and the implied gene identities.

the genes of non-founders are then determined successively by the segregation
indicators. In particular, we see than for this realization the final individual does
not have two IBD genes. We see also that, although the individual receives his
mother’s maternal gene (gene “2”), he shares the founder gene “8” IBD with
his maternal grandfather.

Thompson (1994b) developed a single-site Metropolis algorithm for sampling
the Sy, and implemented it in the context of homozygosity mapping where
normally the only data are on a single inbred individual in each pedigree. In this
case, the segregation-indicator sampler performs much better than the genotypic
sampler. However, the single-site updating scheme does not work well when the
loci are very tightly linked, since the proposal to update a single locus then often
involves the formation of a double-recombinant. Sobel and Lange (1996) also
implemented a single-site Metropolis algorithm for S in a variety of pedigree
analysis situations, with similar conclusions as to performance. In this paper,
we propose a meiosis-by-meiosis sampler which updates S;; jointly for all loci {
in a given meiosis i.

5. Implementing the whole-meiosis Gibbs sampler. For notational
convenience we define S = (Si,7 = 1,...,m) the vector of segregation indicators
at locus [, and S;. = (Si,! = 1,..., L) the vector of indicators at segregation :.
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In order to implement a whole-meiosis Gibbs sampler for S;, we must compute
PI'(S,'* l {Sk*yk' 56 Z},Y)

We suppose that the marker data Y can be partitioned into data relating to
each locus | = 1,2,...,L, and that the loci are numbered in order along the
chromosome. Then Y = (Vi,...,Yz). Let Y = (Y;,...,Y),s0 Y = Y(&), We
suppose also that Pr(Y; | S.;) can be easily computed: we show below how this
computation may be done. Now define

(5.1) Qi(s) = Pr(Si = s | {Sku,k #1}, YU) for s=0,1.

That is, Qi(s) is the cumulative probability for the segregation indicator Sy,
given the data at loci up to and including locus . Then

(5.2) Qi(s) o< Pr(Y; | S.) and
Qi(s) x Pr(Y; | Su) (Qi=1(s)(1 — 6i—1) + Qi—1(1 — s)0i—y) for [ =2, ..., L,

where S,; takes the current value at meioses other than ¢, and the value s for
meiosis ¢, and where 6,_; is the recombination frequency between locus [ — 1
and locus [. Thus we may compute (5.1) for each ! in turn, working forwards
sequentially along the chromosome.

Finally we have computed

Qr(s) = Pr(Sip = s | {Skw k #£1}, Y = YD)

and thus S, may be sampled from this desired conditional distribution. Suppose
Si; has been similarly sampled for 7 =1, ..., L. Then

(5.3) Pr(S,-’l_l =S8 | {Sk*,k 75 i}, {S,'j,j = l, ceey L},Y)
o Qia(s) (Sa—slbi-r + (1 —|Su—s)(1—8i-1))

Thus we may work backwards down the chromosome, sampling each Sj; in turn
(I = L,...,,1), obtaining overall a joint realization of Sj, [ = 1,..., L from its
conditional distribution given {Sk., k # ¢} and Y. We note the similarity of this
forwards-backwards algorithm (equations (5.2) and (5.3)) along a chromosome
to the method of Ploughman and Boehnke (1988), which samples genotypes
jointly at a locus by peeling up the pedigree, saving the partial probabilities
computed en route, and then sampling down using these partial probabilities.
The same method is used in a method to determine feasible genotypic configu-
rations on a pedigree (Heath 1997a), as well as in MCMC genotypic samplers
that sample jointly all genotypes at a locus (Kong 1991; Heath 1997b).
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Fi1G. 3. (a) The gene pedigree implied by the segregation pattern on the pedigree of figure 2, showing
marker data on five individuals, and (b) the gene dependency graph resulting from the segregation
pattern of and marker data of (a).

For completeness we outline briefly the method for efficient computation of
the single-locus probability Pr(Y; | S.), where Su = (Su, @ = 1,...,m). We
illustrate the calculation with the small but complex pedigree shown in Figure
1. As before, the founder genes in the pedigree are labeled from 1...2n, where
n is the number of founders in the pedigree (five in this case). For non-founder
individuals, the genes they carry at locus [ is determined by S.;, the segregation
pattern for that locus (Figure 2). Figure 3(a) shows the same pedigree, but
with the individual genes rather than individuals drawn. The ten founder genes
(shaded in the figure) have been labeled, and the figure shows the descent of
genes to the non-founders for a particular realization of S,;. For this example,
five of the individuals are observed; these individuals are marked by the dotted
circles on the figure.

Only genes that appear in observed individuals contribute non-trivially to
the single-locus probability Pr(Y;|S.) so in this example we only have to con-
sider the six genes 1, 2, 4, 5, 8 and 10. However, calculation requires sum-
ming over all possible assignments of allelic identities to these six distinct genes
(Thompson 1974). A naive approach for a locus with k alleles would require
summing over all k¢ possible combinations of allelic identities. We can improve
on this by exploiting the dependence between founder genes. This dependence
structure can be shown by a graph whose nodes are the genes that appear in
observed individuals. An edge connects two genes if they appear together in an
observed individual (Figure 3(b)). If, as in this example, the graph has several
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components, then each can be considered separately for the purposes of cal-
culating the probability. For codominant markers each component can have at
most two possible joint assignments of allelic identities for the genes in the clus-
ter, so the probability calculation becomes trivial (Sobel and Lange 1996). For
this example the gene cluster (1, 5) has 2 possible allelic assignments, (A, C) or
(C, A), and the cluster (2, 4, 8, 10) has 1 possible assignment, (C, D, C, B). For
general loci, the graph of Figure 3(b) defines a conditional independence struc-
ture. The desired probability can thus be calculated efficiently by “peeling” the
allelic assignment of types to founder genes, in a method analogous to pedigree
peeling (Elston and Stewart 1971; Cannings et al. 1978) or chromosomal peel-
ing (Lander and Green 1987). Additional details of the calculation are given in
Heath and Thompson (in preparation).

Any MCMC sampler needs an initial configuration for the latent variables.
In the small examples considered here, values of S that are consistent with the
data were found by hand. For larger or more complex examples, we may use
existing methods for obtaining genotypic configurations G that are consistent
with observed data Y even for highly polymorphic loci on large and complex
pedigrees (Heath 1997a). Where the pedigree can be peeled for single-locus data,
the initial configuration is from the required equilibrium distribution marginally
for each locus. The method produces an ordered genotype for each individual,
and this genotypic configuration then provides the implied segregation indica-
tors. These indicators are then necessarily also consistent with the data Y. This
is not necessarily the best way to obtain a starting configuration S, but it is a
possible and practical way for which the programs already exist.

6. Performance of the sampler: two examples. For examples, we use
the small but complex pedigree (Figure 1), considered in the previous sections.
We consider first the case of homozygosity mapping which was the objective of
the original study (Goddard et al. 1997). Only marker data on the final affected
individual were available. This pedigree provides a useful example, since while
it is easily analyzed by MCMC methods, exact computation by pedigree peeling
is infeasible for more than about four loci, due to the three interlocking loops.
Due to the 20 meioses in the pedigree, this example is also close to the limits of
feasibility for exact computation using chromosomal peeling.

For homozygosity mapping, the question is of the extent that patches of
marker homozygosity imply gene identity by descent in the sampled individ-
ual. As output from our sampler, we therefore score the IBD pattern at a set
of homozygous marker loci. The single-site Metropolis sampler was previously
implemented for this case (Thompson 1994a,b), and we now compare this with
the whole-meiosis Gibbs sampler for the same situation. As an example, we con-
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TaBLE 1
Autozygosity probabilities conditional on homozygosity at five tightly linked loci (recombination =
0.02), as a function of the frequency of the homozygous marker allele. There are 2 states not involving
any switches between N (non-IBD) and I (IBD), 8 states involving one switch (e.g. N N NI11I), 12
involving two switches (e.g. I I N N I), 8 involving three switches (e.g. N I I N I) and two involving
four switches (e.g. N I N I N), for a total of 2° = 32 possible patterns.

pattern of IBD g=10 ¢=05 g¢g=0.1
NNNNN 0.8389 0.2362  0.00013
11111 0.0644 0.5819 0.9673
1-switch (8) ~008 =015 =0.03
2-switch (12) =001 =0.03 =0.001
other (10) =0 =0 =0
single-locus Pr(/) | 0.1094 0.1972  0.5512

sider five equally-spaced marker loci (L1 to L5), with recombination frequency
0.02 between adjacent loci. Table 1 shows the results as a function of g, the
frequency of the allele for which the observed individual is homozygous.

Figure 4 compares the cumulative IBD probabilities at each locus for the
single-site and whole-meiosis samplers in the case when the marker allele fre-
quency is 0.5. To provide a fair comparison, there are five times as many single-
site updates as whole meiosis updates. (Each total run is 10,000,000 whole-
meiosis updates, or 50,000,000 single-site updates.) Clearly the whole-meiosis
sampler has much better mixing, and provides more reliable results. Further-
more, the CPU time for the run using the whole-meiosis sampler was only about
2/3 of that for the single-site sampler: 10 million whole-meiosis Gibbs updates
took 328 secs CPU, while 50 million single-site updates took 467 seconds on a
DEC Alpha 400M workstation. (The efficiencies of the two programs are quite
comparable. Each could be further optimized.)

Over the five loci, as expected, the central locus (L3) of the five homozygous
markers has the highest IBD probability, followed by the next two loci (L2, L4),
with the end loci (L1, L5) having the lowest IBD probability. For these very
tightly linked loci the differences in IBD probability are not large, but they are
non-negligible. For both samplers we see very strong correlations among the five
loci for the cumulative IBD probability; the five paths track each other closely.
This correlation is due to the tight linkage. For unlinked loci, there are no such
correlations, even when the sampler is run jointly on the loci from a common
starting configuration (results not shown).

We now consider also the case where other individuals are observed on this
same pedigree structure; for example, the data of Figure 3, shown again in Fig-
ure 5. We see the C allele labeled C, must descend from grandparent to parent,
to the final individual, while the two D alleles must also be IBD. However, the
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F1G. 4. Comparison of the single-site Metropolis sampler and the whole-meiosis Gibbs sampler for the
example of homozygosity mapping. In each case there are five linked marker loci, with recombination
frequency 0.02 between adjacent loci, and the allele frequency of the marker allele for which the final
individual is assumed homozygous is 0.5 at each locus. On the horizontal azis of each graph is the
log, of the probability of gene identity by descent between the two haplotypes of the final individual.
Plotted are the cumulative estimates over each run, for each locus. (a) Plot for the five linked loci,
over a total of 50 million single-site updates. (b) Plot for the five linked loci, over a total of 10 million
whole-meiosis Gibbs updates. (c) For easier comparison, the curve for the central one of the five loci,
for each of (a) and (b)

other three C alleles, labeled C;, C5 and Cj in Figure 5, may or may not be IBD
to each other or to C,. In fact, each of the 15 partitions of these four genes is
possible, given the data and the pedigree structure. A question of interest might
be the posterior probabilities of the patterns of gene identity among these four
potentially distinct C alleles.

As above we consider five linked marker loci. To assess the effect of tight
linkage, we present results for two different recombination frequencies between
adjacent loci; tight linkage (8 = 0.02), and loose linkage (6 = 0.1). We assume
the same marker data (Figure 5) at each of the five loci. At each locus, the
same allele frequencies are assumed; the allele C has frequency 0.4, and each
of the other alleles (A, B, and D) has frequency 0.2. Table 2 gives the results,
again as a function of the frequency of allele C. For comparison, we give also
the single-locus probability, and also the prior probability of identity patterns
among the four genes, given only the pedigree structure.

Each of the probabilities in Table 2 is estimated from 10 million whole-
meiosis Gibbs steps. For a problem with 5 loci on this size of pedigree, such a run
takes just under 45 minutes CPU on a DEC Alpha 400M workstation. As for the
homozygosity probabilities, examination of the cumulative state probabilities
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FiGc. 5. The pedigree structure of Figure 1, with the data of Figure 3, and the four possibly distinct
C alleles labeled.

over the run show that the sampler mixes well.

7. Irreducibility: neither necessary nor sufficient. There are many
ways to make an MCMC sampler irreducible. Note first that, provided recombi-
nation frequencies are strictly positive, irreducibility is a single-locus question.
Thus, irreducibility (or otherwise) is the same for a single-segregation-indicator
updating sampler as for the whole-meiosis Gibbs sampler. As we have seen,
the mixing properties of these two samplers can differ greatly. Irreducibility is
not a sufficient criterion for a sampler; in practice, a more important question
concerns its mixing properties.

However, there are some interesting features of the irreducibility properties
of a sampler based on é, which illuminate the structure of the problem. Note

also that, whereas () constrains the allelic types of genes, é constrains only
which genes must be of like allelic type. Thus there are many examples in
which a genotypic sampler is reducible, but in which a segregatlon—lndlcator
sampler is irreducible. Generally, irreducibility of the MCMC sampler of =
can fail when the allelic types of founder genes are constrained, either directly
through founders of observed genotype or through constraints on the number
of distinct founder genes.

Reducibility is not a problem for homozygosity mapping when only a sin-
gle inbred individual is observed in a pedigree (Thompson 1994b). At a given
locus [, the two genes are either IBD or not, and the latter state is necessarily
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TABLE 2
Probabilities of the fifteen gene identity patterns among the four potentially distinct C' alleles The
frequency of marker allele C is assumed to be 0.4 at each locus, and the recombination frequency
between adjacent loci is either 0.02 or 0.1 as indicated.

pattern 0 =0.02 =01 single locus
Ci1C2C3Cs | L3 L2,L4 Li,L5 | L3 L2,L4 L1,L5 | post. prior
g9949 0.598 0.590 0.561 | 0.382 0.359 0.287 | 0.049 0.029
gggh 0.216 0.214 0.207 | 0.191 0.183 0.155 | 0.039 0.060
gghyg 0.038 0.039 0.046 | 0.076 0.079 0.091 | 0.091 0.137
ghagyg 0.049 0.051 0.059 | 0.102 0.107 0.121 | 0.118 0.088
g h h h | 0006 0.007 0.010 |0.014 0.016 0.021 | 0.013 0.070
g g h h | 0003 0.003 0.004 |0.007 0.007 0.008 | 0.006 0.002
g h g h | 0016 0.017 0.019 | 0.030 0.032 0.035 | 0.039 0.012
g h h g |0037 0039 0046 | 0.081 0.08 0.100 | 0.084 0.229
g g h u | 0004 0.004 0.005 | 0.011 0.012 0.015 | 0.026 0.004
g h gu |0022 0022 0.026 | 0.047 0.050 0.059 | 0.125 0.123
g h ug | 0004 0.0056 0.008 |0031 0.036 0.057 [ 0.270 0.164
g h u h | 0001 0.001 0.001 |0.004 0.005 0.009 | 0.027 0.055
g h h u | 0005 0.006 0.008 {0.015 0.017 0.023 | 0.026 0.088
g h uwu | 0001l 0.001 0.001 [0004 0.005 0.009 |0.026 0.052
g h v v | 0001l 0.001 0.001 |0.004 0.005 0.010 | 0.066 0.055

consistent with the data. Sobel and Lange (1996) give an example where the
single-site Metropolis sampler of {S;} is reducible, due to severe constraints on
the types of founder genes. In practice, we are unlikely to have fully observed
homozygous founders, except perhaps in crosses among inbred lines. Note that
data on descendants can never force an unobserved ancestor to be homozygous,
and nor can data on descendants alone force the maternal/paternal origins of
genes in an unobserved ancestor. Thus the example of Sobel and Lange (1996)
is unlikely to be a practical concern in human genetics.

However, reducibility can also arise from restrictions on the number of
founder genes, or number of genes available to segregate to observed descen-
dants. The segregation indicators S, define a partition of the ordered genes at
locus [ in observed individuals determining which are identical by descent, and
hence must be of like allelic type. Note that if any given partition is consistent
with the data, then any finer partition must be so also.

Figure 6(a) shows an example in which there are three full sibs with unob-
served parents. The sibs have genotypes AB, AC and BC as shown. Note that
any one of the three alleles must be present in each parent, and the other two
must be represented once only among the four founder genes. In each case, one
pair of sibs share no genes IBD with each of the pair sharing one gene IBD
with the third sib. The set of six observed genes at each locus are partitioned
into four sets of IBD genes, two partitions size two, and two partitions size one.
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Fi1G. 6. Ezamples of failure of irreducibility. (a) Data on a sibship of size three. (b) An added maternal
grandfather (case (b) in Table 3). (c) Added information on maternal genotype (case (c) in Table 3).

States are compatible with the data if two of the sibs have indicators (0,1) and
(1,0), and the third is either (1,1) or (0,0), or if two of the sibs have indicators
(0,0) and (1,1), and the third is either (1,0) or (0,1). Of the 64 potential values
of the 6 binary segregation indicators, 24 are consistent with the data (Table 3).

If only a single meiosis is updated in a given step, the 24 feasible states
fall into two disjoint cycles of length 12. The sampler is reducible. In Table 3,
the states are listed in order so that each is obtainable from the previous one
by updating a single meiosis. Each feasible state implies an ordered pair of
parental genotypes. In Table 3, the parental genotypes are given as implied
by the first column of 12 states. For the second column of states, the father’s
genotype is reversed. Thus, although the space of § values that are consistent
with the phenotypic data is divided into two non-communicating classes, this
does not affect MCMC estimation of probabilities. The founder (i.e. parental)
genotypes, whose probabilities determine the contribution of a state to any
overall probability, are identical on each of the two communicating classes. Thus
in this example we see that irreducibility is not necessary in order to obtain
correct MCMC probability estimates at a single locus.

We can extend this example. Suppose first the mother’s father is known to
be of type AA, forcing the mother’s paternal gene to be of type A (Figure 6(b)).
Then only the 8 states labeled “b” in Table 3 are consistent with the data, and
these fall into two non-communicating classes, each of size 4. However, again the
same set of parental genotypes, and hence the same probability contributions,
are implied by each class of states.

Or, we could suppose the existence of other maternal half sibs (e.g. AA and
CC) forcing the mother to be of type AC (Figure 6(c)). Then only the 8 states
labeled “c” are consistent with the data. Now we have four non-communicating
classes, each of size two. Again, the same parental genotype combinations are
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TABLE 3
The feasible states for the three-sibs example. States are specified as (py, m1, p2, ma2, ps, ms) the paternal
and maternal indicators for each of the three sibs. The data are that the sibs have genotypes AB, AC
and BC. For further details, see text.

sib 1 sib2 sib 3 sib 1 sib2 sib 3 parental types
p1, M1, p2, M2, P, M3 p1,m1, p2,m2, p3,m3 father mother
pm pm
CA CB
BA CB
BA CA
BC CA
BC BA
AC BA
AC BC
AB BC
be AB AC
bc CB AC
b CB AB
b CA AB

OO OO M MHMHM=OO
O b it e = = OO OOO
ek ot ok e e = O OO O OO
H - OOOOOO M = =
O O OO OO Ik o
O OO O O ki et it b = = O
o = - OO0 OO0 O = -
O = =000 00
O O OO OO Mt et b b e b
O OO OO O - = -
O O e e = = OO OO
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implied by each of the four classes. We could further require both the above
conditions to be met, reducing the feasible states space to only four states in two
classes (those labeled both “b” and “c”). Yet again the parental genotypes are
the same in each class of communicating feasible states. Thus the symmetries of
this example mean that irreducibility is unnecessary in obtaining valid MCMC
single-locus probability estimates.

However, although single-locus irreducibility implies multi-locus irreducibil-
ity, validity of single-locus probabilities does not imply validity of multilocus
probabilities in a reducible sampler. (We are indebted to Ken Lange for drawing
our attention to this fact.) A simple example will suffice; consider the pheno-
typic data of Figure 6(b) at each of two very tightly linked loci. If both loci
are initialized in the same class of four feasible states, approximately correct
probabilities are obtained. If one locus is initialized in each of the two different
sets of four states, at least two recombination events are required in the six
meioses. For very tight linkage, absolute probabilities are almost negligible, but
the relative probabilities bias the sampler towards the states where only these
two recombination events are required. In this example, the sampler is biased
towards states where C is non-IBD at one locus and B is non-IBD at the other,
and away from the states where each parent carries an A allele. In general, it is
not easily determined whether irreducibility is necessary.

In examples we have considered, irreducibility fails due to constraints of
equality or inequality of segregation indicators from a given parent. There is a
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strong constraint on the number of available genes, since the parent individual
can have at most two distinct genes at a locus. Simultaneous updating of all the
meioses from a given individual, or even parental couple, will often be possible,
using the computational algorithm of Kruglyak et al. (1995), and is a practi-
cal way to obtain irreducibility in many cases. However, it is not a universal
solution, as is shown by the example of Sobel and Lange (1996) in which two
indicators in different sibships are constrained to be unequal.

8. Discussion. As maps become both denser and more precise, there is an
increasing demand for multipoint linkage analysis on large and complex pedi-
grees. Exact computations become infeasible, necessitating the use of Monte
Carlo or other approximation methods. The whole-meiosis Gibbs sampler pre-
sented here is just one of many possible Monte Carlo algorithms. It is easily
implemented, and mixes much better than any single-site MCMC method, par-
ticularly when there is tight linkage. In some cases, multi-site genotypic samplers
can be implemented. In particular, where pedigree peeling is feasible for each
locus separately, a whole-locus Gibbs sampler is possible (Kong 1991; Heath
1997b), and is likewise a great improvement over a single-site updating geno-
typic scheme. Genotypic samplers work well if there are few missing data on
the pedigree, but where there are many unobserved individuals we expect the
whole-meiosis sampler to have better performance. For very complex pedigrees,
even single-locus (pedigree) peeling is computationally intensive, whereas im-
plementation of the whole-meiosis sampler is almost unaffected by pedigree
complexity. For very tight linkage, any sampler will have decreased mixing.
However, whereas the performance of a genotypic sampler can be severely ad-
versely affected by tight linkage, the whole-meiosis Gibbs sampler performed
well, even for multiple loci at recombination frequencies as low as 0.02.

Exact computational and genotypic sampling methods preclude the inclusion
of interference for more than three loci, except on very small pedigrees with
few missing data (Lin and Speed 1996), However, a meiosis sampler can include
interference in the computation of linkage likelihoods or conditional probabilities
of genome sharing. The recombination events within a meiosis may be jointly
sampled, or a recombination location may be resampled conditionally upon the
locations of other récombinations in the same meiosis. Equations 5.2 and 5.3
become more complex, since dependence in S;; extends beyond the adjacent
marker loci, but the same approach is computationally feasible.

For almost any sampler, irreducibility is a non-trivial question. Generally,
segregation indicators provide fewer constraints on genes. Except where founder
genes are constrained in either type or number the sampler will often be irre-
ducible. However, in pedigrees with few founders and for loci with many alleles,
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it is possible for irreducibility of the whole-meiosis Gibbs sampler to fail. In
the examples of section 6, irreducibility is easily established. For homozygosity
mapping, irreducibility is trivially satisfied. For the case of the five observed
individuals on the same pedigree, one segregation indicator is completely de-
termined; the final individual receives the C; allele from his mother’s mother.
However, parental origins of genes cannot be determined from data on descen-
dants alone; other segregation indicators are freely varying. Where an indicator
is completely determined, this reduces the size of the space to be sampled, but
of course does not affect the irreducibility of the sampler. (The same is true of
determined genotypes in a genotypic sampler.)

This fact could be used to improve the efficiency of the sampler, and to
simplify consideration of irreducibility, by conditioning on the segregation from
any founder having only one offspring. Such a founder provides no information
for linkage, and the conditioning simply determines the ordering of the genes in
the founder. This method was used by Thompson (1994b) to improve efficiency
of the single-site Metropolis sampler for homozygosity mapping, and has been
extended to the whole-meiosis sampler. Similar considerations have been used
by Kruglyak el al. (1995) to extend feasibility of exact computational methods
using the approach of Lander and Green (1987). Even where a founder has mul-
tiple offspring, at a single locus the segregation to a given offspring (say the
eldest) may be constrained. However, where a founder has multiple offspring
and data at multiple loci are available on descendants, such data can provide
partial information on which offspring of the founder are recombinant. It is nec-
essary for the computation to allow for alternate recombination patterns in the
meiosis from founder to each offspring, within each linkage group. Similarly to
the situation with a reducible MCMC sampler, caution is necessary in ensuring
that correct multilocus probabilities are computed.

Where recombination frequencies are strictly positive, irreducibility can be
assessed on a single-locus basis. Thus, in particular, irreducibility of the single-
site segregation-indicator sampler is the same as for the whole-meiosis Gibbs
sampler. More importantly, where a whole-locus genotypic Gibbs sampler is
feasible, it is necessarily irreducible. This guarantee of irreducibility, balanced
against the greater computational burden and possibly poorer mixing of the
genotypic updates, raises the attractive possibility of combining the two sam-
plers. Since a given segregation configuration can be used easily to obtain a
genotypic realization, and a genotypic configuration supplies a segregation con-
figuration, the combination of the two samplers is quite practical, wherever
single-locus peeling is feasible. In some situations, a sampler interleaving whole-
meiosis and whole-locus updates has better mixing properties than either alone
(Heath and Thompson 1997). We intend a more detailed study of the whole-
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meiosis Gibbs sampler, the whole-locus Gibbs sampler, and of samplers which
combine the two approaches, to determine the preferred sampler under a variety
of pedigree structures and linkage patterns (Heath and Thompson [in prepara-
tion]).
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