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Abstract

Here we discuss three problems, namely (i) Robbins - Monro

procedure, (ii) sequential estimation of the common mean of a

set of normal populations and (iii) sequential estimation of the

mean of response function using Spearman-Karber estimator,

the common thread among them being that they use adaptive

sequential designs.

1. Introduction. In sequential analysis, especially in sequential

estimation, it is natural to resort to adaptive designs. In the following

we will discuss three such problems. An early adaptive sequential design

was proposed by Robbins and Monro (1951). Since the problems are

somewhat disjoint, in each problem, we briefly survey the literature and

provide a summary as well.

2. The Robbins-Monro procedure. Given a random response

Y(x) at x having EY(x) = Λί(x), we wish to estimate θ such that for

specified a

(2.1)

M(θ) = a,
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where M(θ) is unknown. Two examples for which the Robbins-Monro
(1951) procedure applies follow.

EXAMPLE 1. Let F{x) be the probability that a metallic specimen
will fracture when subjected to x cycles in a fatigue trial. A specimen
tested in this manner will produce an observation that takes values
either 0 or 1. The problem of interest is to estimate the number of
cycles x such that, for specified α,

F(x) = a.

Here M(x) = F(x), the functional form of which may be unknown.

EXAMPLE 2. For real x, let Y(x) denote the response to an ex-
periment carried out at a controlled level x with unknown distribution
function H(y\x) and regression function
(2.2)

M(x) = E {Y{x)\x} = / ydH(y\x).
J—oo

We need to assume only that M(x) is nondecreasing in order to estimate
x for a specified value of M(x).

2.1. The Robbins-Monro procedure. Let {an} be a decreasing se-
quence of positive constants with an —» 0 as n —> oo. Guess an initial
value X\ and let yn(xn) denote the response at xn. Then choose xn+ι
by the formula
(2.3)

Without loss of generality, we can set a = 0. Then notice that

xn+i <χniϊyn(xn) > 0

and

xniΐyn(xn) < 0.

An appropriate choice for On is c/n where c is chosen in an "optimal
way" that is described below. Robbins and Monro (1951) provided suf-
ficient conditions for xn to converge to θ in probability as n —> oo. Later
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researchers obtained results pertaining to the rate of convergence, con-
vergence with probability one, convergence in mean square and asymp-
totic normality of the sequence xn. (See Loginov (1966) for a review of
these results).

When an = c/n, Sacks (1958) has shown that (xn+i — θ)y/n is
asymptotically normal with mean 0 and variance σ2c2/(2cβ — 1), where
β = M'{θ) and σ2 =var (Y(x)\x). Lehmann and Hodges (1956) suggest
taking c = 1/β since it minimizes the asymptotic variance σ2c2 /{2βc —
1) at the minimum value of σ2 jβ2. However β is unknown and we have
to guess its value. Since β > 0 (because we have assumed that M{x)
is nondecreasing), it suffices to require that c > 1/2/? and this ensures
the positivity of the asymptotic variance.

In quantal response situations, H(y\x) is Bernoulli with success
probability a function of a real parameter 7 that is to be estimated.
Let

E(Y(x)\x) = MΊ(x).

Then vaτ(Y(x)\x) = MΊ(x)[l — MΊ(x)\. Since 7 determines the model,
0, the solution of (2.1), is a function of α and 7. Assume that there is
a 1 — 1 correspondence between θ and 7 so that there exists a function
h(x) such that 7 = hα(θ). We use xn as the Robbins-Monro estimate
of θ and estimate 7 by hα(xn).

2.2. Stopping rules. Farrell (1962) and Sielken (1973) considered
stopping times of bounded length confidence intervals for θ. However,
their two approaches are different. We present only Sielken's (1973)
rule which is adaptive. For given D and α, we want

1 - α = P( |awi " θ\ < D) « 2Φ I V V ^ J - 1

because of the asymptotic normality of xn+\ when suitably standard-
ized. If z denotes the (1 — α/2) 100th percentile of a standard normal
distribution, the optimal choice for n is given by
(2.4)

n* = z2c2σ2/(2cβ - 1)D2.

However, since β and σ are unknown, Sielken (1973) resorts to the

adaptive rule:

(2.5)
ND,α = inf{n : n > z2c2σ2j(2cβn - 2

199



where σ2 and βn are Burkholder's (1956) estimators of σ2 and β, re-
spectively. Burkholder (1956) proposed estimators of β and σ2 and
gave sufficient conditions for these estimators to converge to β and σ2,
respectively, with probability one. Burkholder's estimates of β require
at the nth step in Robbins - Monro procedure that an observation is
taken not only on Y(xn), but also on Y(xn + d n), where {dn} is a se-
quence of positive constants such that nxdn — > d a s n — > o o , d > 0 and
0 < λ < 1/2.

Let {yf

n} be a sequence of random variables such that the conditional
distribution of y'ή for specified xn is equal to the distribution of Y(xn +
cn) and is independent of x1}xn,...,xn-1,yljy2, - . . ,y n j j / / , $ , . . . , ^ - i
Then, under certain regularity assumptions (see Sielken (1973, assump-
tions Cl -C12), Burkholder's (1956) results imply
(2.6)

βn = max β w.p.l

and

(2.7)

w.p.l

as n -> oo. Furthermore, under these regularity conditions, Sielken

(1973, Theorems 1 and 2) established the first order asymptotic prop-

erties of rule (2.5). These are

(i) EmJVdiO/ [z2c2σ2/2{cβ - 1)D2} = 1 a.a.

and

Note that, (i) implies that NDjα is asymptotically optimal.

REMARK 2.1. It should be noted that although two observations
are taken at each step in order to obtain useful information on β, only
one of these two observations is used to generate the next estimate of θ.
To remedy this shortcoming, the following modified Robbins - Monroe
procedure has been proposed in the literature: let X\ be any constant,
and let

= xn - αn \-(y'n
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where y'n = Yn(xn - dn) and y'^ = Yn(xn + dn) which are independent
of χu ...,Xn-uύ,...,ί^-i, 2/i,!/£, , Vn-i

Recognizing that the asymptotic variance of (xn+\ — Θ)y/n is mini-
mized when an = c/n and c = 1/β, Ventner (1967) proposed that the
sequence {xn} be generated according to the recurrence formula
(2.8)

n+1 = xn- (l/nβn) [!(,£ + y'n) - α] .xn

Then the stopping time is given by
(2.9)

NDia = inf in : n > (zσn/dβn) j .

Sielken (1973) pointed out that properties that are analogous to (i) and
(ii) also hold for the sequential rule (2.9).

2.3. A risk efficient rule. Let the loss incurred in estimating θ by
xn be given by
(2.10)

where A denotes the cost per one iteration. Then the risk for given n
is given by

and
σ2

min {Risk + cost} = R = —= + An.c nβι

Then dR/dn = 0 implies that the optimal n is given by n^ = σ/βy/A.
Since σ and /? are unknown, we use the adaptive rule
(2.11)

NA = inf{n : n > σn/βny/λ} ,

where σ\ and ^ n are Burkholder's (1956) estimators of β and σ2 and
the sequence {xn} is generated according to (2.8). It is desirable to
investigate the properties of NA

3. Sequential estimation of a set of normal variables.
3.1. Introduction and summary. Let πi,π2, . . . , τrfc be normal pop-

ulations with common mean, that is, let π» be Normal (μ,θi), i =
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1, . . . , fc, where μ and θi are unknown. The problem is to construct a
confidence interval of length at most 2d for μ. In the case of k = 2,
Mallik (1971) considered risk-efficient estimation of the common mean
when one of the variances is known. His solution is a combination of
the solutions of two related problems, namely, the sequential estima-
tion of the mean of a normal population when the variance is unknown
(considered by Robbins (1959) and Starr (1966)) and the one-armed
bandit problem (considered by Robbins (1952) and Chernoff (1968)).
Chernoff (1971), using the solution of the two-armed bandit problem,
solved the risk-efficient estimation problem when both the variances
are unknown. For any fc, Alam and Saxena (1984) gave two-stage pro-
cedures for obtaining bounded length confidence intervals for μ. These
two-stage procedures take an equal number of observations from each
population in the first stage. On the basis of these observations, which
population to sample in the second stage and the (random) size of that
sample is determined.

3.2. The quasi-sequential fixed-width procedure. If x^ , j = 1,... , n;,
is a random sample of size Πi from TΓ*, let Xi(rii) = n^1Σ"i=1Xij and
Si(rii) = n^1 Σ"Li(χij — %i(ni))2, i = 1,..., fc. If the variances were
known, one would sample from the population with the smallest vari-
ance only. However, when the variances are unknown, one can apply
a selection procedure (for instance, the one by Bechhofer and Sobel
(1954)) for first selecting the population with the smallest variance,
where an initial sample of predetermined size r is drawn from each
population, and then select the population with the smallest sample
variance. Let θx = min(0i,... ,0fc),Δ* > 1 and I be the index of the
selected population. Condition (3.1) determines the value of r for spec-
ified Δ* and P*:
(3.1)

P(l = λ)>P* whenever 0€/0λ > Δ* for all ϊ φ \i = 1,... ,fe .

Parnes and Srinivasan (1986) point out that the same value of r assures
the stronger result:
(3.2)

P(θt/Θx < Δ ) > P*.

Note that (3.1) holds true only if there is a unique smallest popula-
tion variance, whereas (3.2) implies no restriction on the configuration
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of population variances. It assures that the selected population has
variance close to the minimum of the population variances.

Let 2d be the specified width of the confidence interval with confi-
dence 1—β.Ύhe quasi-sequential procedure of Govindarajulu and Geert-
sema (1989) follows:

1. First take r observations from each population and choose pop-
ulation π/ where I indicates the population with the smallest sample
variance. Sι(r) = min(SΊ(r), . . . , Sk(r)).

2. Let N = inf {n > r and n > z2Sι(n)/d2}, where

and z is such that Φ(z) = 1 — β/2. Let the confidence interval for μ be
μ(N) ± d.

Govindarajulu and Geertsema (1989) derive several first order asymp-
totic properties of this procedure. They also present a more general pro-
cedure based on the maximum likelihood estimate of μ (which can be
solved only iteratively) and its first order asymptotic properties. They
also show that the sequential procedure is infinitely more efficient than
the two-stage procedures of Alam and Saxena (1986). Govindarajulu
and Geertsema (1991) carry out some Monte Carlo studies which indi-
cate agreement between the asymptotic results and the actual behavior
of the procedure.

We note that the normality assumption is not necessary for the
proof of the asymptotic properties except for the form and existence
of fourth moments. An analogous procedure can be obtained for the
risk-efficient estimation problem. Is it possible to obtain completely
sequential procedures for the problem of risk-efficient or fixed-width
estimation of μ?

4. Sequential estimation of the mean of logistic response
function using the Spearman-Karber estimator.

4*1. Introduction and summary. Spearman (1908), Karber (1931),
Finney (1952), Berkson (1955), Brown (1961), Miller (1973), and Church
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and Kobb (1973) have studied the theoretical merits of the Spearman-
Karber estimator. Epstein and Churchman (1944), Cornfield and Man-
tel (1950) and Chmiel (1976) have investigated the theoretical merits of
a Spearman-type variance estimator. For a discussion of the preceding
references the reader is referred to Govindarajulu (1988).

Nanthakumar and Govindarajulu (1994a, 1994b) derive the fixed-
width and risk-efficient sequential rules for estimating the mean of
the logistic response function based on quantal responses observed at
equally spaced dose levels. These rules are reviewed in Sections 4.3 and
4.4. The Spearman-Karber (S-K) and Spearman-type variance (S-T-V)
estimators are employed for the mean and variance, respectively, in the
sequential estimation. Let d denote the difference between two succes-
sive dose levels. Some asymptotic properties of the sequential estimates
are studied as d becomes small.

4-2. The Spearman-Karber estimator. L e t x_ f c , X-k+u . . . , Xo,
#!, . . . , £fc-i) Xk denote the 2k + 1 dose levels with Xi = XQ + id,
i — — fc,...,0,...,fc, where XQ is chosen at random (uniformly) between
0 and d. We subject n experimental units at each dose level and record
the responses as 1 or 0 according as the experimental unit responds to
the dose or not.

In the following we provide a motivation for the form of the Spearman-
Karber estimator. Let Pj = P(XJ) denote the probability of a positive
response at dose Xj = Xo + jd. By definition, μ, the mean of the
tolerance distribution is given by

μ= / χdP= V / xdP.
J-oo i=ooJxί

If Pj = 1 for j > k and P - j = 0 for j > fc, then

= Σ
i=-k JXi

μ = Σ xdP

k ( cΓ
Xi~\— ) (Pi+i — Pi) by the mean-value theorem

= Σ (*o + \ + id\(PM - Pi)

+ f\ (PM - Pi) + d Σ i(PM - Pi)
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= L + -)+a
V 2y i=_k i=1

Now

0 - 1 - 1 0

i=-k i=-k i=-k i=-k

0

Also

k k i k k

Thus
(4.1)

Then a natural estimate of μ is the Spearman-Karber estimate of μ,
given by
(4.2)

/ d\ ° Λ

where pj is a sample estimate of Pj, namely, the sample proportion of
positive responses at the dose level Xj.

For the special case when P(x) = {1 + e~^x~Θ^^}~1 and pi = Tijn,
where r% denotes the number of positive responses at a?<, the Spearman-
Karber estimator of θ is given by
(4.3)

λ ( d\ d o d *

β k + ) Σ + n i=i

In a similar vein, the scale parameter is estimated by
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4,3. Fixed-width sequential rule. Let 2m* + 1 denote the number of
initial dose levels used and let 2D denote the width of the 100(1 — a)%
confidence interval for θ. We wish to choose the stopping stage k such
that

(P\θk-θ\<D)>l-a.

If k is sufficiently large, θk will be asymptotically normal so this stop-
ping rule becomes
(4.5)

Φ( ~~ I +Φ ( + ) > 2 - α ,
\ JΛ / \ Oa I
\ θk / \ θk /

where B = E(θk) — θ and σ | is the variance of 9%. Also, for any fixed

k, one can show that

(4.6)

Γ(kd+d-θ)/β

B = β {1 - G(u)}du + o(d)
J(kd+θ)/β

and
(4.7)

where G(u) = (1 + e u) 1. Thus, it is reasonable to assume that B is

positive when θ < 0 and d is small. Thus

(4.8)

βk

implies (4.5). Using (4.6) and (4.7) in (4.8), we find that k satisfies
(4.8), where
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(4.9)

kd > -θ+β\oΔ—=^-^,,
D-(

\ n

z =

Similarly, when B < 0 (i.e. θ > 0 ), we get an expression for kd
which is similar to that in (4.9) where θ is replaced by -θ. Hence, the
number of stages k should satisfy
(4.10)

kd>\θ\+βlog, > 2 ^ '

In order to use (4.10) as a stopping rule one should know the values
of θ and β, but they are unknown. Thus we are led to the following
adaptive stopping rule:

If experimentation has proceeded to k + 1 stages, replace θ and β with
θk and βkj respectively, and stop at (k + l)th stage if (4.10) holds. That
is, stop when the number of stages is K, where
(4.11)

K = inf < Jfc : k > m* and kd > \θk\ + βk log,

where θk and βk are given by (4.3) and (4.4), respectively.

One can easily show that such an experiment terminates in a finite
number of stages when the dose span d is bounded away from zero.

Nanthakumar and Govindarajulu (1994a) derive first order asymp-
totic properties of the above sequential procedure. They also show
that
(4.12)

P(\θκ{<i)-Θ\<D) ^

P(\θ-k-θ\<D)

a s d _> o, when d = ηD2 for some η such that 0 < η < n2/Mz2 where
β < M and k is given by (4.10). That is, we know, priori, that β is
bounded above by a known constant M.
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A simulation study has been carried out and it is surmised that the
true level of confidence falls short of the nominal level at most by three
percent.

4-4- Risk-efficient estimation. Here we consider the same problem
with a different criterion, namely, we wish to minimize the risk plus the
cost of experimentation. Towards this, we need further notation. Let
c denote the cost per experimental unit where c might depend on the
dose span d. Let
(4.14)

Rk = Risk + cost

= var0fc + (bias θk)
2 + 2(k + l)cn,

where var(^) and bias (θk) are given by (4.7) and (4.6), respectively.
Also one can easily show that (4.6) is equal to
(4.14)

p-(kd+θ)/β _ -

1 +

The value of k for which Rk is minimum is given by

(4.15)

= (β/d)\ogej(θ,β,c,d,n),

where

(4.16)

J(θ, β, c, d, ή) =
+ ψ(A + J)-»[l - T(φΊ + 1)-*]}

φ = eθίβ,Ί = e-dlβ,Δ = d/n

t _ (4+ψ
Since θ and β are unknown, we propose the following stopping rule.

Stop taking observations at the (K + l)th stage, where
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(4.17)

K = inf ίk : k > πΐ, j > loge J(θk,βk,c,d,n)

One can show that this sequential procedure terminates finitely with
probability one when the dose span d is bounded away from zero.

If c = 0(Δ1+*), where δ > 1, then (4.15) and (4.17) can be approx-
imated by
(4.18)

and
(4.19)

K = inf { k : k > tj loge

Nanthakumar and Govindarajulu (1994b) obtain first order asymptotic
properties of the risk-efficient sequential procedure. They also carry out
a simulation study for certain parameter configurations which indicate
that EK/k* tends to one as d goes to zero.

Consider the following alternative design. Fix the number of dose
levels ahead of time and take an observation at all dose levels at every
stage. Such a design would be inefficient when compared to the one
considered by Nanthakumar and Govindarajulu (1994a, 1994b). See
Miller (1973) for a comparison of these designs in the nonsequential
case.
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