Chapter 3

Stochastic integrals and
martingales in Hilbert and
conuclear spaces

From now on we shall be concentrating on two kinds of infinite dimensional
spaces: a separable Hilbert space H and a conuclear space ®/, the strong
dual of a CHNS &. Our aim in the present chapter is twofold: (1) To define
martingales taking values in H and ®' respectively.

While the study of such martingales (particularly H-valued martingales)
is of importance in the general theory (see e.g. the books of Métivier [38]
and da Prato and Zabczyk [45]), we confine our attention to discussing only
those properties which are relevant to the theory of H or ®'-valued SDE’s.

(2) To introduce the definitions and study the basic properties of stochas-
tic integrals taking values in H and ®'. In contrast to finite dimensional
stochastic calculus, we have three interested Brownian motions to consider:
cylindrical Brownian motion, H-valued Brownian motion and &’-valued
Brownian motion. We shall also define stochastic integrals with respect
to a Poisson random measure.

We assume throughout that (2, F, P) is a complete probability space
with a right continuous filtration {F;};>0. This chapter is organized as fol-
lows: After discussing some general properties of H-valued and $'-valued
martingales, we introduce H-cylindrical Brownian motion (H-c.B.m), H-
valued Brownian motion and ®’-valued Wiener process. Then the stochastic
integrals with respect to these processes will be defined and a representa-
tion theorem will be derived for H-valued and ®’-valued continuous square-
integrable martingales. Finally we define the stochastic integral with respect
to Poisson random measure and give conditions for a ®’-valued martingale
to be represented as a stochastic integral with respect to a Poisson ran-
dom measure. The two representation theorems will play important roles
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86 CHAPTER 3. STOCHASTIC INTEGRALS

in later chapters in the study of stochastic differential equations on infinite
dimensional spaces.

3.1 Martingales taking values in Hilbert and
conuclear spaces

In this section, we study general X-valued martingales where X = H or @'
In the latter case, we shall denote by {¢?} C & a CONS of &, and {¢,?}
the CONS of &_, conjugate to {¢?} for p > 0. Let 8, be the isometry from
®_p to ®p such that 6,07 = ¢F, V5 > 1.

First, we discuss some basic properties of A'-valued random variables.

Definition 3.1.1 A map X : Q@ — X is an X-valued random variable
if it is F /B(X)-measurable, where B(X) is the Borel field of the topological
space X. A family {X; :t € Ry} of X-valued random variables is called an
A -process.

Theorem 3.1.1 (a) B(®') is the o-field generated by the following class of
subsets of ®':

{fed: flp)<a}l dc®andacR. (3.1.1)
(b) B(H) is the o-field generated by the following class of subsets of H:

{f€eH: < fh>g<a} heHandacR.

Proof: (a) Let B be the o-field generated by the sets given by (3.1.1). As
{f € ® : f[$] < a} is an open set in the strong topology of & for any ¢ €
and a € R, we have B C B(®').

On the other hand, for any bounded subset B of ® and € > 0,

{gB(f) < €} = NgeBnD{f € &' : |fl#]| < e} € B

where D is a countable dense subset of & and ¢p is the seminorm on ¥’
given by Definition 1.1.7 c¢). Therefore B contains the collection of all neigh-
borhoods in ®’. As &' can be represented as a countable union of compact
subsets as follows

& = Up21{¢ € lloll-» < P},

&' is separable. Let C be a countable dense subset of . Let G be an open
subset of &'. Then V€ € G there exists a neighborhood Ug C G and hence

G = UﬁECﬁGUﬁ € 3
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Therefore B contains the collection of all open subsets of ® and hence B =
B(®').

(b) can be proved in a similar fashion (note that the o-compactness of
&' is needed in the proof of part (a) only for the separability of ' and in
the present case, we assumed that H is a separable Hilbert space). |

Corollary 3.1.1 (a) A map X : Q — @ is a ®'-valued random variable iff
for any ¢ € ®, X|[¢] is a real-valued random variable.

(b) A map X : Q — H is an H-valued random variable iff for any h € H,
< X,h >y is a real-valued random variable.

Proof: We only prove (a). It is clear that if X is a $-valued random variable
then X[¢] is a real-valued random variable, for any ¢ € . On the other
hand, let

G={CeB(®): X C) e F}.

Then G C B(®') is a o-field. As the sets of the form (3.1.1) are in G, we
have by Theorem 3.1.1 that B(®’) C G. Hence, X is a ®'-valued random
variable. [ |

The following regularization theorem is useful for constructing some &'-
valued random variables.

Theorem 3.1.2 (It6 [19]) LetY : & — L%(Q, F, P) be a continuous linear
map. Then there exists a ®'-valued random variable Y such that V¢ € ®,

Y4l =Y(9)(w) as.
Moreover there is ¢ > 0 such that P(Y € ®_,) = 1.

Proof: Let V(¢) = E(Y(¢)?), V¢ € ®. Since V is continuous there exist
r > 0 and § > 0 such that if ||¢||, < 6 then V(¢) < 1. Hence if 6 = 1/6 we
have

V(g) < 4l7, Ve (3.1.2)

Let ¢ > r be such that the canonical injection from @, into ®, is Hilbert-
Schmidt. Then from (3.1.2)

B (ZY(¢§)2) <3[4 < o0
Jj=1 =1
Le. if @ = {352,(Y(¢3)(w))? < o} then P(€) = 1. Define

V()= { %??il Y($)(w)g;?  fwed

otherwise.
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Then Y is a ®-valued random variable such that ¥ € ®_; as. and
V()¢ =D Y(¢)(w) < $,¢% >q, Vh € & as. (3.1.3)
J=1

Letting ¥n = Y01 < ¢,¢] >4 ¢], then [[¢n — ¢ll» < [[¥n — ¢llg — 0 as
n — oo so that from (3.1.2)

2
E (E Y(43) < ¢,9% >, —Y(¢)) —0 asn— oo. (3.1.4)
=1
Finally, from (3.1.3) and (3.1.4) we have

E (V@) - Y(#)w) =0

i.e.

Y4 =Y($) as. Vo€ i

Remark 3.1.1 A more general regularization result can be found in Ra-
maswamy [46].

In the rest of this section, we discuss H-valued and ®’-valued martingales.
Most of the results due to Mitoma [40].

Definition 3.1.2 (a) A ®'-valued process M = {M;};>o is a ®'-martin-
gale with respect to { F;} if for each ¢ € ®, My[¢] is a martingale with respect
to {F:}. It is called a ®'-square-integrable-martingale if, in addition,

E(My[¢]*) < oo, Voed, t>0.

We denote the collection of all ®'-martingales (resp. ®'-square-integrable-
martingales) by M(®') (resp. M?(®')). We also denote

{ M e M*(®'): M@] has a continuous }

version for each ¢ € ®

MZ,C(QI) —

(b) An H-valued process M = {M;};>0 is an H-martingale with respect to
{Fi} if for each h € H, < My, h > is a martingale with respect to {F;}. It
is called an H-square-integrable-martingale if, in addition,

E|Mi? < 00, Vt>0.

We denote the collection of all H-martingales (resp. H-square-integrable-
martingales) by M(H) (resp. M*(H)) and write

ME(H) = {M € M*(H) : M; has a continuous version}.
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Theorem 3.1.3 Let M € M*(®'). Then there exists a ®'-valued version
M of M such that the following conditions hold:
(i) For each T > 0 there exists p = pr > 0 such that

MI[O,T] € D([0,T),®_,) a.s.
(ii) M is r.c.Ll. in the strong ®'-topology, i.e.
M € D([0, ), ®) a.s.

Proof: (i) Fix T > 0 and define VZ(¢) = E(Mr[$)?). Then V7 satisfies the
conditions of Lemma 1.3.1 and hence, thereexist § =07 > 0and r =rgp > 0
such that

Vr(¢) <fll¢ll, Vo€ (3.1.5)
Let D be a countable dense subset of [0,T]. Then by Doob’s inequality

E (suth[qS]?) <4 sup E(Mi¢]*) = 4E(Mr[4]*). (3.1.6)
teD 0<t<T

Let p > r be such that the canonical injection from &, to ®, is Hilbert-
Schmidt. Then from (3.1.5) and (3.1.6) we have

j=1t€D j=1 \t€

B (isuth[qb?lz) - 5 (sup ey

IN

16° Y | 42)12 < co.
=1

So, if = {w € Q: Y2, supep Mi[#7)%(w) < oo}, then P(Q;) = 1.
Since each real-valued martingale Mt[¢>’;] has a right continuous modifi-
cation X7, writing

0l = {w e 0: X}(w) = M[#)(w)},
we have P(Qﬂ) = 1for t € D. Then the set defined by
92 = (ntED anI Qg) n Ql

has probability one and if w € Q5

oo

> sup X} (w)? < o0.
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For 0 <t < T, define ]\;It(w) =0 for w ¢ Q5 and
~ w -
My(w) =) X](w)$;*, w € Qa.
J=1
Then for 0 < ¢ < T we have P(M; € ®_,) =1 and My(w)[¢] = My(w)[4)] for
all p € ,w € Qy, ie. My = M; a.s.
Next since for s,t € [0,T],7 > 1 and w € Qo
X! () - Xi(w)* <4 sup X](w)?,
0<t<T

by the dominated convergence theorem,

2
Jim, 1) = Mu(w)|Zp = Jim > 0(X7 (@) = X3 ())e5"
7=1 -p
= Jim 31X - i)l

(o ¢]
= ) Jlim [X{(w) - X3(w)* =0,
=t 5§

the last assertion follows from the right continuity of X7(w). In a similar

fashion the fact that M; has left hand limits in the || - ||_p-norm is shown.
Thus we have proved that for each T > 0 there exists p = pr > 0 such
that M; has a r.c.l.l. version M, in the || - ||_p-norm, i.e.

MI[O,T] € D([0,T],®_,), as.

(i) Let T}, increase to infinity. Then by (i) there exists p, such that M; has
a version M™ with

Mnl[OyTn] € D([O? T]) é—pn), a.s.

With the notation used in the proof of (i) let Q23 = N2, Q3. If w € Q3 define
for0<t< >

Mi(w) = Mw)  for Ty <t < Tn, (To=0).
Then P(Mt € ) =1 and Mt(w) = M;(w) for w € Q3.
For t > 0, let n be such that t < T,,. Then for € > 0 there exists é; > 0
such thatif t < s < t+ 6

12(w) — Ma(@)|-pn < €
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For any bounded subset B of @, let C' be a constant such that ||¢||,, < C
V¢ € B. Therefore

sup |(Mi(w) — M(w))[$]| < Ce, Vt<s<t+8,
$€B

i.e. M, is strongly right continuous. A similar argument shows that it has
left hand limits. |

Remark 3.1.2 If M € M?(®') such that for each ¢ € ®

sup B (Mi[¢]") < oo,
0<t<o0

there exists p > 0 such that My has a version M; € D([0,00),®_,) a.s. This
is seen using the fact that if D is a countable dense subset of Ry then

E (sup Mt[gb]z) < 4E(M[¢]%).

teD

The next theorem is the analogue of Theorem 3.1.3 to continuous mar-
tingales.

Theorem 3.1.4 Let M € M?*“(®'). Then there ezists a '-valued version
M of M such that the following conditions hold:
(i) For each T > 0 there ezists p = pr > 0 such that

Mo € C([0,T),®_;)  a.s.
(i) M is continuous in the strong ®'-topology, i.e.
M € C([0, ), ®) a.s.
(iii) If for each ¢ € @

sup E(M[4]*) < oo,
0<t<oo

then there exists p > 0 such that
M € C([0,00),®_,) a.s.

The following example, due to Kallianpur and Ramaswamy, gives a ®'-
valued strongly continuous Gaussian martingale M; for which the following
is not true: There exists p independent of ¢ such that

M, € @_p vVt > 0, a.s.
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Example 3.1.1 Consider the CHNS of Frample 1.3.2. Using the notation
of that example, we define f : Ry X ® — R as follows

o0

f(s,0) =D (1+X)* < ¢,8; >0

7=1

Let {Bs}sZO be a real-valued standard Brownian motion. Since for each
t>0andpecd

¢
| #5685 < o0
0

the Wiener integral

Xt,d) = /Ot f(31 ¢)st

is a Gaussian martingale for each ¢ € ®. Since f(s, ¢) is linear and contin-
uous in ®, the linear random functional

Xiy:® — L3(Q)

is ®-continuous. Hence by the regularization theorem there ezists a ®'-valued
random variable X; such that

Xt[¢] = Xt’¢ a.s. V¢ € ®.

Then (Xt,FtB)tZO € M?<¢(®'). Hence by Theorem 3.1.4, X has a strongly
continuous version also denoted by X.
Now suppose there exists p > 0 such that X; € ®_p, a.s. Vt > 0. Let

n

6 = 10,

j=1

Then {¢™} converges in ®, to an element ¢, and therefore X o) —
Xi[#]. But since X; is L%-continuous

E(X4[¢'™M]?) — E(X4[¢]?) < 0 V£t > 0 (3.1.7)

the finiteness of the limit being a consequence of X;[$] being a Gaussian
random variable. On the other hand, ift > p+ 71,

B8O = [ 5,802

Jj=1

t n 2
/ (1 + )\j)—p—rl ts ] ds.
p+r1 j=1

\v
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Then by Fatou’s lemma
lim inf E(X[¢]?) = o0

which contradicts from (3.1.7). |

3.2 &'-Wiener process and cylindrical Brownian
motion

In this section we introduce H-cylindrical Brownian motion, H-valued Brow-
nian motion and ®’-Wiener process. We give several examples of such pro-
cesses and illustrate how some infinite dimensional extensions of the real val-
ued Brownian motion (as the cylindrical Brownian motion and a sequence of
independent Brownian motions) may be seen as nuclear space valued Wiener
processes.

Definition 3.2.1 Let H be a separable Hilbert space with norm || - ||g. A
family {B¢(h) : t > 0,h € H} of real-valued random variables is called a
cylindrical Brownian motion (c.B.m) on H with covariance X if
Y is a continuous self-adjoint positive definite operator on H such that the
following conditions hold:

i) For each h € H such that h # 0, < Lh,h >;Il/2 By(h) is a one dimensional
standard Wiener process.
i) For anyt >0, oy, € Rand fy,fo € H
Bi(arfi + a2f2) = a1 Be(f1) + 2Bi(f2)  as.
iii) For each h € H, {By(Rh)} is an F2-martingale, where
FB =o{B,(k):s <t ke H}.

{B¢(h) :t > 0,h € H} is called a standard H-c.B.m or simply, H-c.B.m. if
it is a H-c.B.m. with covariance ¥ = I.

Theorem 3.2.1 Let {B(h):t > 0,h € H} be an H-c.B.m with covariance
¥.. Then there exists an H-valued process B; such that

By(h)=< By,h>g  VYheH

if and only if 2 € Ly)(H). In this case {B;} is called an H-valued Brow-
nian motion.
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Proof: “=” For t > 0 fixed, as

F(h) E{exp(i < B;,h >x)}

= E{exp(iB:(h)}
= exp (—% < 2h,h>H) , heH,

is a characteristic function on H and hence, by Sazonov’s theorem, F is
continuous with respect to S-topology. Therefore h —< Th,h >pg is S-
continuous which implies that ¥ is a nuclear operator.

“e” Let

[e e}
Yh = Z}‘j < h,ej>gej, he H
7=1
where A; >0, 3772, A; < oo and {e;} is a CONS of H. Let

B: = Z Byi(ej)e;.
Jj=1

It is easy to show that B; is well-defined and satisfies the condition of the
theorem. |

Remark 3.2.1 1° Let {By(h) :t > 0,h € H} be a standard H-c.B.m. Then
it is an H-c.B.m. with identity operator as its covariance. Therefore there
does not ezist a process By in H such that

Bt(h) =< Bt; h >H .

2° If {By(h) : t > 0,h € H} is an H-c.B.m with covariance £ and S €
L(H, H), we define

B (h) = B;(Sh), Vh € H.
Then {B$(h) : t > 0,h € H} is an H-c.B.m with covariance S*£S. As

a consequence, {BS(h) : t > 0,h € H} is a standard H-c.B.m if we take
S = X71/2_ Therefore we only need to consider standard H-c.B.m.

Theorem 3.2.2 Let {en}n>1 be a CONS in H. There ezists a one-to-one
correspondence between an H-c.B.m. B and a sequence of independent one-
dimensional Brownian motions {B}'} given by

BY = By(en), n€N (3.2.1)
and -
By(h)=)_ < h,en>u B}, he H. (3.2.2)

n=1



3.2. ®'-WIENER PROCESS 95

Proof: Let {B}'} be a sequence of independent one-dimensional Brownian
motions. Note that by Doob’s inequality

2 2

m+k m+k
E suwp | > <he,>g B} < 4E| Y, <h,en>g B}
0<t<T | =m+1 n=m+1
m+k
= 4T ) <he,>}—0
n=m+1

as m — oco. Hence for any h € H, B,(h) given by (3.2.2) is well-defined in
the following sense: VT > 0

m 2

Bi(h)— > < h,en >g B}

n=1

E sup — 0, asm — oo. (3.2.3)

0<t<T

Forany 0=ty <ty <tg < - < g

k-1
Eexp (z Z Aj(Bt, ., (h) - Bt,-(h)))
7=0

k-1 m
= lim Eexp (iz XY <hyen>m (B, - BZ}))
7=0 n=1

k-1 m

= lim ] [] Eexp(id; < h,en >u (BE,, — BY))
7=0n=1
k-1 m 1 ) )

= "11_1)1100 H H exp (—EAJ < h, en >H (tj+1 - t:))
7=0n=1

k—1 1., \
= T e (~52m — )bl

3=0

Hence (i) of Definition 3.2.1 holds. From

m m
Y. < fi,en>a B+ o2 ) < fa,en > B}

n=1 n=1
m
= Z <onfi+asfa,en >u By,
n=1

(ii) of Definition 3.2.1 follows immediately from (3.2.3) by the uniqueness of
L2-limits.

Finally let A € FB which is given in (iii) of Definition 3.2.1. Then for
anyt>sand he H

E{(B:(h) — Bs(h))1a(w)}



96 CHAPTER 3. STOCHASTIC INTEGRALS

= AI_IPOOEZ < hyen > (B — BM)14(w) = 0.
n=1

This proves (iii) of Definition 3.2.1. Therefore B is a cylindrical Brownian
motion on H.

On the other hand, let B be a cylindrical Brownian motion on H and
define {Bp*} by (3.2.1). It follows from (i) of Definition 3.2.1 that {B}'} is

a sequence of one-dimensional Brownian motions. Now we prove they are
independent, i.e. forany 0 < tj; < -+ <tjm, Ajr ER,n; EN,7=1,---,k
and r =1,--.,m;, we have

E m; k m;
Eexp (iz f: ,\,-,B;g) =[[ Eexp <zzj A,-,B;‘ji) :
7=1 r=1

j=1r=1

We may assume that m; and ¢, do not depend on j, otherwise we only need
to rearrange {t;» : j = 1,---,k and r = 1,---,m;} as {t1,t2, -, tm} and
define

}\js=0 ift,¢{tj,.:7‘=1,---,mj},

forj=1,---,kand s=1,---,m. Let

Mjr = Z)‘j’ and pjo=0, tp=0.

s=1

Then

FEexp 'LZ Z A,,Btr )

1=1r=1

= EeXP ZZZ Hir = Hj(r— 1) Btr(eﬂj))

J=1r=1

k m-1
= FEexp zz Z(/qu /J’JT)(Btr-}-l(enJ) Btr(e”j))
7=1 r=0

'L

Z (Btm (Z(#jm - #jr)en,-)

= Fexp

r=

k
—B;, Z:(#jm - #jr)en,-) )]

2

— exp |- 1)

r=0

Z (jm — ,“'Jr)en,

H
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1 m—1 k
= exp (—5 Z (tr41 —tr) Z(ﬂjm - #jr)2)

r=0 1=1

k 1 m—1
= H €xXp (’—"2' Z (t‘r+1 - tr)(/-/'jm - ;ujr)z)
7=1 r=0

k m .

= H Eexp (zz Aj,BZ_’) .
7=1 r=1

Therefore { B'} is a sequence of independent one-dimensional Brownian mo-

tions. [

Next we give an example of H-c.B.m. We need the following definition.

Definition 3.2.2 Let O C R? be a measurable set. A real-valued function
W on Q x Bf(Ry x O) is called a white noise random measure if

i) For A € By(Ry x O), W(-,A) is a N(0,|A|) random variable;

i) For disjoint Borel sets Ay, Ay in Bf(Ry x O0), W(-, A1) and W (-, A3) are
independent and

W(', A1 U A2) = W(, Al) + W(, A2) a.s.

where

Bf(R+ X 0) = {A S B(R+ X 0) : IAI < OO}
and |A| is the Lebesgue measure of A.

Next we define Brownian sheet as a random field.

Definition 3.2.3 Let (E, &) be a measurable space. A real-valued measur-
able function f on E x Q is called a random field on E. It is a Gaussian
random field if {f(z,-),z € E} is a Gaussian system.

For each (t,z) € Ry x O, let
At,z'—_:{(siy)eR-i-XO:OSsSti y]SmJJ j‘_‘l;"')d};

where z = (z1,---,24) and y = (y1,---,yd). We assume that |A; | <
o0, Y(t,z) € Ry x O.

Definition 3.2.4 A real-valued function B on Q X Ry X O is a Brownian
sheet (B.S.) or space-time Brownian motion if {B(-,t,z) : (t,z) €
R, x O} it is a Gaussian system such that

i) E(B(-,t,z))=0, V(t,z) e Ry x O

i) Cov(B(+t,z), B(+, 8,y)) = | Atz N Asyl, V(t,2), (5,9) € Ry x O.
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Remark 3.2.2 If O = [0,b]¢ for some b > 0 or
O={zecR%:2;>0,j=1,2,---,d},

and B is a Brownian sheet on Ry X O, then

d
COU(B(-,t, a:), B(:, s,y)) = (S A t) H(x.’l A yj)‘

=1

Remark 3.2.3 There is a one-to-one correspondence between white noise
random measure W and Brownian sheet B as follows:

B(‘,t,il:) = W(, At,a:)y V(t,(l?) S R+ x O.
In this sense, we shall denote the Brownian sheet by W(t,z).

Remark 3.2.4 It can be shown that W(t,z) is continuous in (t,z) € Ry X O
and nowhere differentiable for a.a. w. Therefore we can only define W , =
%2—"’2 in the sense of distribution:

[ [ #0000 gy [ [ CHD iy, oy

for all smooth functions ¢ with compact supports in Ry x O. W't,z is called
the white noise in space-time.

Now we proceed to introduce stochastic integrals with respect to white
noise random measures (or equivalently, with respect to a Brownian sheet).
For convenience, we take d = 1 and O = [0, b]. For a simple function f on
R, x [0, b] given by

f(s m) Zaﬂ" t‘l lxtl)x[zg 1,3:,)(3 (l:) (3-2.4)

=1
where 0 =ty <t; <---<thpbandO0=2zp< 21 < --- < =, = b, we define
n
Bt(f) = ZaiW([ti—l At,t; A t) X [:1:,'_1,11:,')), Vvt > 0. (3.2.5)
=1

The proof of the following theorem is straightforward and we leave it to
the reader.

Theorem 3.2.3 Let f be a simple function and let By(f) be defined by
(3.2.5). Then

(a) By(f) is a real-valued continuous Gaussian process such that for any



3.2. ®'-WIENER PROCESS

99

0 < s < t, By(f) is F¥ -measurable, B;(f) — B,(f) is independent of F¥

and
E(Bi(f) - B;(f))? = /: /Ob f(r,z)%drdz

where

FV = a{W(A):YA C[0,t] x [0,8]}.

(b) For anyt > 0, ay,az € R and simple functions fi, fa,
Bi(a1fi + a2 f2) = a1 Bi(f1) + c2Bi(f2)  a.s.
For general function f on Ry X [0, b] such that

T b
/ / f(s,z)%dsdz < 00, VT >0,
o Jo

let {fn} be a sequence of simple functions such that

/T /b(fn(s, z) — f(s,z))%dsdz — 0 asn — oo, VT > 0.
0 4]

Since
E sup |Bt(fn) - Bt(fm)|2 < 4EIBT(fn - fm)|2
0<t<T
T b
_ _ 2 .
- 4’.1’/0 /0 (fa(5,2) — fin(s,2))2dsdz — 0, VT > 0,

there exists a process, denoted by

Bi(f) = At /()b f(s,2)W(dsdz)

such that
E sup |Bi(fa) — Be(f)* — 0, VT > 0.
0<t<T

Theorem 3.2.4 Let H = L%([0, b]).

(3.2.6)

(a) Let W(dtdz) be a white noise random measure on Ry X [0,b]. Then

{B:(f):t >0, f€ H} defined by (3.2.6) is an H-c.B.m.

(b) Suppose that {By(f) :t > 0, f € H} is an H-c.B.m. Then there exists
a white noise random measure W(dtdz) on Ry X [0,b] such that {B:(f)}

constructed in (3.2.6) has the property:

Bi(f) = Bt(f), a.s.



100 CHAPTER 3. STOCHASTIC INTEGRALS

Proof: (a) Let f, be a sequence of simple functions on [0,b] such that || f, —
fllg — 0 as n — oco. Then f and f, can be regarded as functions on
R x [0, 5], i.e.

ft,2) = f(z), V(@) € R x [0,
Then By(f) is well-defined by (3.2.6). By Theorem 3.2.3 and (3.2.6), it is easy
to see that i), ii) of Definition 3.2.1 hold. The condition iii) of Definition 3.2.1
follows from F2 c 7.
(b) For any A € B¢(Ry x [0,0]), let

W (-, A) = lim Bn(1a). (3.2.7)
For m > n — oo, we have
~ . m b
E|Ba(14) - B (14)? :/ / 14(s, ¢)dsdz — 0
n 0

and hence W(:, A) is well-defined by (3.2.7). For A, A; € B¢(Ry X [0,]),
let {fn}, {gn} be two sequences of simple functions such that

/ /b |fn(s’ 'T) - 1A1 (3) w)l2dsdw — 0
Ry Jo

and )
/ / |9n(s, ) — 14,(s,2)|>dsdz — 0.
R+ 0
Let .
fn= X; 0}l mulan )
J:
and
n
=1, b7 1pn_ tm)x(zr_, =7)
7j=1
Then

E exp(iaW (-, A1) + W (-, Az))
= lim Eexp(iaBn(fn) + iBBn(gn))

= lim B [] exp(i(aa} + B07)W([t]_1,t7) X [2]_1,27)))

3=1

i . Iaa'-‘ +ﬁbnl2 n n n n
= lim [T exp (__1'2—1_(% —t7_4) (] — 271)

7=1

= limexp (——% /: /Ob(afn(s, z) + Bgn(s, a:))2dsd:z:)
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1 b
exp (_§/R+~/0 (alg, +ﬂ1A2)2dsdm)
1 o 1o
= exp|-ga |A1] ) exp ELAE
Hence W (-, A1), W (-, Ag) are independent and W(:, 4;) ~ N(0,|4,]), j =

1,2.
Further, since

Bn(fn) + Bn(gn) = Bn(fn + gn)
and f, + gn — 14,u4, We have
W(', Al) + W(, A2) = W(, Al U A2), a.s.

Therefore, by Definition 3.2.2, W is a white noise random measure.
For any f € H, let {f,} be a sequence of of simple function such that
”fn - f”H — 0. Let

: fn(z) = Za'?l[m;‘_l,z;‘)(a:)
Jj=1
Then

Bi(fy) = z W0, x [a7,, 27)

= 2 GB(pr, op) = Bi(fn)- (3.2.8)

j=1

By (3.2.8) and (3.2.6), we have

Bi(f) = Bt(f), a.s. i

Now we introduce the concept of ®'-valued Wiener process and its rela-
tionship with H-c.B.m.

Definition 8.2.5 A strongly sample continuous ®'-valued stochastic process
W = (Wy)i>o on (R, F, P) is called a centered ®'-Wiener process with
covariance Q(-,-) if W satisfies the following three conditions:

a) Wo =0 a.s.

b) W has independent increments, i.e. the random variables

Wt1 [¢1]: (Wtz - th)[¢2], ) (th - th—l)[¢‘n]
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are independent for any ¢1,-++, ¢ € S, 0<t; < --- < tp,n > 1.
c) For eacht >0 and ¢ € &

E (¢Wil]) = ¢-1Q09)/2

where () is a covariance functional, i.e. a positive definite symmetric
continuous bilinear form on ® x ®.

Remark 3.2.5 Let W be a ®'-Wiener process with covariance ). Then
i) W e M2<().
i) {Wi[d]: ¢ € ®,t > 0} is a centered Gaussian system and

EW[SIWi[4]) = (s A 1)Q(¢,4), 4,9 €@, 5,t20.

Remark 3.2.6 A ®'-valued process (Z;)s>o is a non-centered Wiener
process if there exists m € ®' such that Zy — mt is a centered Wiener
process.

Lemma 3.2.1 i) For each ¢ € &, let L¢ = Q(¢,-). Then v is an injective
linear operator from ® onto a linear subspace R(¢) of ®'.
i) For any vy,vg € R(1), let

<1,V >H= Q(t vy, ).

Then < -,- >H, is an inner product on R(). Let || - ||z, be the norm on
R(¢) determined by the inner product < -, - >H, and let Hg be the completion
of R(¢) with respect to || - ||g,. Then Hg is a separable Hilbert space and
Hg C 9.

Proof: The proof is standard and we leave it to the reader. |

Lemma 3.2.2 i) There ezists an indez ry such that for any p > r9, 3 a
positive-definite (i.e. {\/Qp, gb)p >0,V € ®p, ¢ #0) self-adjoint operator
VQp on @, such that

Q) = (Qut Q) VB9 e .

it) For p > ry, we have

w(bpv] =< w,v >_p, Yw,ve ®_,

0p0/Qp = \/Quly : By — B,

and
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iii) For any p > rq, we have Hg = R(\/Q,). Furthermore, for any h € o,

hil = |lAll-p,
Hq

i.e., ,/Qpl is an isometry from ®_, to Hy.

Proof: i) Let V*(¢) = Q(¢, ¢) for ¢ € . Then V : & — [0, o) satisfies the
conditions of Lemma 1.3.1. Therefore there exist # > 0 and r, > 0 such that

Q(¢,8) < 8||¢||2,, Vo € @.

Hence

1Q(¢, D) < Ol 1¥llr, < Ol Allollbllpy Vi €2, p2 7o

Therefore @ can be extended to become a symmetric continuous bilinear
form on @, x ®,, still denoted by Q. As Q(¢,-) € ®_, for any ¢ € &, it
follows from Riesz’s representation theorem that there exists Q¢ € @, such
that

Q(¢, Qb) =< Q¢, ¥ >ps Vi € ®,.

It is easy to show that Q is a positive definite self-adjoint operator on &,

and hence /@, is well-defined and Q(¢,%) = (\/Qp9, 1/Qp'¢)p for any ¢
and ¢ in @,.
ii) Note that, for any v and w in ®_,,

w(fpv] = w {i <v,¢;7 >, ¢§}

j=1

Z<”¢ >—pz<w¢k >_p b5 [#5]

3_1

= Z <v, ¢ > _p<w, ;7 > =< v,w>_,
=1

and

(] - (o), (),
- (\/Q_plw> [Bp0) = w [y/@pbp]

iii) If fo € ®_, such that (fo,\/@50_p¢) = 0 for any ¢ € &, then
-p
V@, fo = 0 and hence, fy = 0. i.e., ,/Q,,’o_,,@ is dense in ®_,. As R(¢) is
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dense in Hg, we only need to show that ,/Qp/ is an isometry from ,/Qp'()_pi’
onto R(¢). Note that V¢, € &, we have

Qb.¥) = (V@b (/)
= (0008 [VQs1]
(1/@s 6-p/@08) 91

Therefore for ¢ € ®

Q)= \/é;lg—p\/Q—p‘{b = \/Q_p,\/_Q:lo—p¢

and ,
1966, g = @6, 6) = | /@5 000
-p
Hence /@, is an isometry from /@, 0_,® onto R(v). |

Theorem 3.2.5 Let () be a covariance functional on ® X ® and let Hg be
constructed in Lemma 3.2.1. Then there exists a one-to-one correspondence

between a ®'-valued Wiener process W with covariance @ and an Hg-c.B.m.
B:

o0
We=3_ Bi(fi)f; (3.2.9)
=1
where {f;} is a CONS of Hg;
Bi(v) = lim We[e  v,], Vv € Hg (3.2.10)
where {v,} C R(L) converges to v in Hy.

Proof: First we assume that W is a ®’-valued Wiener process and define B
by (3.2.10). It follows from Doob’s inequality that

2
E sup ‘Wt[a‘lvn] — Wt[flvm]l

0<t<T
= 4TQ (L”l(vn — Upm), L_l('l)n - 'u,,,))
= 4T|jvp — vm|l}, — O (3.2.11)

Hence (3.2.10) is well-defined and B.(v) is a real-valued continuous process.
Further, let 0 =ty < t; < --- <t and Ay, A2, -+, Ax € R. Then

k
Eexp (zz_: Aj (Btj (v) = B, (”)))
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= nango Eexp ("Z Aj (Wtj [ 1v,) - Wi, _, [L-lvn]))

=1

k
= JirréoHexp (—%(tj tj— 1))\ Q(t v, 1v,,))

= T (-3 - 4-0¥ol,) -

7=1

Therefore {||v||5; Heg ! Bi(v) : t > 0} is a real-valued Brownian motion. This
proves (i) of Deﬁmtmn 3.2.1.
For vy,v3 € V, a1, € R and t > 0, note that

Wilane o) 4+ age ™ 02] — Bi(ayvy + agvs)
and
Wit k] + aaWi[t ™ 02] — a1 Bi(v1) + a2 Bi(v2)

in the sense of (3.2.11), where {v}}, {v2} C R(t) such that v} — v, v — v,
in Hg. (ii) of Definition 3.2.1 follows easily.
As F2 c FY, it follows from (3.2.11) that Vv € Hg, A€ F2,r > t

E(B,(v)14) = lim EW, [ un]14)
= lim E(Wt[ Lun]14)
= E(Bt(v)lA),

i.e., B;(v) is a FP-martingale. This proves (iii) of Definition 3.2.1 and hence
B is an Hg-c.B.m.

On the other hand, let B be an Hg-c.B.m. and define W by (3.2.9). Let
r9 be given by Lemma 3.2.2 and p > 7, such that the canonical injection
from ®_,, to ®_, is Hilbert-Schmidt. Then

2

n+k
Pk, 2, B
00 n+k 2
— y ] P
B EoiI:ETZ(jgn;rlBt(fJ) <fj’¢i >_p)
o ntk ?
< Z4E( > Br(f)) <fj,¢z'—p>_ )
=1 )=n+1 P

n+k

Z4T > (£47)

Jj=n+1
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n+k

= 4T 3 lIfilZ, -0

Jj=n+1

as the canonical injection from Hg to ®_, given by the composition Hg —
&_,, — &_, is Hilbert-Schmidt. Therefore (3.2.9) is well-defined and W, is
a continuous ®_,-valued process. As in the first part of the proof of this
theorem, we can show that W; satisfies the conditions of Definition 3.2.5,
i.e., W is a ®'-valued Wiener process. |

Corollary 3.2.1 For any covariance functional @ on ® x ®, there exists
a ®'-valued Wiener process W with covariance @ and there exists p > 0
depending only on @ such that

w. € C(R+, é—p) a.s.

where C(Ry, ®_,) is the space of strongly continuous functions from Ry to
&_,.

Proof: Let Hg be constructed by Lemma 3.2.1. It follows from Theo-
rem 3.2.2 that there exists an Hg-c.B.m. and then by Theorem 3.2.5, we
obtain the results of the corollary. |

Remark 3.2.7 Let (®, H,T:) be a special compatible family defined in Sec-
tion 1.8. Suppose that @ is a covariance functional on ® x ®, then there
exists a ®'-valued Wiener process W with covariance @ such that

W. e C(R+, q’_p) a.s.

for any p > r1 + ro where ry is given by (1.3.17) and rq is given by Lemma

Remark 3.2.8 It follows from Corollary 8.2.1 that the condition (iii) in
Theorem 3.1.4 is not necessary.

Now we introduce some examples of ®'-valued Wiener processes.

Example 3.2.1 Let (®, H, L) be a special compatible family such that H =
L*([0,8]) (cf. Remark 1.3.4). Let W(t,z) be a Brownian sheet on Ry x [0, b].
Let W; be a ®'-valued process defined by

Wil4) = /0 t /0 L S W(dsdz) Vo e &,

It is easy to see that {W;} is a ®'-valued Wiener process with covariance
functional @ given by

Q¥)=<¢¥>r Vved
Further W. € C(Ry,®_,) forp > ry.
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Example 8.2.2 Let (®,H,L) be a special compatible family (see Remark
1.3.4). Recall that the injection from ®,4 to ®, is a Hilbert-Schmidt map for
g>p+ri. Let < -, - >q be the inner product in H and define

Qo(d, %) =< &, % >0 ¢, 9 € 3.

Then from Corollary 3.2.1 there exists a ®'-valued Wiener process W with
covariance Qo such that

W.e C(Ry, %) as if p>mr

and will be called a standard Wiener process. More generally, if r > 0
and

Qr(¥)=< 9>  $Pe

then there exists a ®'-valued Wiener process W with covariance Q, such that
W. e C(R4,2-,p) forp>r+ry.

As will be shown in later examples, in applications the @ is not always
given by one of the inner products on the Hilbert spaces defining ®. Never-
theless since @ is continuous on ® X ®, then, as in the proof of Lemma 3.2.2,
there exist # > 0 and ro > 0 such that

Q4. ¢) <Oll4ll7,, Voed

and therefore there exists a $’-valued Wiener process W with covariance Q
such that
W. e C(R+, é_p) a.s.

for any p > r1 4+ 7a.

Example 3.2.3 Let S(R) be the Schwartz space of Ezample 1.3.1 (see also
Remark 1.8.5). Then (S,L*(R), —d?/dz® + 22?/4) is a special compatible
family where {¢;};>1 are the Hermite functions given by (1.3.10), \; =
7—1/2, 7 > 1, < -« >¢ is the inner product on L*(R) and r;y > 1/2.
Taking ® = S(R) and H = L%(R) in the last ezample, we have that if
Qo(¢, %) =< ¢,% >0 then the standard Wiener process W in S'(R) is such
that W € C(Ry, S}) for p > 1/2. Clearly, there is no smallest p such that
this happens.

For ¢ € ® define

WOlg] = W,[D?¢] where D = %.

Then the covariance functional of the &'-valued Wiener process W) =
WM )eso is

QW(¢,9) = Qo(D*¢, D*p) =< D¢, D*p >q .
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We shall show that W € C(Ry, S;) for p > 3/2. In general we will prove
the following: Let Q.($,%) =< ¢,% >,, V¢, € ® and r > 0, and let
W = (W¢)s>0 be the corresponding S’-valued Wiener process. Define

W [¢] = W.[D?¢] (3.2.12)

then W) is a S'-valued Wiener process such that W) € C(Ry,S},) for
p>r+3/2.
Clearly
QW(¢,9) =< D*¢, D >,  $,pe®

then from Example 1.3.1 for ¢ € &

00 1 2r
Q@8 = X (nt3) <D%.da>}
n=1
00 2r
-3 (n+%> < ¢, D% >3

It follows from the proof of lemma 1.3.4 that

#) = V24 1)~ Lo (2)

and hence
n(2)
\/n2— 1 {\/nz— 2¢n_2($) B \/nz— 1¢n(z)}

G ) - o))

= Ve DEoA, -l - YO, )
Therefore
QM(¢,¢)
o) 1 2r
= ngl (n + 2) <¢a
(CENICED) 2n -1 Vn(n+1) ’
7 p-z — 2 bn — 4 ¢n+2>0

3 00 2r
% (n+ %) {(n=1)(n-2) < ¢, bn_2 >3

n=1

IN
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+(2n = 1)2 < ¢, ¢n 2 4n(n+1) < ¢, dnya >2}
3 el 1 2r42
ST <n+ 5) {< &bz >5 +4 < by ¢n >0+ < ¢, bni2 >3}
n=1

< 0‘||¢||3+1
where « is a constant. Since the injection S, — S,4; is Hilbert-Schmidt for
p>r+1+ % =r+ %, we have shown that the §’-valued Wiener process

given by (3.2.12) is such that, for p > r 4 3/2,

w e C(Ry,S)) as.

3.3 Stochastic integral with respect to H-c.B.m
and ®'-Wiener process

In this section, we discuss stochastic integrals with respect to H-c.B.m. and
with respect to ®'-valued Wiener process. We shall also obtain stochastic
representations for H-valued and ®'-valued continuous martingales.

3.3.1 Stochastic integral

Let H and K be two separable Hilbert spaces and let B be an H-c.B.m. Let
L% be the collection of all L(2)(H , K)-valued predictable processes f such
that

T
E/ 1£(t,w)I%ydt < oo, VT > 0.
0

Definition 3.3.1 For f € L%, we define

It(f) = Z (Z /: < f(s’w),gjvfi >H st(fi)) g5, t20

where {f;} and {g;} are CONS of H and K respectively and f(s,w)" €
L(K, H) denotes the dual operator of f(s,w) € L(K,H).

Theorem 3.3.1 I(f) € M2¢(K) is well-defined.

Proof: First we show that Vj > 1,

It(f).’l = Z[)t < f(siw),gjvfi >H st(fi)
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converges. In fact

n+k 2

t
Z A < f('s!w)’gj’fi >H st(fi)

1=n+1

E sup
0<t<T

n+k 2

IN

T
AR fo < f(s,0)'gj, fi >u dB,(f)

1=n+1
n+k T . )
= 4 Y B[ <fs,0)gfi>h ds =0

i=n+1

as n — oo. As a consequence, we see that I(f); € M2¢(R) is well-defined,
Vi>1.
Next we show that I(f); does not depend on the choice of the CONS

{f:} of H. Let {f;} be another CONS of H and let I(f); € M?(R) be
given by

ft(f)] = Z/Ot < f(svw)lgja ﬁt >H st(ﬁ)
Then
E|L(f); ~ 1(9);| = B + EIE(H);1? - 2BL(1);Ee(£);

t ¢ )
= Z/ E < f(s’w),gj,fi >%‘I dS+ Z/ E < f(slw)/gj,fi >%{ dS
i V0 ~ Jo
' ~ ~
—22/0 E < f(s,w)'g;, fi >u< f(s,w)'g5, fr >H< fir fr >H ds

¢ t
= 2 [ Blf(s,0)ollrds =2 [ Bllf(s,0)'e;ll4ds = 0.
By similar arguments, we can show that

L(H) = L 1(f)9;

converges and does not depend on the choice of the CONS {g;} of K. This
proves our assertion.

As a consequence of the definition we have the following inequality.

Theorem 3.8.2 For 2 < p < oo, there exist constants C, depending only
on p such that for a predictable Lo(H, K)-valued process f with

p/2
g [{ I ||f<s,w)||%ds} ] < oo
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T p/2
{ / nf<s,w>||%ds} ] .

Proof: It follows from Burkholder’s inequality for finite dimensional martin-
gale (It(f)1,- -, It(f)a) that

d »/2 d T
2 112
E f;g {; It(f)j} <GE {;/0 “f(s’w)f.‘l“de}

The required inequality follows from this, using Fatou’s lemma. |

one has

p
< C,E
K

/Ot f(s,w)dW;

E {sup
t<T

p/2

Let W be a ®’-valued Wiener process with covariance Q. The space of
integrands, Lé consists of those predictable functions f : R4 xQ — L(®/, )
for which

E'/TQ(f(s,w)'gb, f(s,w)d)ds < 00, VT >0, ¢
0

Theorem 3.3.3 Let f € L2Q. Then for T > 0, there exists p = pr > 0 such
that f can be regarded as a predictable map from [0,T]x Q to L(y)(Hg, ®-5)
and

T
E‘/(; ||f(s’w)”%(2)(HQ»<D’-P)ds < 0.

Proof: Define a map Vg from @ to [0, 00) by

T
Vi(¢): = E /0 Qf(s,w)'d, f(5,w)'d)ds.

It is easy to see that V7 satisfies the conditions of Lemma 1.3.1 and hence,
there exist # > 0 and » > 0 such that

Vr(¢) < 0|9, Vo € ®.

Let p > r be such that the canonical injection from ®, to ®, is Hilbert-
Schmidt. Note that for ¢ € ® C &, C Hb,

I¢lz, = sup{QW, /1R, kg : ¥ € 2}
sup {Q(¥,9)/Q(%, %) : ¥ € B} = Q(¢,9)-

Hence

T / 2
B [, (sl ds

T
B [ QU (s,w)' ¢, £(s,0)#)ds
= SOlIFIE < 0.
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Therefore f(t,w)" € L2)(®p, Hy), dtdP-a.e. and hence,
ft,w) = f(t,w)” € L(z)(HQ, Q_p) dtdP-a.e.

such that
B [ 1505, trqpds = B [ 11550) I3y o1, ds < .
0 (2)(Hg:®-p b (2)(®pHy
Let {v;} be a CONS of Hg. As

L(g)(HQ,‘I’_p) N L(@l,él) = {Z € L(‘I’,, {),’) : Z ||€’Uj||2_p < OO} ,

J

is a measurable subset of L(®/, ®'), f can be regarded as a predictable map
from [0,T] x Q to L(z)(HQ, q)_p). |

Based on Theorems 3.3.1 and 3.3.3, we now introduce the stochastic
integral with respect to a ®'-Wiener process W.

Definition 3.3.2 Let B be the Hg-c.B.m. given by W in Theorem 3.2.5

and f € Lé. For any T > 0, let p = pr be given by Theorem 3.3.3. For
t <T, we define

M, = /Ot f(s,w)dW, = /Ot f(s,w)dBs,
i.e.

Mfg = Y [ (F(s,)0)81dB,() (3.3.)

where {v;} is a CONS of Hg. As

T
EA ”f(s’w)”%(z)(Hqu)—P)ds < %0,

M, given by (3.3.1), is a well-defined ®_,-valued martingale for t € [0, T).

The following theorem follows directly from Theorems 3.3.1, 3.3.3 and
Definition 3.3.2.

Theorem 3.3.4 M in Definition 3.3.2 is a well-defined element in M?<(®').
Further, if p = pr is given by Theorem 3.3.3, then

MI[O,T] € C([O’ T]a §—P)‘
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3.3.2 Representation theorems

Now we consider the stochastic integral representation for H-valued con-
tinuous square-integrable martingales. First we fix T > 0 and let M be
an H-valued continuous square-integrable martingale. Let f : [0,T] x Q —
L)(H, H) be predictable and

< My(hY), My(h?) >= /Ot < f(s,w)h!, f(s,w)h? >g ds (3.3.2)

where h? € H, My(h?) =< M;,h? >g, j = 1,2, and the left hand side of
(3.3.2) is the quadratic covariation process of the martingales M;(h!) and
My (h?).

Definition 3.83.3 We say a stochastic basis (Q, F, P, ]:'t) s an extension
of a stochastic basis (Q, F, P, F) if there exists a map 7 : Q@ — Q which is
F | F-measurable such that i) F; > n=Y(F;); i) P = Pr~! and iii) for every
bounded random variable X on ,

E(X(@)|F) = E(X|F)(n®) P-a.s.,

where X (&) = X (1@), for € Q. We shall denote X by X if its meaning is
clear from the contect.

(Q, F, P, F3) is called a standard extension of a stochastic basis (R, F,
P, F;) if we have another stochastic basis (¥, F', P!, F{) such that

Q,F,P,F)=(Q,F,P,F) x (¥, F, P, Fl)
and 7% = w for & = (w,w') € Q.

Theorem 3.3.5 Let M € M?*(H) such that (3.3.2) holds and

T
E [ 1£(s,)lfyds < .

Then, on a standard extension (Q, F, P, ;) of (Q, F, P, F), there exists an
H-c.B.m B; such that

M, = /0 * (s, w)dB,. (3.3.3)

Proof: We divide the proof into three steps. For simplicity of notations, we
suppress w and write f(s), gn(s), R(s) for f(s,w), gn(s,w), R(s,w).

Step 1. We construct an H-c.B.m. B; under the assumption that V(s,w) €
[0,T] x Q, f(s,w) is a non-negative definite self-adjoint Hilbert-Schmidt op-
erator.
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Let gn(s) = f(s)(f(s)>+n~'I)7". 1t is easy to see that || f(s)gn(s)||L(z,m)
< 1 and ||gn(s)llpm,m) < 3@ Let R(s) be the (orthogonal) projection
operator from H to the range of f(s)2. Then f(s)gn(s) = gn(s)f(s) — R(s)
in L(H,H) asn — oo. Let (', ', P!, F{) be a stochastic basis and B} be an
H-c.B.m on this basis. Let (Q, F, P, %)) = (Q, F, P, F:) x (¥, F', P', F}) be
a standard extension of the stochastic basis (2, F, P, ;). On this extension,
let

J ot
By = 3 /0 < gn(s)h, f; > 1 dML(f;)

=1

J ; .

+3° [ < 1= Re)h, £ >m dBY(S)
=1

forany t € [0,T], h € H, n,J € N, where {f;} is a CONS of H. Then for
hl,h? € H, the quadratic covariation process is given by

< B(n’J)(hl),B(m’K)(h2) >,
= /Ot < f(s)ﬂ'Jgn(s)hl,f(s)7rKg,,,(s)h2 >y ds
+/0t < miax(I = R(s))hY, (I — R(s))h® >m ds

where 77 is the projection operator from H to the linear span of {f; : 1 <
j < J} on H. By the dominated convergence theorem, as J — oo

2
E sup |B(n,J+k)(h)_B(nJ)(h)’
0<t<T

4E (B™7*0) (h) - B (h)),_

IA

T
4 [ 15 @4 = 71)gn(s)hl s
+4 /0 (rak — )T — R(s))hl%ds — 0. (3.3.4)

Therefore B{™7)(h) converges to a real-valued continuous square-integrable
martingale, say B(™ (h). Then

< B™('),BM(k?) >, = /Ot < f(8)gn(s)R, F(5)gm(s)h* > ds
+/Ot < (I — R(s))h', h? >p ds

and

< B (1), B (h?) >,
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= [ < SO, F(s)an(o)W? > s
-*—/0]t < m;(I — R(s))h', (I — R(s))h? >g ds.

Proceeding as in (3.3.4) we can prove that B(") (k) converges to a real-valued
continuous square-integrable martingale, say B(h), and

< B(hY), B(h?) >,

t
/ < R(s)h',h? > ds
0

¢
+/ < (I = R(s))h!, h? >g ds
0
= t<h'h:>pg.
It is easy to verify the conditions of Definition 3.2.1 and hence, B is an H-

c.B.m.
Step 2. We now obtain the representation (3.3.3). Let

Tm = inf{t € [0, T]: (| £(t)||(2) > m}.

Note that

J tATm
S [ < So)h £y >m dBEO(S) (335)

i=1

K tATH
= Z/ < gn(8)Tsf(8)h, f& > dM,(fi)
k=1 0

tATm

K
+30 [ < (1= R)maf(o)h, > 5 dB(Se).
k=10
As for s < T,

£ (s)rrgn(s) (T sk = 1) f()Bly < m* LIl

and
7 (I = R(5))(my4k — 1) f(s)RlIF < m? |||,
it follows from the dominated convergence theorem that, as J — oo,

2
Jtk tATm

S [T < fo)h, 15 > BEHS)
j=J+170

Jtk tATm
= Z E'/O < f(s)h, fi >u< f(s)h, f; >H

ij=J+1

E
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< f(s)ﬂ'Kgn(s)fia f(s)ﬂ'Kgn(s)fj >H ds
J+k

+ ) E/Otmm < f(s)h, fi >u< f(s)h, f; >H

1,5=J+1
<mg(I - R(s))fi,(I — R(s))fj >u ds

= B [ (o) mian(s)(nass — m) S5l
48 [ (L~ R(5)) (g1~ m) (blds — 0,

i.e. the left hand side of (3.3.5) converges to
o tATm %
S [ < 16 £y > B
3=1

We can similarly derive the limit (as J — oo0) of the right hand side of
(3.3.5). Then

s tATm x

> /0 < f(s)h £ >m dB{H(£)

<
-

-y < gnl) F(o)h fi > AML(f)

k_1K tATm
+ Z/O < (I = R(s))f(s)h, fr >& dB,(fx)

K tATM
= S [ <l )b fu >5 dMLS).

Note that as K — oo, we have
2

EY fom < f(s)h, £ >r d(BS(f5) = B (1)
=1
’ J tATm
= m SB[ < SO ous b

(FO) = r)gn(s) s ST = TR )n(3) ) s
+ Jim i E /0 N < () i u< F(S)hy fi S
(= 7)(T = R o (= R d
= Jim B [T - nr)galo)ma S (o)l
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HI = mx)(I = B(s))ms £(s)hil s
= B[ 1A - m)an(s) ()hlds — 0

and

K+t 2

S [ < onlo) (o) fi > ML)

k=K+1
K+l

= 2 B[ <o) Sy >u< (o) (o) fu >n
Tk= K+1

< f(s)fj f(8)fx >H ds
= B [T 156 rrese ~ m)9n(5)S(5)blfgds — 0

E

and therefore

0 tATm
S [ < f6)h £y >m dB(S)
=170

= 3 [T < onl M e > ML),
k=10

Similarly, as n — oo,

Z/MT < f(8)h, f; > dBM(f;) — Z/ f(s)h, fj > dBs(f;),

and

tATm 2

E | Mopr,, (k) - 2 / < gn(8)F()h, fio > 1 dM,(fi)

tATm

< (I - gn(s)f(s))h, fk >H dMa(fk)

= Jim [T - ga(6) () Ads
= B [ I - gnls)f(s)hlids

tATHR
~ B[ TS - R(s)hlds =o0.
Therefore

tATm
Minea(W) =3 [ < fs,0)h, £; > dBu(F).
J
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Letting m — oo, we see that (3.3.3) holds.
Step 3. For general f, let p(s) be an L(H, H)-valued predictable process
such that p(s)'p(s) = I and (f(s)' f(s))Y/? = f(s)p(s). As

< MR, M) = [ (Y TR, () SR, s,

by previous steps, there exists an H-c.B.m B; such that

M, = /0 (f(s)'f(s))3dB,.
Let

Bu(h) =Y /0 " < p(s)h, f; >u dBy(f;) VheH.
- |

Note that

. ¢
<Bu(h) >= 3 [ <p(s)'h, £ >} ds = el
3
it is easy to show that B, is an H-c.B.m. Using simila,r arguments as in step
2, we see that (3.3.3) holds with B replaced by B. ||

Finally we consider the stochastic integral representation for ®'-valued
continuous square-integrable martingales.

Theorem 3.3.6 Let ) be a covariance function on ® x ®. Suppose that
M € M?*<(®') and there ezists f € L} such that

<Ml >= [ "QUf(s)', (s)'d)ds.

Then on an estension (Q, F, P, F,) of (Q, F, P, F:), there exists a ®'- Wiener
process W with covariance () such that

M, = /0 f(5)dW,. (3.3.6)

Proof: For each n € N, let p, be given by Theorem 3.3.3 (with T = n).
Then M|jo ) is @ ®_p,-valued continuous square-integrable martingale such
that VA € ®_,., t € [0, 7]

ds.

2
—Pn

< M(h) >i= /0 t 0= y/@pn £ ()85
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Taking H = ®_,,,, it follows from Theorem 3.3.5 that there exists a standard
extension (Q, F, P, F;) X (Q™, F", P, F*) of the stochastic basis (2, F, P, )
and a $_, -c.B.m. B" such that

t
M, = /0 0_p. /@ f(5)'6,,dBT.

For any v € ®_,,, let B?(\/Qp, v) = B?(v). Then B? is an Hg-c.B.m. for
s € [0,n] and, for any ¢ €

Mg = 3. /0 t<0—pn\/22;f(8)'¢,¢}"">_pndB;*(¢;Pn)
[ (50 @), a8 (ar 457)
= 5 [ (Van 67 Uty a1as: (Y@, 6;7) - (387

Let -
@, F, P, F)=[[@",F P 7).
n=1
On the extension (Q, F, P, ;) = (Q, F, P, F) x (', F', P!, F}), we define B
inductively:

B. — B}, for t € [0, 1];
b Bn+B""'1 Bntl, forten,n+1), n>1.

It is easy to see that B is an Hg-c.B.m. Let W be the ®-Wiener process
with covariance @ corresponding to B by Theorem 3.2.5. By Definition 3.3.2
and (3.3.7), we see that (3.3.6) holds. |

3.4 Stochastic integral with respect to Poisson
random measure

In this section, we study the stochastic integral of ®’-valued processes with
respect to Poisson random measures. We shall derive a representation the-
orem for a class of purely-discontinuous ®’-valued martingales.

First we recall some basic facts without proof about real-valued semi-
martingales. We refer the reader to the books of Ikeda and Watanabe [18]
and Jacod and Shiryaev [22] for more details. Denote by M?(R) (M?<¢(R.))
the collection of all (continuous) real-valued square-integrable martingales.
Let A be the collection of all adapted processes whose sample paths are of
finite variations on any finite intervals.
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Definition 3.4.1 M € M?(R) is purely-discontinuous if My = 0 and
for any N € M?¢(R), MN is a martingale. We denote the collection of all
purely-discontinuous real-valued square-integrable martingales by M*4(R).

Theorem 3.4.1 For any M € M%(R), there exists a unique decomposition
M = M° + M? such that M° € M**(R) and M% € M?4(R). They are
called respectively the continuous and the purely-discontinuous part of
M.

For any M, N € M%(R), we define the quadratic variation process
n—1
[M N]t— hm Z(Mt;+1 Mtj)(th+1 —th)
]_0

where 0 =tp < t; < ---<t, =tand A =max{tjy; —¢;: 0< 7 < n}.

Theorem 3.4.2 For any M, N € M?(R), we have [M,N] € A and MN —
[M, N] is a real-valued martingale. Further

[M,N]y =< M°,N° >, + > _ AM,AN;,
s<t

where AM, = My — M,_. As a consequence, M € M?(R) is purely-
discontinuous iff Vt > 0

[M) M]t = Z(AM5)2) a.s.
s<t

Definition 3.4.2 Let (U, &) be a measurable space. A map N : QX (B(R4)X
&) — R is called a random measure if N(w, ) is a measure on Ry x U for
eachw and N(-, B) is a random variable for each B € B(R;) X . A random
measure N is called adapted if N (-, B) is F;-measurable for B C [0,t] X U.
A random measure N is o-finite if there exists a sequence U, increasing to
U such that E|N(-,[0,t] X Uy,)| < oo for each n € N and t > 0.

A random measure N is called a martingale random measure if for
any Ae Ty ={A €& : E|N([0,t] x A)| < oo Vt > 0}, the stochastic process
N([0,t] x A) is a martingale.

A o-finite adapted random measure N is said to be in the class (QL)
if there exists a o-finite random measure N such that N = N - N is a
martingale random measure and for any A € Tn, N([0,t] x A) € A is
continuous in t. The random measure N is called the compensator of N.

Theorem 3.4.3 Let (U, ) be a measurable space and let N be an integer-
valued adapted random measure on Ry x U. Then, there exists a sequence
of stopping times {T,} and a U-valued optional process p such that

N(w,A) =) 1p(w,s)1a(s,ps(w)), YA € B(Ry) X £,
s>0



3.4. DISCONTINUOUS STOCHASTIC INTEGRAL 121

where
D = Up{(w,Tn(w)) :w € Q} C 2 x Ry.

The set D and the process p are called the jump set and the point process
corresponding to the integer-valued random measure N.

Definition 3.4.3 A random measure N is called independently scat-
tered if for any disjoint By,---,B, € B(R4) x &, the random variables
N(.,By),-+,N(:, Bn) are independent.

An independently scattered integer-valued adapted random measure is
called a Poisson random measure if for any B € B(Ry) x &€ such that
(dtdp)(B) < oo, N(-,B) is a Poisson random wvariable with parameter
(dtdu)(B). p is called the characteristic measure of N.

It is clear that any Poisson random measure N is in class (QL) with
N([0,t] x A) = tu(A) for any A € £.

Definition 3.4.4 A real-valued function f(t,u,w) defined on Ry X U x Q2
is predictable if it is U/B(R) measurable where U is the smallest o-field
on Ry X U x Q with respect to which all g having the followmg properties
are measurable:

i) for each t > 0, (u,w) — g(t,u,w) is & x Fy-measurable;

i) for each (u,w), t — g(t,u,w) is left continuous.

Let N be a Poisson random measure with characteristic measure p. We
introduce the following classes:

_ f is predictable and Vt > 0 .
{f () B §t 155, u,0)u(duds < o0 [ 7= 1%

For f € Fy N FE, let

Mt=/t/ f(s,4,w)N(dsdu)
le(w s) f(s,ps(w),w) — / / f(s,v,w)u(du)ds (3.4.1)

s<t

where D and p(s) are the jump set and point process corresponding to N.
It is easy to prove that (3.4.1) is well-defined and M € M?(R) such that

<M >= /Ot/Uf(s,u,w)z/.t(du)ds (3.4.2)

and
AM; = 1p(w,t) f(t, pe(w),w). (3.4.3)
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For f € F%, let

fn(t1 Uu, w) = 1[—n,n](f(ta u,w))lu,‘(u)f(t, u, w)

where U, is given by Definition 3.4.2. Then f, € Fj;, N F%. Define M™ by
(3.4.1) with f replaced by f,. It is easy to prove that M™ converges, say
to M, in M%(R). We call M the stochasti~c integral of f with respect to

the compensated Poisson random measure N. It is easy to verify (3.4.2) and
(3.4.3) for M.

Theorem 3.4.4 (Ito’s formula) Let N be a Poisson random measure with
.characteristic measure p. Suppose that

. . . . t . -
XJ=XI+ A4 M7 + / / F(5,u, ) N (dsdu)
0 JU
where A € A, M7 € M**(R) and f’ € F}, j = 1,2,---,d. Let F €
C*(R?). Then

d .t , d ¢ )
F(X) = F(Xo)+3 /0 0,F(X,)dAi + Y /0 9 F(X,)dM?
71=1 7=1

1 & o, i agi
+5 > jo OLF(X,)d < M*, M7 >,

+ / t /U {F(Xoo + f(5,4,w)) = F(X,_)} N(dsdu)
+ t J AP + £ u0) - FX)

d
_ x; (s, u,w)F;(X,)}dsp(du),

Theorem 3.4.5 Let N be a Poisson random measure on Ry X U and f €
I'%. Then

t ~
M, = /0 /U F(5,u,w) N(dsdu) (3.4.4)
iff M € M?%(R) and (3.4.3) holds.

Proof: “=” We only need to prove that M € M*4(R). Let v € M2(R).
It follows from Ité’s formula that

¢ ¢ )
My = Mo’)’0+/0 Msd'y,-i—/o /Uf(s,u,w)'ysN(dsdu)

is a martingale. Therefore < M,y >=0 and hence, M € Mz"f(R).
“4" Denoting the right hand side of (3.4.4) by M;. Then M—M € M?4(R).
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On the other hand, A(M — M) = 0,i.e. M —M € M?*<(R). Hence M = M.
|

Theorem 3.4.6 Let (V,By) be a measurable space and M be an adapted
integer valued random measure in class (QL) with the compensator M (dtdv)
= q(t, dv,w)dt. Suppose that (U, ) is a standard measurable space and there
ezists a predictable V* =V U {0}-valued process

ft,u,w):[0,00) XU x Q- V*

such that
plu: f(t,u,w) € A} = q(t, A,w), VA € By

where 8 is an extra point attached to V.. Then, on an extension (Q, F, P, ]:"t)
of (Q, F, P, F;), there ezists a Poisson random measure N with characteristic
measure p such that

M((0,t] x A) = At/lle(f(s,u,w))N(dsdu)
Z ]-D(w, 3)1A(f(sips(w)’ w)):

s<t

for every A € By.

After the above preparations, we now define the stochastic integral of
®’-valued functions with respect to Poisson random measures. Let N be a
Poisson random measure on Ry X U with characteristic measure u and f be
a predictable map from [0, 00) x U x € to @’ such that

t
E/ / 1£(5, w w)[8]%u(du)ds < oo, V¢ > 0, Y € &.
0 JU

Define .
MY = /0 /U F(s,u,w)[4] N (dsdu), Vo € &. (3.4.5)

It is clear that there exists M € M%4(®'), denoted by
t ~
M, =/ / f(s,u,w)N(dsdu), V¢ € @,
0 JU

such that M? = M[¢] for all t > 0 and ¢ € &, where M24(&') is the
collection of M € M? such that M[¢] € M?%(R) for any ¢ € &.

As a consequence of Theorem 3.4.6, we have the following representation
theorem for ®’-valued purely-discontinuous square-integrable martingales.
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Theorem 3.4.7 For M € M?%%(®'), we define an integer-valued random
measure Npr on Ry x (8'/{0}) by

Np([0,8] x A) =) "14(AM,), VA€ B(®'/{0}).
s<t

If Ny is in class (QL) with the compensator Nas(dtdv) = q(t, dv,w)dt and
there exists a standard measurable space (U, &) and a predictable map

f(t,u,w):[0,00) x U x Q — (®'/{0}) U {8}
such that
p{u: f(t,u,w) € A} = q(t, 4,w), VA € B(3'/{0}),

then on an extension (Q, F, P, F;) of (Q, F, P, F,), there exists a Poisson
random measure N with characteristic measure p such that

M, = /(:/Uf(s,u,w)]v(dsdu). (3.4.6)

Proof: It follows from Theorem 3.4.6 that there exists a Poisson random
measure N with characteristic measure p such that

Nar((0,8] x A) = /0 t /U 14(f (s, u, w)) N (dsdu)
for every A € B(®'/{0}). Therefore
AM;(w) = 1p(t,w) f(t, pe(w),w), Vt>0,w € Q,

where D and p(s) are the jump set and point process corresponding to N.
Hence for any ¢ € ®,t > 0 and w € (2, we have

AM;(w)[¢] A/ / F(s,u,w)[¢]N(dsdu),
Mw)(4) - | t /U £(s,u,w)[$]N(dsdu) € M>(R) N MP4(R) = {0}

where 0 denotes the identically 0 martingale. Therefore (3.4.6) holds. i

This is probably the right place to discuss some special examples of
purely-discontinuous ®’-martingales.



3.4. DISCONTINUOUS STOCHASTIC INTEGRAL 125

Example 3.4.1 Let X be a domain in R®. Let A be a closed densely de-
fined nonnegative-definite self-adjoint operator on H = L%(X, p(z)dz) where
p is an appropriately chosen measurable function on X. Suppose that the
condition (1.3.17) holds and & is the CHNS constructed in Ezample 1.3.2.

Let N be a Poisson random measure on Ry x Ry x X' with characteristic
measure p on Ry x X such that

/ a’¢(z)*pu(dadz) < oo Vo € ®.
RyxX

For any ¢ € @, let
¢
Md’:// a¢(z)N(dsdadz).
t= [ fo. 09N (dsdads)

Theorem 3.4.8 For any ¢,% € ® and t,s > 0, we have
EMPMY = (t A 5)Q($,9)
where
Q4,9) = ]R+  @0(@)b(e)u(dado).
Proof:
EM,[$]M.,[¥]
- E f /R+X ad(2) N (drdadz) / / _ b(e)N(drdada)
_ /0 " /R+XX o2 $(2) () drp(dadz)
= (tA9)Q(¥). .

Theorem 3.4.9 There ezists M € M>¥(®') such that My = M,[¢], ¥t >
0, ¢ € D, iff Q is continuous on ® x .

Proof: “=” Let t > 0 be fixed and let V' : & — [0, 00) be given by

V($) = EM s>, Vo€

It is easy to verify the conditions of Lemma 1.3.1 and hence, 39 > 0 and
r > 0 such that

EMJSP <0ll¢l. Vo e . (3.4.7)
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The continuity of @ then follows from Theorem 3.4.8.
“«” Similar to (3.4.7), 360 > 0 and 7 > 0 such that

Q¢,4) < 92 Vo€ 2. (3.4.8)

Let p > r be such that the canonical injection from &, to ®, is Hilbert-
Schmidt. Let

#F
Mt=ZMt’¢j”.
J

It follows from (3.4.8) and Theorem 3.4.8 that M; is a ®_p,-valued process

such that M? = M[¢],Vt >0, ¢ € ®. M € M?4(®') then follows directly
from the definition. i

Remark 3.4.1 For most of the cases of interest to us, we have ® — Cp(X)
(e.g. S(R) in Erample 1.3.1 and Remark 1.3.5, the CHNS & constructed
in Section 7.2). In this case, Q is continuous on ® x ®. In fact, let V :
® — [0,00) be given by V(¢)® = Q(¢,¢), V¢ € &. The condition (1) of
Lemma 1.3.1 follows from Fatou’s lemma and the conditions (2) and (3)
follows from the linearity of Q. Therefore, 30 > 0 and r > 0 such that
V(¢) < 0||4l|», V¢ € ®. The continuity of Q then follows easily.

Remark 3.4.2 Comparing with (3.4.5), in this ezample, we have U = R x
X, v = (a,z) and f(s,u,w)[¢] = ap(z) [non-random integrand]. If & —
Cy(X), then f(s,u,w) € ¥ for all (s,u,w) € Ry X U x Q.

Example 3.4.2 Let ® be a« CHNS and let A be a measurable subset of ®'.
Let N be a Poisson random measure on Ry X R X A with characteristic
measure u on R X A such that

/ a’n[¢*u(dadn) < oo Vo € @.
RxA

For any ¢ € ®, let

M = / t / an[¢] N (dsdadn).
0 JRxA
Similar to the previous example, we have
Theorem 3.4.10 (1) For any ¢,¢ € ® and t,s > 0, we have
EM{MY = (7 5)Q($,9)
where

Q(¢, %) = foA a’n[¢In[4]u(dadn).

(2) There exists M € M24(®') such that M = My[¢], Vt > 0, ¢ € &, iff Q
is continuous on ® x P.





