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ASYMPTOTICS OF SOME LOCAL
AND GLOBAL ROBUSTNESS MEASURES

BY S. SIVAGANESAN

University of Cincinnati

We study the asymptotic behavior of some local robustness measures
in the context of ε—contamination classes. We find that when the
contaminations are subjected to some reasonable constraints, the local
robustness measures have similar asymptotic behavior as the global
robustness measures.

1. Introduction Local robustness approach to studying sensitivity to

small deviations from a specified (base) prior τro has received much at-

tention in the recent past. Related references, among many others, are

Basu(1994), Gustafson(1994), Gustafson, Wasserman and Srinivasan(1994),

Meng and Sivaganesan(1995), Ruggeri and Wasserman(1991, 1993), and

Sivaganesan(1993). An excellent review of various approaches and issues

in Bayesian robustness is given in Berger(1994).

While the local robustness approach is recognized for its computational

simplicity, and its potential use in multi-dimensional and similar complex

problems where global robustness investigation may be difficult, there have

also been (at least) two important issues of concern. The first issue is about

the asymptotics. It is clear that in most cases the impact of prior on the

posterior measure diminishes as the sample size n goes to infinity. In partic-

ular, it is known that for most, if not all, classes of priors considered in the

literature, the global robustness measures, e.g., size of ranges, converge to 0

(asymptotically) as n goes to infinity. For details, see, e.g., Gustafson(1993),

Sivaganesan(1988) and Pericchi and Walley(1991). In this sense, one would

also expect the local robustness measure to converge to 0 asymptotically.

However it is shown in Gustafson(1993) that for some general classes of pri-

ors the local robustness measures do not converge to 0, and even diverge for

some multidimensional classes of priors. Similar results were also reported

in Gustafson, Wasserman and Srinivasan(1994). These results are indeed

troubling, and have raised some doubts about the use of local robustness

measures as a tool in investigating robustness. In this paper, we show, for

a wide classes of priors which satisfy some reasonable mild conditions, that

the local robustness measures do indeed converge to 0 asymptotically, and

that their asymptotic behavior is in concurrence with those of the global

robustness measures. This finding is relevant and useful as it overcomes the

problems alluded to earlier, and allays the doubts about the local robustness

measures which resulted from such problems. The second issue is about the

interpretation or calibration of the local robustness measures.
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196 S. Sivaganesan

In this paper, we address the first issue in the context of ε-contamination

classes, using a local sensitivity measure defined below. (The issue of cali-

bration is addressed in a separate paper.) For convenience, we only deal with

one-dimensional problems. The results can also be extended to multidimen-

sional problems with qualitatively similar results. However, in practice, it is

perhaps useful to consider contaminations of only one-dimensional distribu-

tions (e.g., one-dimensional marginals or one dimensional conditionals) when

the local robustness approach is envisaged, since (such) one-dimensional dis-

tributions are easier from elicitational considerations. In this sense, it may

even be sufficient to focus on one-dimensional problems in the context of

studying the asymptotic behavior of local robustness measures.

In section 2, we focus on the asymptotic behavior of the local sensitiv-

ity measures, and in section 3, we consider the asymptotics of some global

robustness measures resulting from some ε-contamination classes.

We now introduce some notation, and define the local sensitivity measure
that will be used in the next section. Throughout the rest of the paper, we
let θ be one dimensional, and the class of priors be an ε— contamination
class given by

(1) Γ = {πε(θ) = (1 - ε)τr0 + εq; q e Q).

Let g(θ) be a function of interest, which we will assume to be difFeren-

tiable. In the rest of the paper, we will also let Dτ and pπ , respectively, be

the marginal density, and posterior expectation of g(θ), w.r.t. prior π. In

particular, we let Do = Dπo and po = pπo. In fact, for convenience, we will

assume g(θ) = θ and that the parameter space is the whole real line; the

results for more general functions will be similar when the derivative does

not vanish in a neighborhood the true value of the parameter.

The local sensitivity of pπ w.r.t. priors π £ Γ, based on a sample of size

rc, may now be defined by

LS{n) = sup — pπε

q Yds J ε = 0

= -^-sup f(θ-po)L(θ)q(θ)dθ,

where L(θ) is the likelihood function. Similarly, we may also define another

local sensitivity measure obtained by taking the inf in the above. In a robust

investigation, one may use the larger (in magnitude) of the two (or, both

separately). However, for convenience in presentation, we will only focus on

the local sensitivity measure defined as above; similar results hold for the

other case.
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2. Asymptotic properties of the local sensitivity measure. We
begin by seeking the asymptotic behavior of LS(n) for certain contamination
classes. First, we need to introduce some more notation, and assumptions.

We let 0 be the MLE, and 0* be the 'true' value of 0. Also, let 1(0) be
the expected Fisher information number. We assume that the requirements
for the asymptotic convergence of the posterior w.r.t. each π 6 Γ are valid.
In particular, we assume that πo(0) is bounded, has bounded continuous
derivatives, and τro(0*) > 0. We will also assume 0 —> 0*, and

J = - - * " ( 0 ) - > 7(0*),
n

where l( ) is the log-likelihood. More details on this can be seen in, e.g.,
Chen(1985) and Gustafson( 1994). In the following all statements of limits
are to be interpreted as a.s., as the sample size n approaches oo. In the
following lemma we give some asymptotic results concerning Do and po
Although these results may not be entirely new, we provide the proof of
both results as it helps with the presentation of the other proofs in the
paper.

LEMMA 1 Under the assumptions stated above,

and

n(p0 - 0) -

PROOF We first outline the proof for the first part. Using the usual
Taylor expansion of the likelihood around the MLE 0, we can approximate
A) by

D(n) = ee^ J e-^-i"^θ-§

which can be written as

Now, letting t = Vnί(θ - θ), we have
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where θ < θt < θ+t/vnl. Now the desired conclusion follows by considering

the limit ofy/ϋe'^Din).

To prove the second part, we first write p0 - θ = RQ/DQ, where Ro —
J(θ — θ)L(θ)πo(θ)dθ. Note that, as before, we can approximate Ro by R(n)
where

5 [p
nl J V2π

1 /

Now, the second part of the Lemma follows by considering the limit of
nR0/D0. Π

In Gustafson(1994), the asymptotics of a (more general, but often equiv-
alent) local sensitivity measure is studied for a variety of classes of a certain
structure, one of which is the ε—contamination class with arbitrary contam-
inations. There, it is shown that the local sensitivity measure LS(n) does
not converge to zero, as n goes to oc when arbitrary contaminations are
allowed. In the following theorem, we show that that LS{n) does converge
to 0, when the contaminations satisfy certain, mostly reasonable, conditions.
In the following, we use the terminology that a class F of functions f(θ) on
a set Θ is uniformly bounded if there is a M < oo such that sup# f(θ) < M
for aU / G F.

THEOREM 2.1: (i) When q £ Q have uniformly bounded densities,

LS(n) is 0{n-λ'2).

(ii) When q £ Q have uniformly bounded densities with uniformly bounded

derivatives,

LS(n) is O(n-1).

P R O O F : We write LS(n) = supg Nq/D0. Thus,

Nq = J(θ-Po)L(θ)q(θ)dθ

= J(θ-θ)L(θ)q{θ)dθ-(po-θ)Dq,

where Dq — f L{θ)q{θ)dθ. Now, as in the proof of Lemma 1, we can approx-

imate Nq by TV*, where

-q(θ + t/ynl)dt

(2) -Vϋ(po ~ 0)/~1/2 J e-t
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We note that the second term on the right side of the above converges to 0.

Thus, letting Aq denote the first term, we have, for given δ > 0,

Aq-δ< ne-'&Nj <Aq + δ,

for sufficiently large n and all q. Thus, for sufficiently large n,

(3) sup Aq - δ < ne~1^ sup N* < sup Aq + δ.
Q Q q

Now, since Aq are bounded for all n, sup9 Aq is 0(1), and hence,

e~ί(§) sup N* is of the order O(l/n).
q

Now, by the first part of Lemma 1, e~£^Do is O(l/^/n). Combining these

two results, and the fact LS(n) = swpq N(q)/Do lead to the desired conclu-

sion.

To prove the second part of the theorem, we expand q(θ + t/vnl) around

θ in (2), and get

jt2e-t2l2q\θt)dt-nϊ(p0-θ)q(θ)

-yft(Po ~ θ)Γιl2 je-t2l2q\θt)dt.

Thus, when </( ) ' s and #'( )'s are bounded, we get e"^^supgΛΓ*, and

hence e~^ supg Nq are of order O(n~3/2). Now the result follows using the

first part of Lemma 1. •

The following theorem gives a specific class of contaminations for which

y/nLS(n) converges to a non-zero value.

THEOREM 2.2: Let Q be given by

Q = { prob. density q : L{θ) < q(θ) < 11(0)},

where L and U are bounded and continuous. Then,

P) - L(P)]
(n) converges to

P R O O F : Following the lines of the proof for Theorem 1, we get (see 3),

sup
q

= 4sup fte-t2

I q J

11
I JBn

+ 4
I
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where Bn = {t : te~% /2 > cn} for some cn such that

(4) / -^=U(θ + t/y/ϊd)dt+ ί -^
JBn Vnl JB^ y/n

Thus,

sup A? = i / te-t

q I JBn

(5)

Now, suppose Bn = (α n,6 n) C (0,oo), (the other case where Bn is a
union of two disjoint intervals can be considered similarly). Thus, letting
fL(θ)dθ = k < 1, we get from (4)

J d n

n/) - L(θ + t/y/nl))dt = \]nl(l - k).

From the above, it is clear that bn must approach oo, and hence an must

converge to 0 as n goes to oo. Now, from (5), letting n go to oo, we get

Now the desired result follows by using the first part of Lemma 1, and
recalling (see Theorem 2.1) that LS(n) = swpqNq/Do, which is arbitrarily
close to supg Aqj DQ for large enough n. •

REMARK:

(i) Usually, it would be the case that L(θ) in the above would be identically
0.

(ii) In particular, the above result would apply to density bounded classes
whose bounds are of the form L(θ) = (1 - ε)πo(θ) and U(θ) = (1 - ε)πo(θ) +
εg(θ) where 7ΓO(0) is a bounded differentiate density and g(θ) is a non-
negative bounded function for a suitable (fixed) function g(θ).

Now, as a specific example for which LS(n) converges to 0 at the rate
of 1/n, we show, for unimodal contaminations with some mode, say #o? that
nLS(n) converges to a certain non-zero value. This may also be of interest
since the unimodal contaminations do not entirely satisfy the differentiability
conditions of the theorem. We will assume that θ* > ΘQ, and πΌ(θ*) < 0.

THEOREM 2.3: Suppose Q is the class of all unimodal densities with
mode ΘQ. Then,

PROOF: For convenience, we let θ0 = 0. Using the notation in the above

proofs, as before, we approximate f(θ-po)L(θ)q(θ)dθ by N* as in (2). Now
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we use the result that a unimodal distribution with mode θ0 can be expressed

as a mixture of uniform distributions over intervals with one endpoint ΘQ,

and get

sup e-'(') JV; = [nϊ)'λl2 sup -±=- Γ _ f ί - \/^(po - θ)) e~t2'2dt
qeQ z Vnlz J-Vnϊθ \ J

where z\ — Vnϊ{z - θ).
Thus we seek the supremum of

1 fZl

/ / /— /(ίJβΓ
Vnlz J-Vniθ

where f(t) = it - Vnϊ(po - θ)j e~*2/2. By setting the derivative equal to

zero, we see that the supremum is achieved at a z which satisfies

I ~ * 2 1 ίZl

(6) [zx - ynϊ(po - θ)}e~z^12 = / f(t)dt.
\/n.Ty. J—VniθVnlz

It can be shown that there is a solution to (6) which corresponds to the
supremum. Thus, the supremum is given by f(z\) where z is a solution of
(6). In the rest of the proof, we will use z (and z\) to represent the solution
of (6).

Now, we note, from Lemma 1, that V™(Po — θ) -* 0 a.s., as n -» oo,
and hence, it is easy to verify that z\ > 0 a.s. for large enough n. Now, we
claim that z\ —> oo. To prove, suppose that Z\ < c for some constant c for
infinitely many n. Now, we re-write (6) as follows.

(7) (*χ + \[^U)zxe-z2l2 = Γ te~*l2dt + gn(z),
J-y/nlθ

where

gn(z) = \fJ(θ - po) \ Γ e-t2'2dt -
U-Vnlθ

We observe that gn must converge to a negative value as n goes to oo. Thus,

noting Vnϊθ —> oo, we see that, as n gets large, the left side of (7) would be

non-negative, while the right side becomes negative. This is a contradiction,

proving that z\ —> oo.

Now, we claim that δ = (z - θ) converges to 0. To show this, we get from

(7),

Z i e J =

VrJz

(8) Vnlz J-
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Thus, writing z\ — Vnlδ and z = 8 + 0, we get after little algebra,

(9) y/ϊn(θ - po){ I " e~t2l2dt - \fnϊ{θ + δ)e-ni62'2}.
J-y/niθ

First we note that δ > 0 a.s. for large enough n. Now, suppose that δ
converges to a positive number δQ. Then, from (9), we see that the right
side of (9) would converge to a non-zero number, while the left side would
converge to 0, leading to a contradiction. Thus, δ converges to 0, and hence,
z converges to θ*.

From (8), it is also clear that y/ne~zi/2 —• 0. Now, we have from (6)

+ nϊ(θ - po)- Γ'
Z J-yJnlz

Thus, using Lemma 1, and the observations made above, we have

Now,

nLS(n) =

which converges to -τr£(0*)/ (0*/(0*)τrg(0*)) concluding the proof. D

3. Asymptotics of some global robustness measures. We now
consider the asymptotic behavior of the range of p^. For convenience, we
will only consider sup7r€Γ(/>7Γ - θ). The results for the inf are similar, and
therefore will not be discussed.

THEOREM 3.1:

(i) When q £ Q have uniformly bounded densities

sup(pπ - θ) is O ( n " 1 / 2 ) .

(ii) When q £ Q have uniformly bounded densities with uniformly bounded
derivatives,

sup(/>7Γ - θ) is 0{n~λ).

P R O O F : We give an outline of the proof, which follows some of the steps
of Theorem 2.1. First, we note, as in the proof of Theorem 4.1, that for
7Γ = (1 — ε)πo + εq £ Γ, (p^ - θ) can be approximated by

-ε)πo(θ + t/\AJ) + εq(θ
_

9 " εq(θ
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Thus, letting λ be the sup of Aq over q £ Q, we get by the linearization
algorithm, see Lavine, Wasserman and Wolpert (1993).

(1 - ε) ί(t/y/ni - λ)e-t2/2πo(0 + t/\fnϊ)dt+

(10) ε sup [(t/yni - λ)e"t2/2?(0 + t/ynl)dt = 0.
q J

Assuming q G Q have bounded densities, we may conclude that the sup
is achieved at some g, say, q. Thus,

- ε)πo(θ + t/y/^I) + εg(θ

/ e-ί2/2[(i _ ε ) π o (0 + t/Vnl) + εq(θ + t/VnI))dt

Thus, letting swpgmΆx{q(θ),πo(θ)} = M,

| ^ Λ | < e-tyΓe + t^rjdt-

For given small δ > 0, the denominator in the right side of the above is
greater than (1 — ε)y/2π(πo(θ*) — δ) for sufficiently large rc, which concludes
the proof of the first part of the theorem.

To prove the second part, we assume that q £ Q have bounded densities
with bounded derivatives. Thus, we get from (10)

(1 - ε) { —,e-t2l2πf

0{θt)dt - λ(l - ε) ίe"'2/2^ + t/y/nϊ)dt+
J nl J

εsup / —,e-t2l2q\θ*t)dt - λε / e " * 2 / 2 ^ + t/\fJ)dt = 0.
q J nl J

Now, let the sup above is achieved at, say, q. Then, letting M1 —

sup0max{τrό(0), <?'(#)}, we have

\nλ\ <

Now, a similar argument as before concludes the proof. •

As before, we now consider a specific class of bounded contaminations.

THEOREM 3.2: Let Q be given by

Q = { prob. density q : L(θ) < q(θ) < U(θ)},

where L and U are bounded and continuous. Suppose also that

ynϊsup(pπ - θ) converges to c.
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Then cφQ whenever U(θ*) φ L(θ*).

PROOF: Following the proof of Theorem 2.2, we get from (10),

ε sup / (ί - \JnIλ)e-t /2q(θ + t/\jnl)dt+
q J

= 0.

Thus, we have, using the fact that the maximizing measure will be equal to
U on some set, and to L otherwise, see e.g., Lavine, Wasserman and Wolpert
(1993).

j{t - Vlnϊλ)e-t^2[(l - ε)πo(θ + t/\Jnΐ) + εL(θ

(11) ε f (t-y/niλ)e—''[U{θ + t/ynI)-L{θ + t/\/nI)]dt = 0,
JAn

where An = {ί : (ί - λ\/rΐ7)e-*2/2 > cn}, and satisfies JAn(l/Vnϊ)U(θ +

t/y/nϊ)dt + JACn(l/VnI)L(θ + t/VrJ)dt = 1. As in Theorem 2.2, we may

let An = (αn, bn) where an > v n/λ, and verify that bn must approach to oo,

and an - Vnϊλ must converge to 0. Thus, assuming, vn/λ converges to c

(note that c is a finite number by Theorem 2.2), we have that an converges

to c. Moreover, from (11), we get by letting n go to oo,

(U(θ*) - L(θ*)) ί(t - c)e~t2l2dt = cy/2ϋ[{l - ε)τro(β*) + εL(θ*)].

That c φ 0 when U(θ*) φ L(θ*) follows from the above, which concludes the
proof. D

The following theorem gives the asymptotic behavior of the sup of p π for
unimodal contaminations.

THEOREM 3.3 Suppose Q is the class of all unimodal densities with mode
0o, and that 0* > 0O. Then,

, m , (1 - ε)(0* - 00)^(0*)
n sup(pπ - 0) converges to ( l-ε)(0*-0o)π o (0*) + ε

PROOF: For convenience, we assume 0o = 0, and also will use symbols
(for quantities that depend on n) which do not reflect (such) dependence
on n. Thus, using the fact that the sup is achieved when q( ) is a uniform
distribution over an interval of the form (0, z), we can write (for a q of this
form)

(12) ni(Pπ-θ)=

f p - Γ
-y/nϊθ



Asymptotics of Some Local and Global Robustness Measures 205

where α = ε ' ^ l - ε) ft2e-t2/2π'0(θt)dt, and b = ε ^ l - ε) f e~t2/2[π0(θ) +

t*o(θt)/y/n\dt and θ < θt < θ + t/VrJ.
Let λ = sup(/?7r - θ). Then, we can see, e.g., by the linearization algo-

rithm, that

I ry/nl(z-θ) Γ~:

sup „ / ^_Λ (ί - \/nIλ)e~t /2dt > 0

and hence z\ — vnϊ(z - θ) > 0 for (the) z which corresponds to the sup
above.

Moreover, we get (by setting the derivative of the right side of (12) equal
to 0) that the sup of (pπ - θ) is achieved at a z which satisfies

fe^/2+AΓr e-t2^dt + zie-^ Γ _ e-t2'*dt =
nl J-yJnϊθ J-y/niθ

(13) ™
nl \/nl

For convenience, we will use z (and z\ as above) to represent the solution of
(13) corresponding to the sup.

Now, we can show that Z\ diverges as n goes to oo. To show this, first
note from (13) that z\ cannot converge to some c φ 0. Also, by multiplying
(13) by y/ΰ and letting n go to oo we note that z\ does not converge to 0,
thus arriving at the desired conclusion.

Now, letting u — z — θ = zi/vnl, and replacing z and z\ above in terms
of w, we have

6+ \bθ+ / _ e
rynϊ

J-Vnϊyjnϊθ i U nόlzUι J-Λ/niθ

We first note that α -> ε-^l-ε)^/^^! 1 9 *) a n d b "^ ε-1(l-ε)v

/57Γ7r0(l9*).
Now, we note from (14) that u remains bounded a.s. as n goes to oo. Else,
the left side would approach oo while the right side is negative as n goes to
oo. Similarly, we get, by multiplying the above by w2, and letting n go to
infinity, that the limit of u can't be non-zero. Hence, u converges to 0, and
hence z converges to 0*. Now, multiplying (14) by u2e~nu I2 and replacing
u in terms of z\, we can verify that y/nzi€~z^2 converges to 0, and hence
so does yfne~y212. Now the result follows from (12) by taking the limit, and
using the above results. Π
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We have shown above that when the contamination class is chosen to
have reasonable shape constraints, the local sensitivity measure (LS) con-
verges to 0 at a reasonable rate, and that its asymptotic behavior is similar
to that of the global robustness measure (sup/?π). This, in particular, means
that the concern about the asymptotic behavior of LS may be resolved, in
the context of ε-contamination class, by choosing the contamination classes
with reasonable shape restrictions.

Acknowledgements: I would like to express my sincere appreciation to
the organizers of the 2nd International Workshop on Bayesian Robustness
held in Rimini, Italy for their efforts and support. I also thank the referees for
their careful reading of the manuscript and their suggestions which improved
the presentation.
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discussion by

FABRIZIO RUGGERI

CNR-IAMI, Milano, Italy

I wish to thank Siva Sivaganesan for his paper, which, I believe, will

help in boosting the research in the area of local sensitivity. Despite be-

ing one of the "hottest" topics in Bayesian robustness (and the number of

talks on such a subject at the Workshop in Rimini confirms it), a major

concern about it was expressed in very recent years by some authors, mainly

Gustafson, Srinivasan and Wasserman. The work of such authors pointed

out that the asymptotic behaviour of the quantities used in local sensitiv-

ity analysis was very surprising: the quantities showed very high sensitivity

of the posterior to the prior, despite the increase in the sample size. By

using Sivaganesan's notation, they showed that there contaminating classes

such that LS(n) -f* 0, as n —> oo. The problem might have been with the

measures of sensitivity and/or the width of the class of the priors. In the

first case, all the approach should have been re-thought, being the measures

very questionable. Sivaganesan's paper gives an encouraging answer: the

problem is in the class and it may be solved if give up some (often unrea-

sonable) priors. His results apply to well-known, quite general classes. He

removes point masses from the contaminating priors but, as pointed out

in Gustafson, Wasserman and Srinivasan (1995), that is not enough to get

LS(n) —> 0. Therefore something else must be removed, like in the paper by

Sivaganesan.

By analogy with the "classical" theory of robustness, we might look for

a breakdown point (actually, a class Γ*), such that LS(n) converges to 0 in

Γ* but not in larger classes. Problems should arise immediately, about the

possibility of providing a "simple" description of such class, its uniqueness

and its invariance with respect to changes in the measure of sensitivity.

By considering more regular contaminating priors, i.e. asking for uni-

formly bounded derivatives, besides uniformly bounded densities, Sivagane-

san has been able to find a larger rate of convergence. I am wondering if he

has any idea about other requirements (e.g. bounds on derivatives of higher

orders) which might give larger rates. For the proof he gave us, no improve-

ment can be obtained by considering bounds on the second derivative.

If we consider the parameter space to be a bounded interval, then it can

be seen that y/nLS(n) converges to the same quantity, given in Theorem

2.2, when the contaminating priors are chosen in a density bounded class

whose bounds have been shifted by the same quantity k (provided that the

class is not empty).
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Finally, I want to mention that the current version of the paper is dif-
ferent from the one I discussed in Rimini, not only because Sivaganesan
has modified the paper by accepting some technical remarks I made, but
also because he has kept the most relevant part of his paper, dropping the
first and the third parts, on which I had expressed some concerns. The re-
moved parts were not so complete as the left one, but they contained very
interesting suggestions, which Sivaganesan wants to further develop in the
future.

The first part was mainly about a contamination class for multi-dimensional
priors, given, in the bidimensional case, by

Γ = {π(θuθ2) = {l-ε1-

for suitable choices of Q\ and Q2. The class allows, according to Sivaganesan,
for a reasonable flexibility in the shape of the marginals and it is "small",
being tightly centered around πo

I agree that the class is an useful one, but for slightly different reasons.
Rewriting the class as

Γ = {π(θuθ2) = πo(θuθ2)hεuε2(θuθ2)}

where

then it follows that it is very easy to control the shape of the marginals but
the contaminated prior could be quite far from πo. Besides, the new form
makes even easier and "natural" the specification of the class Γ (actually, Q\
and Q2), because it is possible to give more (or less) weight to some subsets
of the parameter space.

The last missing part is about calibration, another crucial item in lo-
cal sensitivity analysis, i.e. how to interpret the values of the measures of
sensitivity. Sivaganesan suggests to consider the change LS* in the pos-
terior expected value (w.r.t. the one given by τr0) caused by taking the
contaminating prior which gives the supremum of the measure LS of the
local sensitivity. We can write LS* = W LS. It is easy to show that for
the same value of LS" (or LS) there exist very different Ws so that very
different values of LS (or LS*) are obtained, making LS* not very effective
as a measure of calibration. I think that the suggestion by Sivaganesan is an
important attempt to face the problem of calibration, as well as the paper
by Ruggeri and Wasserman (1995), but both approaches are still far from
giving a satisfactory solution.



REJOINDER

S. SlVAGANESAN

I am very much grateful to Fabrizio Ruggeri for his interesting and use-
ful comments. Indeed, I agree with all his comments and observations on
the issue of the asymptotics of the local sensitivity measures. The idea of
seeking a breakdown point is an interesting one. Ruggeri asks if higher or-
der convergence can be achieved in cases where higher (than second) order
derivatives are uniformly bounded. Although I am not absolutely sure, I
very much doubt that one can achieve higher order convergence by bound-
ing higher order derivatives; it may be possible with some other restrictions
on the structure of the problem.

The rest of the comments by Ruggeri concern two other issues that were
addressed in the initial draft of the paper, and in the talk in Rimini. They
are not included in the current version of the paper partly due to space
limitations, and also to keep the focus on one issue. The comments and
suggestions by Ruggeri on the theses other issues are indeed very interesting
and intriguing. I hope to address them elsewhere, in a more suitable context.
I would like to end this by again thanking the discussant for his valuable
comments, and for the wonderful workshop he and his colleagues organized.
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