
Chapter 9

Asymptotic behavior of
interacting system of
stochastic differential
equations on duals of
nuclear spaces

The study of the limit of interacting n-particle diffusions was undertaken by
McKean [39] whose work was followed by the papers of Hitsuda and Mitoma
[15] and Shiga and Tanaka [49] among others.

This chapter is concerned with "propagation of chaos" problems for
stochastic systems with an infinite number of degrees of freedom such as ran-
dom strings or the fluctuation of voltage potentials of interacting spatially
extended neurons. The latter is a more realistic model for large numbers of
neurons in close proximity to one another and has provided the motivation
for the work presented here which is novel in one respect: we consider Φ'-
valued SDE's driven by Poisson random measures. The results for Φ'-valued
interacting diffusions can be similarly derived. (See also Chiang, Kallianpur
and Sundar [3])

The results obtained in this chapter are of interest beyond the neurophys-
iological applications that motivated them. It should be mentioned that the
interaction considered here is mean field interaction which seems more ap-
plicable to phenomena in statistical physics. A type of interaction known as
"parallel fiber interaction" has been used in connection with potentials of
interacting neurons the consideration of which however, remains outside the
scope of this book.
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280 CHAPTER 9. INTERACTING SYSTEMS

Consider the following stochastic system

X?(t) - Xf(0) (9.0.1)

f

where X^(0), 1 < j < n, are Φ'-valued random variables and {iVj}, 1 < j <
n, are independent copies of a Poisson random measure on R + x U with
characteristic measure μ on ί7, a : R+ x Φ' —• Φ', 6 : R+ x Φ' x Φ' -^ Φ',
5 : R+ x Φ' x U -» Φ' and c : R + x Φ' x Φ' x U ->̂^ Φ' are measurable maps
in the corresponding spaces.

In the above model, the coefficients b and c represent the interactions for
each pair of particles in the system. The interactions among three (or more)
particles are assumed for simplicity, to be negligible.

For the solution (Xf(t),X$(t), ,-X£(t)) o f (9-0-1), we consider the
limiting behavior as n —» oo of the following empirical measures

ζn(ω,B) = - f > χ n ( . i U ) ) ( S ) , ω € Ω and B G β(D([0,Γ],Φθ). (9.0.2)

We shall prove that the limiting distribution of ζn is characterized by the
following McKean-Vlasov equation

Xt = X0+ [tA(sJXs,V{Xs))ds+ f j G(s}Xs.}u,V(Xs))N(duds)
Jo Jo JU

(9.0.3)
where A : # + x Φ' x V(Φ') -> Φ' and G : R+ x Φ ; x C7 x P(Φ7) -> Φ ; are two
measurable maps and Ϊ^Xt) E 'P(Φ') is the distribution of Xt.

This chapter is organized as follows: In Section 1 we establish the ex-
istence and uniqueness of solution for the McKean-Vlasov equation (9.0.3).
Then, in Section 2, we show the existence and uniqueness of solution of the
system (9.0.1). Also we associate a McKean-Vlasov equation of the form
(9.0.3) with the system (9.0.1) and characterize the limit of the sequence
of empirical measures {ζn} as the solution of this McKean-Vlasov equation.
Most of the material of this chapter is taken from Kallianpur and Xiong [29].

9.1 McKean-Vlasov equation

The nonlinear SDE (9.0.3) on Φ' is intended to characterize the limiting
behavior of the empirical measure sequence of the system (9.0.1) when n
tends to infinity.
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To show the existence and uniqueness of the solution of the SDE (9.0.3),
we make the following assumptions (MV) which is similar to assumptions
(I) and (M) of Chapter 6.

Assumptions (MV): VT > 0, 3pQ = pQ(T) G N+ such that Mp > p 0 , 3q > p
and a constant K=K(p,q,T) such that
(MV1) Vt G [0,T] and M > 0, the maps

(υ, p) G Φ_ p X M_p -> A(ί, v, p) G Φ_ g

and

(v, p) G Φ_ p X M_p -> G(t, υ, , p) G X2(ί/, μ; Φ_p)

are continuous, where

M_p =

(MV2) (Coercivity) Vt G [0,T], ^ G Φ and p G

(MV3) (Growth) Vt G [0,T], v G Φ_ p and p G

and

/ \\G(t,v,u,p)\\^(du) < K(l + \\v\\lp).

(MV4) (Monotonicity) Vt G [0,Γ], vuv2 e Φ_ p and pi,p 2 G

2 < A(ί, υi, pi) - A(ί, v2, p2), vi - υ2 >- g

+ y ||G(t, vi, u, pi) - G(t, υ2i u, p2)\\'ίqμ(du)

< K(\\υ1-v2\\lq + dq(puP2)% (9.1.1)

where, for any p\ and p2 G

Definition 9.1.1 Lei λo be a probability measure on the Borel sets of Φ'.

A probability measure λ on DdOjTjjΦ') is called a solution of (9.0.3) with

initial measure λo if it is the weak solution of the SDE

Xt = X0+ ί A(s,Xs,λ(s))ds+ [ [ GfaXi-^X
Jo Jo Ju

and λ(0) = λ0, where λ(s) is the marginal distribution λ o Z~λ of λ. If

furthermore, X can be regarded as a measure on .D([0, T],Φ_P), it is called a

Φ-p-valued solution.
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T h e o r e m 9.1.1 Under assumptions (MV), if we have an index ΓQ such that

E\\Xo\\2_rQ < oo; then the SDE (9.0.3) has a unique Φ-P3-valued solution

where Pz(T) > P2(T) > P\(T) such that the canonical injections Φ - P l —•

Φ - P 2 —> Φ - P 3 are Hilbert-Schmidt andp\(T) is as in Section 6.1.

Proof: We prove the theorem in five steps.

Step 1: We construct a sequence of probability measures λ n on Z}([O,T],
Φ_ P l ) by induction such that

Eχn sup \\Zt\\2_p < £ < oo, (9.1.3)
0<t<T

where K is the constant given in Theorem 6.2.2.

Let (Ω, T) P, (Jt)) be a stochastic basis and Xo an To -measurable Φ - P l -

valued random variable with distribution λo Let X° be a Φ_Pl-valued

process defined by Xt° = Xo and let λ° G P(D([0,T],Φ_ P l )) be the dis-

tribution of X°. It is obvious that (9.1.3) holds for λ°. Now, suppose that

λ n 6 P(D([0,T],Φ_P l)) is given and satisfies (9.1.3). Consider the following

SDE

X?+1 = X0+ ΓBn+\s,X?+1)ds+ Γ /
Jo Jo Ju

(9.1.4)
where

Bn+1(s,v) = A{s,v,λn(s)) and c n + 1( 5,υ,u) = G(s, υ,u, λn(s)).

To solve this SDE, we verify that ( B n + 1 , C n + 1 , μ ) satisfies assumptions (I)

and (M) of Chapter 6 with po(T) replaced by p(T). It follows from (9.1.3)

that, for p > p(T) and t e [0,Γ], λn(s) G M_ p with M = K. Hence, by

(MV1), Bn+I{t,v) : Φ_ p -+ Φ_ g and C n + 1 ( ί , v, •) : Φ_ p ^ L2(C/,μ;Φ_p) are

continuous in υ. This proves (II). The assumptions (12), (13) and (M) follow

from (MV) directly. Hence, by Theorem 6.3.1, (9.1.4) has a unique solution

Xn+1. Let λ n + 1 be the distribution of Xn+1. Then, by Theorem 6.2.2,

λ n+i G p(β([o,T],Φ_ p i )) and satisfies (9.1.3).

Step 2: For any t G [0,Γ], dqi(λn(t), Xn^{t)) tends to zero as n tends to oo,

where q\ is determined by p\ through Assumption (MV).

For any φ G Φ, by Itό's formula, we have

1 - X?)[φ]2

= E (\{X^-Xΐ)[φ]{A{s,Xΐ+\\n{s))-A{s,X:,\n-\s)))[φ}ds
Jo

+E /* /(
Jo Ju
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Taking φ = h~qi, j € N and adding, we have

E\\X?+1 - X?\£qi

= E f 2
Jo

+E f ί \\G(s,X:+\u,\n(s))-G(s,XΪ,u,\n-\s))\\2_qiμ(du)ds
Jo Ju

< EJ*K (||XΓ+1 - x?\\-qi + ^ r e . λ " " 1 ^ ) ) d s

< K f{E\\X^ - X:\\lqι + E\\X? - XTΨ-v )d»
Jo

from (9.1.1) and (9.1.2). Hence

E\\X?+1 - X t

n | |-gi < Keκt f
Jo

So

0.

Step 3: {λn} is tight in P(£>([0,T],Φ_P 2)).
As λ n " 1 (5) G M_p, Vs G [0,Γ] and n > 1, and M_ p is compact in M_ P l ,

it follows from (MV1) that Vr > px and 5 G [0,Γ], Bn(s,υ) and Cn(5,v, •)
are continuous in υ G Φ_ r uniform for n > 1. The rest of the condition (Al)
for (Bnj Cn, μ) with po replaced by p\ follows directly from (MV). Hence, by
Lemma 6.1.2, {λn} is tight in P(D([0,Γ], Φ_P 2)).
Step 4: Existence.

Let λ be a cluster point of {λn} and let {λnfc} be a subsequence which
converges to λ as k tends to oo. Now, we verify the condition (A2) for
( J B

n "+ 1 ,C n f c + 1 ,μ,λ 0 ) with po(T) replaced by p2(T) and

B(s, υ) = A(s, υ, λ(s)) and C(s, υ, u) = G(s} υ} u} λ(s)).

In fact, for s £ AΓ} where

λί = {t G [0,Γ] : λ(Z G D([0,T],Φ_P 2) : Zt. φ Zt) > 0},

the sequence λnfc(s) converges weakly to λ(s) as measures on Φ_ P 2 and hence,
by (MV1) and (9.1.3), we have

A(s} v} Xnk(s))[φ] -+ A(s} v} λ(s))[φ] (9.1.5)
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and

/ \\G(s, v, u, λn"(s)) - G(s, v, u, λ(a))|| V ( * 0 - 0. (9.1.6)/
JJJ
/

JJ

On the other hand, λί is a countable set and we can modify the definition of
A(s,v)X

nk(s)) and G(s,υ,u, λn*(s)) such that (9.1.5) and (9.1.6) still hold
for s G λf without changing the SDE (9.1.4). This proves the condition (A2).
Hence, by the results of Chapter 6, λnfc+1 converges in 7^(D([0,T],Φ_P3) to
the distribution λ' of the unique solution of the SDE

[ A(s,XSJ\{s))ds+ [ ( G{s,Xs-,u,\(s))N(duds).
o Jo Ju

It follows from Step 2 that, for any 5 G [0,Γ], λ'(s) = λ(s). So that Y is a
solution of the McKean-Vlasov equation (9.0.3).
Step 5: Uniqueness.

Let λ" be another solution of (9.0.3). From the proof of the existence
we can assume that λ' and λ" are the distributions of X', X" based on the
same stochastic basis (as X' can be chosen on a pre-determined stochastic
basis). Then there exists an index p such that X' and X" G D([0,Γ],Φ_p).
It follows from the same arguments as in Step 2 that

E\\X[ - X'lf_q < 2K f E\\X'S - X':\tqds.
JO

Hence, E\\Xί - X't\\l.q = 0. By the right-continuity, we have X = X1 a.s.
and so λ" = λ. I

9 2 Interacting systems

We first establish the existence and uniqueness of the solution of (9.0.1) by
making use of the results in Chapter 6. Then we define a McKean-Vlasov
equation corresponding to (9.0.1) and prove that the sequence of empirical
measures (9.0.2) converges to the unique solution of this equation.

To apply the results of Chapter 6 to the system (9.0.1), we need the
following
Assumptions (C): VΓ > 0, 3j>0 = Po(T) G N+ such that Vp > p0} 3q > p and
a constant K = K(p, ς, Γ) such that
(Cl) (Continuity) Vt G [0,Γ], the maps

v G Φ-p -> a(t,υ) G Φ- ς ,

(vι,v2) G Φ-p X Φ-p -> b(t)v1,υ2) G Φ-q,
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v 6 Φ_ p -> 5 ( ί , ϋ, •) € £2(tf, μ; Φ_p)

and

(vi, υ2) € Φ_p X Φ_p -> c(ί,«!, «2, •) € £2(ί7, μ; Φ_p)

are continuous.

(G2) (Coercivity) Vί G [0, T], </> G Φ and ^ £ $ ,

and

2b(t,φ,ψ)[θpφ] < K(l+ \\φ\\2_p+ \\φ\\2_p).

(C3) (Growth) Vί G [0,T] and v,w G Φ_ p ,

I \\9{t,v,u)\\2_Xdu)<K{l + \\v\\2_p\
JU

ΊHI2-P + IH-p) (9.2.1)

and

Ί M I - P + IMI-P) (9.2.2)
'U

(C4) (Monotonicity) Vί G [0,T], vi,v2,

< iίlK-^ll2-,,

and

— 6 ( ί , V2, ̂ 2 J ) v l ~ V 2 ^ — q

< ^(IK-^||2_g + IK- W 2 | | 2

g ) .

(C5) For any index p, there exists a positive constant M(p) such that if v, tί; G

Φ_ p and ||v — w\\-p > M(j>), then δ(ί,t;,tί;) = 0 in Φ_ ς and c(t, υ,κ;, •) = 0

The assumption (C5) makes physical sense that there is no interaction

between a pair of particles far apart. It is desirable to relax this condition

so that our results can be applied to more circumstances.
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Theorem 9.2.1 Let ro be such that

3=1

Then under assumptions (C1)-(C4) the system (9.0.1) has a unique Φ-P l-
υalued strong solution {X?}j = 1, , n}.

Proof: Let f/i, ,t/n be n copies of the measurable space U. Define a
measurable space U by U == Uι © © Un with σ-field

and a random measure N on R + x U given by

N(ω,[0,t] x {AΎ Θ •••Θi4n)) = Σ ^ > , [ 0 , ί ] x

It is easy to see that N is a Poisson random measure on R+ x U with respect
to the stochastic basis (Ω, T^ P, (Tt)) with characteristic measure μ given by

Let

and

Then φ(n) is a countably Hilbertian nuclear space. Let B^ : R+ x φ(n)

φ( n) ' and C(n) : R+ X φ W X U -> φ ( n ^ be defined by

1 n

BW{t1v)i = a(t,vi) + -

and
/
/ 1 Λ

[t}Vi,Vj,u) lui{u>), i = !,-••»w

Let (Xίn))« = JζΓ(O), < = 1, , n. Then (9.0.1) is equivalent to the following

SDE on # W

Xt

(n) = X^n) + f*B(n\s,χW)ds+ Γ fcV>(s,xίP,u)ft{dud8). (9.2.3)
7θ ^0 «/17
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Under assumptions (C1)-(C4), it is easy to verify that assumptions (I) and
(M) hold for J5(n) and C^ with K replaced by 3nK. Hence the SDE (9.2.3),
i.e. the system (9.0.1), has a unique strong solution. I

Note that Lemma 6.1.4 yields

n

E sup £ ||-Y?(i)||ip < nKΎ Vn > 1 (9.2.4)
o<*<TΞ

where K\ is a constant.
To consider the limiting behavior of the system (9.0.1), we need the

estimate (9.2.6) below which is stronger that (9.2.4). The exchangeability
defined below for the initial random variables is needed to get the estimate
(9.2.6).

Definition 9.2.1 (XJ^O), , X£(0)) are exchangeable random variables if

for any permutation r of {1, , n},

(Xτ"(1)(0),. ., Xτ"(n)(0)) = (X?(0), , X«(0))

in distribution.

Lemma 9.2.1 Under assumptions (C1)-(C4), if(X?(0), , Xn(0)) are ex-
changeable and

sup£||X?(0)||2_ r o<oo, (9.2.5)
n

then there exists a finite constant K\ such that

snpE sup ||X*(*)||2_p<tfi. (9.2.6)
n 0<t<T

Proof: First of all, we prove the estimate (9.2.6) when Φ = Rd. In this case,
(9.2.6) becomes

sup£ sup I X ^ ) ! 2 ^ ^ !
n 0<t<T

where | | is the Euclidian norm on Rd.
Using Itό's formula to (9.0.1), we have

\X?(t)\2 = \X?(0)\2 + Rt + Jt + Mt (9.2.7)

where

2

μ(du)ds,

Rt = / / y ( ) , ( , 7 ( ) )
J o \ n t=i

jf' Jv g(s,X*{s), u) + 1
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JO JU \

and

7* = f ί g(s,X»(S-),u) + ±-Σc(s,X?(s-),X?(s-),u)
JO JJJ *l ^

^•(dttds).

Let

/(r) = £? sup |X;(t) | 3 .
0<ί<r

(9.2.8)

By the uniqueness of the solution of (9.0.1) and the exchangeability of
(XΓ(0), , X£(°))> w e h a v e t h a t (*Γ> ' > * n ) are exchangeable D([0, Γ],
Reva lued random variables. Hence, the definition of (9.2.8) does not de-
pend on j . By assumptions (C2), (C3) and the exchangeability, it is easy to
see that

E sup Rt

0<t<r

V
< 6Kr + 9K

fr 3K n /**

Jo J n jr[Jo %

Γ f(s)ds
Jo

(9.2.9)

and

E sup
0<t<r

< E sup I I
O<t<rJθ JjJ n

(Nj(duds) + μ(du)ds)

Γ f(s)ds.
Jo

(9.2.10)

Furthermore, since M is a square integrable martingale with quadratic vari-

ation process

[M]t = 4 f [ (x?(s-),g(s,X?(s-),u)
JO JU
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+^Σ,c(stX?(8-),X?(s-),u))2Nj(duds),

it follows from the Burkholder-Davis-Gundy inequality that

E sup Mt < AE[M]I
0<t<r

< SEΪΓ f \Xf(s-)\2\g(S>X»(S-),u)
K.JO JXJ

n Λ I/ 2

+ - £c(s,X?(s-),Xns-),u)\2Nj(duds) \
ni=i ' J

< 8E sup \X?(t)\\Γ ί \g(s,X?(s-),u)
0<i<r WO JU '

nt=i

< j£7 sup |
2 0<t<r

(ί)|2 + 8£; Γ /
Jo JU

+\ Σ c( s ' ̂ n(^-),^r(*-),«) |

< | / ( r ) + 32Kr + 48K Γ f(s)ds. (9.2.11)

By (9.2.7), (9.2.9), (9.2.10) and (9.2.11), we have

f{r) < /(0) + 46Kr + Q9K Γ f(s)ds + J/(r).

Then

f(r) < (/(0) + A6KT) (1 + / T e69ίC(τ-s)<f5 ) = ̂  < oo. (9.2.12)

V Jo J
The estimate (9.2.6) for general Φ follows from finite dimensional approxi-
mation by the same type of arguments as in Section 6.1. I

Now, we introduce two supplemental sequences of measures to show that
ζn converges in distribution. For each n, let ηn £ 7:>(7:>(ί?([0,T],Φ_p1))) be
the distribution of ζn and Vn = Eζn g V(D([Qf Γ], Φ_Pl)), i.e. ηn = Po ζ'1

and
Vn(B) = Eζn(ω,B), VS e B(D([0,T],Φ.Pl)).

Theorem 9.2.2 Under the conditions of Lemma 9.2.1,
(a) Vn is tight in V(D([0,T],Φ.Pl)).
(b) ηn is tight in V(V(D([0,T],*-Pl))).
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Proof: (a) For any B € B(D([0,T], Φ_P l)), we have

Vn(B) = Eζn(ω, B) = I

So, we only need to show that {Xf} is tight in ^(D([O,T],Φ_P1)). This can
be proved by using the same arguments as in the proof of Lemma 6.1.2.
(b) By (a), Vj > 1, there exists a compact set Kά C D([0,T], Φ_Pl) such
that

Let

K = {p

Then K is a compact subset of P(D([0,T],Φ_P l)) and

Hence {ηn} is tight. I

Next, we introduce the McKean-Vlasov equation corresponding to the
system (9.0.1) and show that this equation has a unique solution by verifying
the conditions of Theorem 9.1.1. For t G [0, Γ], υ G Φ', p G V(Φ') and u G U,
let

= a(t,v)+ / b(t}v,y)p(dy),

G{t,v,u,p) = g(t,v,u)+ [ c{t,v,y,u)p(dy). (9.2.13)

Lemma 9.2.2 Under assumptions (C), A and G of (9.2.13) satisfy assump-

tions (MV) with K replaced by A(2K + M(p)2).

Proof: Let t G [0, T], υ G Φ_p and p G M_p be fixed, vn G Φ- p and /9n G M_p

such that vn tends to v in Φ_p and pn tends to p with respect to the weak
topology of V(Φ-P). Then, by Skorohod's theorem, there exist a probability
space (Ω,^*, P) and Φ_p-valued random variables Yn and Y such that pn

and p are the distributions of Yn and Y respectively and Yn converges to Y,
P-a.s. As

snpEp\\b(t,vn,Yn)-b(t,v,Y)\\2_q
n

< 2KsuPE
p(2+\\vn\\lp+\\v\\lp + \\Yn\£p

n

+ 2M2) < oo,
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\\b(t, υ n , Yn) - b(t, v, Y)\\-q is uniformly integrable. Hence, by the continuity
of a and 6,

\\A(t,υn,ρn) - A(t,υ,p)\\-q

< \\a(t,vn)-a(t,υ)\\-q

f 6(έ, υn, y)pn{dy) - / 6(t, v, y))p{dy)
JΦ.P JΦ.P \\_q

= ||α(t, ϋn) - α(ί, V ) | μ ς + | |^ P (6(ί , t;n, y n) - 6(t, V | y ) ) | | . g -> 0.

The continuity of G is proved similarly. Hence (MV1) holds. For (MV2),

note that

2A(t, φ, p)[θpφ] = 2α(t, ̂ )[flp^] + / 26(t, </>, y)[^]/>(dy)
JΦ-V

\\φ\\lp) + ί \\φf_p

Proceeding similarly, we can prove (MV3). Finally, we verify (MV4). For
any pι,p2 € V(Φ-P) and e > 0, there exists a probability measure Jϊ on
Φ_ g x Φ_g such that R(dx, Φ_g) = pi(dx), i2(Φ_g, dy) = P2(dy) and

It is clear that

Then

ί ί \\x- y\\2 R(dxdy) < dq(puP2)
2

JΦ-q JΦ-q

_ p X Φ_p) = 1.

e.

2 < A(t, vi, pi) — A(ί, ^2, P2), υi — V2 > - q

+ / | |G(t, vi, u, pi) - G(ί, v2 j u, ρ2)\\2_qμ{du)
JJJ

< 2 < α(ί, vι) — α(ί,^2), vi — v2 >_q

+2 / \\g(t}vuu) - g(t,v2,u)\\2_qμ(du)
JJJ

+2(1 b(t,v1,y)p1(dy)- I b(t,υ2,y)ρ2(dy),υ1-υ2)
\J*-P Jfb-v I -q

ίr r 2

+ 2 / / c(t,υuy,u)p(dy)- c(t,υ1,y,u)p(dy) μ(du)
Jυ Jφ-v Jφ-v

< 2ϋΓ||«1-ϋ2 | | ig
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/+ 2 / / / (6(t,vi,yi) -6(t,v2,y2))R{dyλdy2),υ1-υ2
\JΦ JΦ

+2 /
JU

t, vi, yi, u) - c(ί, v2, y2,u))R{dy1dy2)

f - q

2

μ(du)

+2 / / < 6(t, vi, yi) - 6(t, v2, y2), vi - υ2 >- ς R(dy1dy2)
Φ-PJΦ-p

+2 / / / ||c(t, vi, yi, u) - c(ί, v2, y2, u) | | i μ{du)R{dyιdy2)
JΦ-p JΦ-p JU

< 2K\\Vl - υ2\\2_q + 2 ί I K(\\vt - v2\\2_q + \\yi - y2f_q)R{dyidy2)
JΦ-p JΦ-p

< 4K\\V! - v2\\2_q + 2K(dq(p1} p2)
2 + 6).

(MV4) follows since e is arbitrary. I

Finally, we come to our main result of this chapter which establishes the
relationship between the limit point of the empirical measure sequence (9.0.2)
and the McKean-Vlasov equation corresponding to (9.0.1). The idea is to
prove that for any cluster point 77 6 V(V(D([0,T]JΦ^Pl))) of the sequence

η {p G V(D([0, Γ], Φ-pJ) : p is a solution of (9.0.3)} = 1.

As the McKean-Vlasov equation (9.0.3) has a unique solution λ, we see that
77 = δχ.

Theorem 9.2.3 (Propagation of chaos) Suppose that assumptions (C)
holds, (XΓtO), ,X£(0)) are exchangeable such that (9.2.5) holds and

n t_

tends to a measure λ0 in V(Φ'), then X G ̂ (D([O,Γ],Φ_Pl)) and

where λ is the unique probability measure which solves the McKean-Vlasov
equation corresponding to the system (9.0.1) and such that λ o ZQ1 = λo

Proof: By Theorem 9.2.2 (b), without loss of generality, we assume that the
sequence ηn converges to 77 weakly in V(V(D([0,T],Φ-Pl))). Then again
by Skorohod's Theorem, there exists a probability space (Ω', T!, P1) and
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•p(Z?([O,T],Φ_Pl))-valued random variables ξn and ξ with distributions ηn

and η respectively such that ξn converges to ξ P'-a.s. We prove the theorem
in four steps.

Step 1: Let F G ϊ>g°(Φ') be given by F(υ) = h(υ[φ]). Forω € Ω and ω' € Ω',
we define

BZ,(s,υ) = A(s,v,ξn(s,ω')), C^(s,υ,u) = G(s,υ,u,ξn(s,ω'))

Bωι(s,υ) = A(s,v,ξ(s,ω')), Cω>(s,υ,u) = G(s,υ,u,ξ(s,ω'))
BZ(s,υ) = A(s,υ,ζn(s,ω)) and C2(s,υ,u) = G(s,υ,u,ζn(s,ω))

Define £»„ £ω,, ££, M^Z), M?{Z) and Mξ>ω{Z) as in (6.1.4).

Let / be a βr-measurable continuous function (r < t) on D([0, T], Φ-P l)

with compact support C. Applying Itό's formula to (9.0.1), we have

F(X*(t)) - F(X»(r)) (9.2.14)

= Γ A(s, X?{s), ζn(s))[φ]h'{X?{s)[φ])ds
Jr

f {
r JU

-F(Xf(s-))}Nj(diιds)

^s) + G(s, *?(,),«, ζn(s))) - F(X?(s))

-G(s, X?(s), u, ζn(s))[φ]ti(X?(s)[φ])}μ(du)ds.

Let

M(n, ω) = J^ $ ^ /(Z) {M^ω(^)t - Mn^(Z)r} ζn(ω, dZ).

Let ^ ( n , α ; 7 ) and Λ4(ωf) be defined similarly. It follows from (9.2.14) that

M(n,ω) = ±Σ f [{F{X*{3-) + G{s,Xf{s-),«,U-)))

Step 2: £Λl(n,ω)2 tends to 0 as n tends to oo.

EM(n,ω)2

^Έ f f

= n
n

- 2
=i Λ ^ ^
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-F(X»(S))}>μ(du)dsf(X?)2

< 2n-1\\f\\l\\h'\\l\\φ\\l

( 2\\X?(s)f_p + i £ \\X?{s)\\lλ ds
ni=i I

J 3JCi)(t - r) - 0, (9.2.15)

as n —• oo, where JKΊ is given by Lemma 9.2.1.

Step 3: Let ω' G Ω' be fixed such that ξn(ω\ dZ) converges to ξ(ω\ dZ) and
let

λT(ω') = {te [0,T] : ξ{ω'){Z G D([0,T],Φ^P l) : Zt. φ Zt} > 0} .

Then λί{ωf) is a countable set. As C is a compact subset of D([0, Γ], Φ - P l ) ,

there exists a compact subset Co of Φ - P l and a constant M such that Z G C

implies that Zt G CQ for all t G [0,T] and v G Co implies that ||v||_Pl < M.

We now show that, if r, t £ Λf(ω'), then

^(n,ωt) = M(ω'). (9.2.16)

Since it is easy to see that, for r, t £ Λf(ω')

ί f(Z) {M5(Z)t - M5(Z)Λξn(ω',dZ) - M(ω%

we only need to show that

M(n,ω') -Jf{Z) {M%{Z)t - M^(Z)r}ξn(ω',dZ) - 0.

Let H be given in Lemma 6.1.5. Then

M(n,ω') -

h'(Za[φ])ds+ f* ί {H(Zs[φ],G
Jr JU

-H(Zs[φ), G(s, Zs, u, ξ(s, ω'))[φ]) ̂ ( d ^ K ^ u / , dZ)

+\\f\\oo\\h"\\oo\\Φ\\2

pl £h(n,S,ω')ds
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where

and

(n, 5, ω1) = sup b(s,υ,y){ξn(s,ω',dy) - ξ(s,ω',dy))\
WW-qi

J2(π,s,o/) = sup ̂ (| |G(5,t;,u,en(5,ω0)| |-P l + ||G(s,u,u,£(s,α/))||-Pl)

Now we prove that /r* /2(τι, 5, ω')cί5 - > 0 a s n ^ o o (Jjf /i(n, 5, α ̂ cίs —> 0 can
be verified similarly). It follows from Holder's inequality that

12(71,5,0/) < ̂ (njβjO O^K^ω') ,

where

J2i(τι,s,o/)2

= sup

and

I22{n,s,ω')2

ίί ' '

Note that, by Lemma 9.2.2, we have

μ(du).
-PI

< 2 sup

Hence by the dominate convergence theorem we only need to prove that
J22K s,ω') -+ 0 for 5 i λf(ω') fixed.

As ξn(s,ω'; dy) converges to ξ(s}ω'; dy) in V(Φ-Pl), it follows from Sko-
rohod's theorem again that there exists a probability space (Ω", T'\ P") and
Φ_Pl-valued random variables | n and | on Ω" such that V(ξn) = fn(s, ω'\ dy),
V(ξ) = fn(s, α;7; dy) and | n converges to ξ P^-a.s. By assumptions (Cl), (C3)
and (C5), we have

sup |1 , α.5.
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and

sup / \\c(s,υ,ξn,u) - c(s,v,i,u)\\Ίpiμ(du)

2 sup K(2 + 2\\v\\ipi + \\ξnf_pi

< 2K(2 + 2M2 + 2(M + M(p))2).

By the dominate convergence theorem, we have

I22(n,s,ω')2 = sup J \\Ep"(c(s,υ,ξn,u) - c(s,υ,ξ,u))\\2_piμ(du)

< Ep" sup / \\c(s,v,ξn,u) - c(s,υ,lu)\\2 μ(du) -> 0.
v£Co JU

Step 4: For any e > 0, it follows from (9.2.15) and (9.2.16) that

P'(ω':t,r$λr(ω'),\M(ω')\>e)

< jirn^P'(ω' :t,rt λί(ω'), \M(n,ω')\ > e)

< lim P(ω: \M(n,ω)\ > e)
~ Π—> OO V ' V y ' y

< lim \Ep\M(n,ω)\2 = 0.

Thus, for P'-a.s. ω\ Vr < t such that r, ί ^ ^(α;'), we have that M{ω') = 0.
As λί(ωf) is countable, it is easy to see that Λ4(ω') = 0 still holds for any
r < t by taking two sequences rn < tn not in Λf(ω') such that r n and t n

decrease to r and £ respectively and passing to the limit.
Now, let ω1 and r < t be fixed and define a signed measure on

v{A) = jf̂  {M5{Z)t - M5(Z)r} ξ(ω', dZ), \/A € Br

Note that we have a constant K<ι depending on h, Pi(T), qi(T), φ, K and
M{jρ) such that

\M*,{Z)t\<K2(l+ sup |
V o<t<τ

so that

3' j\Mζ,{Z)t\i{ω',dZ)
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< Ep' ίκ2(l+ sup \\Zt\\lAξ(ω',dZ)
J \ 0<t<T J

< limmfEpt [K2(l+ sup \\Zt\\2_pi) ξn(ω', dZ)
n-+°° J \ o<t<τ J

= limmfEp [K2(l+ sup \\Zt\\2_pi) ζn(ω} dZ)
n^°° J \ 0<t<T J

s u p
 Io<t<τ

oo.

Hence, for almost all ω', u+ and v" are two finite measures. As M{ωι) = 0,
the integrals with respect to z/+ and ι/~ are the same for any βr-measurable
continuous functions with compact support. Hence, z/+ = i/~, i.e. for Pr-a.s.
w; G ίί', we have that £(u/) is a solution of the ^/-martingale problem with
initial distribution λ0. Therefore, by Theorem 6.3.1, f (α/) is the distribution
of the solution of the following SDE

Xt = X0+ [tA(s,Xs,ξ(s,ω'))dS+ f j G(s,Xa-,u^(s,co'))N(duds),
Jo Jo Ju

i.e. £(k/) is a solution of the McKean-Vlasov equation (9.0.3). By the
uniqueness of the solution of the McKean-Vlasov equation, we get £(cc/) = λ
for P'-a.s. V . Hence λ G P(D([O,T],Φ_P1)) and η = δ\. I






