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We consider a two-arm sequential trial with two or more strata. The
trial is monitored and terminated under the assumption of a common
treatment effect (if any) in all strata. A secondary question at the end of
the trial is: Does the treatment effect differ across strata—that is, is there
a treatment X stratum interaction? We provide a test of the null hypothesis
of no interaction—a test that recognizes the sequential stopping rule and
allows for uneven accumulation of information in the various strata, a
common case. In the case of two strata, and either a group-sequential
design or a fully-sequential linear-boundary design, an optimal property
of the test is derived. A computational algorithm is provided, and two
examples summarized.

1. Introduction. We introduce and motivate this problem in terms of a
survival-analysis based clinical trial with two strata, but similar considerations
apply for other stratified sequential trials, as noted in Sections 5-7 below.

Consider a sequential clinical trial utilizing survival analysis and assuming a
proportional hazards model, with two strata. Assume that log-rank statistics are
computed separately for each stratum, either periodically or continuously. Denote
the asymptotic versions of these statistics by Xi{i), i = 1,2, where t is a measure
of total information accumulated at the time these statistics were computed.

The resulting two processes are time-transformed independent Brownian mo-
tions. In other words, X\ and X2 are independent, each has independent increments
and

The drift parameter θi—the log hazard ratio—is a measure of the treatment effect in
stratum i, and Vi(t) is (an estimate of) the associated partial information (i = 1,2).
Here, each Vi( ) is a positive and non-decreasing function, and v\ (t) +V2 {t) = t for all
t. For now, we assume that vι(t) and ^( ί ) axe not proportional—information being
accumulated quite 'unevenly' in one stratum relative to the other. The special case
of proportionality, in which great simplification occurs, is summarized separately
in Section 3. (For extension to the case in which one or the other Vi( ) may initially
be zero, see the end of Section 2.)

The trial is monitored by inspecting the overall log-rank statistic X(t) = X\(t) +
^2(^)5 with a prescribed stopping boundary. The trial is concluded once this moni-
toring process hits a pre-specified boundary. The boundary is chosen at the design
stage of the trial and can be, for example, an OΈrien-Fleming [11] type for a
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group-sequential trial or have a triangular shape [14] for a fully-sequential trial.
The specification of the boundary is such that the power criteria of the associated
test is met at a given target value of a common treatment effect (assuming θ\ = θ2)
while the significance level of the test is controlled.

A major assumption in the design, and in the analysis, of a stratified sequential
trial is that there is no treatment x stratum interaction. (This assumption is not as
critical in the proportionality case; see Section 3.) Formally, the assumption is that
θx = 02 = θ, with θ the unknown common treatment effect. The monitoring process
X(') is then Brownian motion with drift 0, and the primary analysis is about this
common treatment effect θ. But if this common-0 assumption does not hold, then
the overall treatment effect is not well-defined. The power calculations at the design
of the trial are not adequate in that power depends on both θ\ and θ2. Moreover, a
positive effect in one stratum may be counteracted by a negative effect in the other
stratum, possibly resulting in failure to reject the null hypothesis even though the
new treatment may have important therapeutic value for specific sub-populations.
(When θι φ θ2, the expectation of X(t) is no longer proportional to its variance,
except as noted in Section 3.)

Clearly, at the end of the trial, one should investigate the validity of this as-
sumption. A minimum requirement is that the data gathered in the trial are not
contradictory to the null hypothesis of no interaction—in other words, that the null
hypothesis is not rejected when testing for a treatment x stratum interaction.

Assume that the total information in the trial is T. In a sequential trial, T is a
stopping time, hence random. In a nonsequential trial, T is a constant, or at least
ancillary, and hence can be considered as constant. A natural candidate for a test
statistic in this nonsequential setting is

(1) Z(t) = -* (^# - * m with ,*(*) = * + 1V } W σ{t) \υi(t) v2{t) J y } vι(t) v2(tY

evaluated at t = T. The null distribution of Z(T), under the null hypothesis θ\ — θ2,
is standard normal, but the mean is not zero under alternatives. An intuitive test
procedure is to reject θι = θ2 in favor of θ\ φ θ2 whenever |Z(T)| > za/2 (the
latter defining the upper a/2 tail area of the standard normal distribution). Indeed,
applying standard results for a two-parameter exponential family [7], it can be
shown that this test is a uniformly most powerful unbiased test of significance level
α, or UMPU(α) for short. (See also Section 3. An invariance discussion is in Section

7.)
In the sequential setting, however, the situation is more complex. The null dis-

tribution of Z(T) is, in general, not normal [15]. Its mean, even under the null
distribution, may not be zero, nor is its distribution typically symmetric. Nor is it
even conditionally normal (given T) except under special circumstances. (Although
X(t) _L Z(t) for each f, typically cov(X(s), Z(t)) Φ 0 for s < t since

It follows that the test suitable for a nonsequential setting is not valid in the sequen-
tial setting. Nevertheless, it can be shown that a test based on Z(T), adjusted to
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the sequential sampling design, may again possess important optimality properties,
developed here in Section 2.

In Section 3, we deal with the special case of proportionality, and in Section
4, describe how the Rvalue for the optimal test can be computed. In Section 5,
we consider the case of more than two strata, proposing a valid test but without
optimality. In Section 6, we exemplify the method, and conclude with miscellaneous
comments in Section 7. An appendix provides an example of output from software
developed for this purpose.

This work was motivated by the Multicenter Automatic Defibrillator Implanta-
tion Trial (MADIT), sponsored by CPI/Guidant and administered at the University
of Rochester [10]. This was a fully-sequential trial (weekly analyses), with a trian-
gular design, comparing survival in patients randomized to receive an implanted de-
fibrillator with survival in those on conventional medical therapy, in a specifically
defined population of patients with coronary heart disease. After twenty months
into this trial, a new version of the defibrillator became available—a transvenous
one, not requiring the surgical operation of the original transthoracic model. The
MADIT executive committee was willing to assume, for primary analyses, that the
two versions of the defibrillator would be equally effective (discounting the small
risk of operative mortality with the older version); but it seemed likely that patient
recruitment would be affected when surgery was no longer required. Hence, a sec-
ond stratum of patients was created, including all patients at each enrolling center
once the center gained authorization to use the new device. Information continued
to flow from both strata throughout much of the five-year duration of the trial,
but at non-proportional rates. Monitoring and primary analyses were based on the
overall (stratified) log-rank statistic, as described above.

Upon conclusion of the trial, a 'naive' analysis was carried out to evaluate
whether the two versions of the defibrillator were equally effective, using the test
statistic (1) but ignoring the sequential nature of the trial; no interaction was evi-
dent. Later, a valid p-value was computed, as described herein; see Section 6.

2. An optimal test with two strata. We need two definitions.
(1) A fully-sequential stopping boundary for a Brownian motion is said to be

linear if consisting of a linear upper boundary (positive intercept), a linear lower
boundary (negative intercept), and a vertical boundary (t = tmax^ say, for some
tmax < oo); if the slope bu of the upper boundary exceeds the slope fez, of the lower
boundary, then tmax is required to be finite (to assure T < oo a.s.). This class
includes sequential probability ratio tests (6L = bu), possibly truncated (tmax < oo),
triangular tests (&L > bu), possibly truncated, and restricted designs (6L < bu and
tmax < oo), popular in sequential clinical trial design (e.g., [14, 2]). For optimality
claims, we confine attention to this class of fully-sequential designs, considered by
Anderson [1] and Hall [5], but also consider group-sequential designs (including
group-sequential modifications of triangular designs, as in [14]).

(2) Write Z = Z(T) and X = X(T), and consider an unbiased test φa(Z, X, T) of
significance level a for testing θ\ = #2 against a two-sided alternative, defined on the
support S of (Z,X,T). The test is said to be truncation-adaptable unbiased (TAU)
if, for each truncation of T, to Tc = TΛc (c > 0) say, there exists an extension of φa
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to the support Sc of (Z(Tc), X (Tc) ,TC) which is also unbiased and of significance
level α. (The test φa and its extension agree on S Π Sc; the extension is only to
(z,#)-values not attainable when T = c but attainable when Tc = c.) The test
is said to be uniformly most powerful truncation-adaptable unbiased of significance
level a (UMPTAU(a)) if it is uniformly most powerful among such tests. This is
the optimality sought for group-sequential designs. Its estimation counterpart was
introduced in [9].

The interpretation of TAU tests is that, at any interim analysis time t — c prior
to stopping, a modification of the decision boundaries can be carried out, preserving
its significance level and unbiasedness, as if the original design were truncated at
T — c. A consequence is that the p-value associated with the test procedure upon
stopping cannot depend on design characteristics beyond T—a desirable property
since, in practice, such characteristics as the times of future analyses are not always
precisely fixed in advance.

Now for the optimality theorem, for testing the null hypothesis θ\ = 02 against

01 φ θ2:

THEOREM 1. Consider the test ψα(Z,X,T), the indicator of the event {Z <
2i(JΓ,T,α) or Z > Z2(X,T, α)}. The conditional critical values Zi(X,T, α)? i = 1,2,
are solutions to the equations

(2) Pθl=θ2(Zϊ(zuz2))\X,T)=a,

(3) Eθl=$2(Z;Z ϊ(zuZ2)\X,T)=aEe1=θ2(Z\X,T),

holding with probability one under the null hypothesis. Then the test φa is an unbiased
test of significance level a. Moreover, it is

(i) a UMPU(a) test when the trial has a fully-sequential linear design; (ii) a

UMPTAU(a) test when the trial has a group-sequential design.

An optimal one-sided test is similarly available. Simply set — z\ or z^ — oo and omit
constraint (3). But we focus on the more popular two-sided case.

To obtain a corresponding conditionalp-value p = p(z\x, t) at the observed values
(z,x, t), write μ = μ{x,t) for the conditional mean of Z in (3), and then (2) and
(3) imply

(4) Eθl=θ2[(Z-μ)lI(Z)\x1t]=0

with / = (z\,Z2). Now set z\ or 22 in (4) equal to z, according as z < μ or > μ,
solve (4) for the other Zi, and then p = Pθl=θ2(Z φ I\x,t). The needed conditional
distribution is given in Section 4.

Proof. First we note that the statistic (Z, X, T) is sufficient in the two-parameter
model, so we may confine attention to tests based on it.

Let fθ!,θ2(
z)χit) t>e the joint density (w.r.t. a suitable measure) of (Z,X,T) at

(z,x,t). By the Likelihood Ratio Identity [12], and the independence of Z(t) and
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X(t), it follows that

(5) /*,*(*,M) = /o,o(*,M) x exp Lδ(t) - \s(t)2\ x exp Lθ(t) - \θ{t)Λ

where
a f\

and
σ(t)

with σ(t) in (1). Hence, on the one hand, (X,T) is seen to be sufficient for θ under
the null hypothesis (under which δ(t) = 0 and θ(t) = 0), and, on the other hand, the
conditional distribution of Z, given the statistic (X,T) = (#,£), is from a natural
exponential family parametrized by δ(t). Specifically, dividing (5) by its integral
w.r.t. z, we find

(6) Λ i , * a ( * l M ) = h M χ , t ) I { \ , )
8=δ(t)

where M(s\x, t) is the moment generating function of the null conditional distribu-
tion.

From standard theory on testing in exponential families [7], it follows that, given
any (#, ί), the UMPU conditional test of level a is characterized by (2) and (3). The
given test, therefore, has unconditional significance level a and is unconditionally
unbiased. Moreover, the test is more powerful than any other test for which the
conditional significance level is identically a.

In the linear-boundary fully-sequential case, the statistic (-X",T) is boundedly
complete under the null hypothesis [8]. Hence an overall significance level a implies
a conditional level α.

In the group-sequential case, the statistic (X, T) is not complete, but confining
attention to truncation-adaptable unbiased tests, the same uniqueness implication
may be seen to hold. The first step in an induction argument, very much as in [9],
is to consider extending the UMPU(α) nonsequential test appropriate for T = t\
by partitioning the event {T = t\} into a stopping set <Si where still T — t\ and a
continuation set C\ where T = £2 Let ψ(z,x,t) be the test defined above for this
K = 2 case, and let ψf be an alternative unbiased test of significance level a that
agrees with φ on S\\ write h — φ1 — φ and /io(ί, x) — E^θl=θ2y[h\tyx]. Then ho = 0
on <Si and, by the characterization of zero-mean statistics in [9], ho must be 0 a.e.,
implying that E0[ψf\T,X] = Eo[φ\T,X] = a a.s.—i.e., φ' is also a test of Neyman
structure. A similar argument provides an induction step, leading to the desired
uniqueness conclusion. •

We required that both Vi(tys be everywhere positive. If instead V2(t) = 0 for
t < to, say, then we must impose the requirement that T exceed to- Otherwise,
when T < to-, there is no information available about #2 and hence about the
difference θ\ — 62- In a group-sequential design, we can insist on Vi(t) > 0 at each
possible inspection time t. But in a linear design with a delayed start-up (T > t\
for some t\ > to), completeness of (X,T) is not generally known, and so optimality
remains in doubt.

Incidentally, in the fully-sequential linear design case, the test φa is seen to be
TAU(α) and hence also UMPTAU(α ).
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3. The proportionality case. Now assume vι(t) = pt for some 0 < p < 1
and all t, implying v2(t) = qt for q — 1 - p. Then X(t) is generally a Brownian
motion with drift θ — pθ\ + qθ2, and the stopping boundaries are valid for testing
hypotheses about θ whether or not there is a differential treatment effect.

Moreover, the process Y(t) — yjt Z(t) is also a Brownian motion, independent of
the process X(t), and with drift y/pq(θi ~ #2); hence, the null distribution of Z(T)
is standard normal. It is no longer critical for the validity of the basic trial whether
or not there is a differential treatment effect, especially if θ\ and θ2 have the same
sign. And the test described for the nonsequential setting (after (1)) is seen to be
UMPU(α). This is consistent with Theorem 1, which did not formally exclude this
case.

This case provides some basis for ignoring the sequential stopping rule when
the Vi(tys are not far from proportionality, as recommended by Whitehead [14].
However, see Section 7.

4. Calculating the conditional p-value. Here we outline an algorithm for
computing, partly by Monte Carlo, the conditional p-value (defined after (4))—
which depends on the conditional distribution of Z and on the observed z and
(xyt). When θ\ — θ2, the conditional distribution is parameter-free, and so we
choose θι = Θ2 = 0.

In the continuous-time case, the null conditional distribution of Z given (X, T) =
(x,t) is a convolution of two independent random variables Y and W [15]; Y is
mean-zero normal with variance

7
U(t)

and W is a linear functional of the monitoring process X( ) given by

w(t) = 1 f(*M _ MfΓ) dx{s).
σ(t)Jo \Mt) v2(t)J K '

Using the fact that Vι(t) + V2(t) = t, and writing υ = vι(t) and v(s) = ϋi(s), we
find σ2(t) = t/[υ(t - «)],

(7) τ2(ί) = σ2{t) ίv - I ϋ{sfds\ and W{t) = σ{t) { / v{s)dX(s) - y ) •

In the discrete-time case, with inspections at ίi < ti < . . . , we let n(T) be the
final inspection—that is, ίn(T) = T (and set to = 0). With (x,t) the observed value
of (X,T), write n = n(t). Then (7) becomes

. - έ M υx

U Δ < ω j — " w - - * • ' ! £ - Δ«O ) T
where

Δtϋ) = *j ~ tj-u Δ v(j) = υ ^ ) - v(tj-!)9 Δx(j) = X(^) -

(See [15].) Note that, in the proportionality case, τ2 = 1 and W = 0.
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We now approximate the distribution of W by Monte Carlo, focusing first on
the discrete-time case, with n inspections. To generate a single w-value, proceed as
follows: Generate n — 1 random variables, each conditionally normally distributed
as implied by a discretized Brownian bridge from (0,0) to (ί, #), but truncated to
the continuation region of the monitoring process. These values (a?i, x2,..., xn-ι)
represent the positions of the monitoring process at times ίi, t2,..., £n_i, under null
hypothesis conditions. (This can be done in reverse order (j = n — 1, n — 2,..., 1),
with Xj given (xj+1,xj+2,... ,xn) being N(rj+1xj+1,rj+1ί^t{j + 1)) with rj+1 =
tj/tj+ι—'accepting' the value Xj only if it lies in the continuation region for X{tj),
and continuing to generate such values until one is accepted.) Then w is given by
(8).

Repeat this a large number M of times (perhaps M = 100,000), resulting in M
w's, say tt/i,..., WMΊ with average w.

To obtain the distribution of Z, we need the convolution of this empirical distri-
bution of W with iV(0,τ2). The resulting density for Z is

with φ the standard normal density. Transform to Z' = (Z — w)/τ, and note that
(4) is equivalent to E[Z'lp(Zf)\x,t] = 0 with /' = (z[,z'2), the interval of z'-
values corresponding to z E I. Carrying out the integration term-by-term, setting
w'j = (WJ — w)/τ, the equation to be solved becomes

M

W [ 4 ' ί φ] [ 4 K ί ^]} = 0
M

έ Σ W
with Φ the standard normal distribution function. If z1 < 0, set z[ — z', solve (9)
for zr

2, and then

M
1

(10) p = 1 - -

i=i

If ^x > 0, set 2̂ = z ; and solve (9) for z[, with p again given by (10).
To solve (9), a Newton-Raphson iterative solution can be initiated with the as-

sumption that the distribution of Z is symmetric, so that the two z^s are equidistant
from w, or the two z"s equidistant from 0.

For the continuous-time case, first partition [0, t] into a laxge number n of subin-
tervals of length t/n each. Then proceed as in the discrete-time case.

The algorithm can be extended to allow for υ2(t) = 0 for t < to by confining all
computations to the time interval (to,T), valid when the probability of T < to is
negligible.

5. Several strata. If there are m (> 2) strata, with X(t) = Xi(t) + .. .+Xm(t)
and vι(t) + .. . + vm(t) = t, the natural test statistic in the nonsequential setting is
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the likelihood ratio test statistic

(11) Z2

with θ = X(T)/T, the maximum likelihood estimate under the null hypothesis of
no differential treatment effect (θι = .. . = θm). (This statistic is used in meta
analyses; see, e.g., [4].) In the nonsequential setting, and in the proportionality case
with all Vi(tys proportional, the null distribution of Z2 is chisquare with m — 1
degrees of freedom. We propose using Z2 also in the sequential setting without
proportionality, rejecting the null hypothesis whenever Z2 exceeds a critical value
derived from the conditional distribution of Z2 given (X, T). In contrast to the
two-strata case, this test has no known optimality. (Indeed, in the two-strata case,
formula (11) is the square of (1), so this test differs from the two-sided tests given
earlier and is not unbiased.)

The conditional null joint distribution of (Xi,X2, , Xm), given (X, T) = (#, ί),
can be represented as a convolution of a zero-mean multinormal vector Y_ with
variance matrix Σ = (σ^), where

i=j - / ύi(s)ύj(s)ds,
Jo

and an m-dimensional functional W_ of the monitoring process X(-) with coordinates
Wi(t) — fQ ύi(s)dX(s), 1 < i < m [15]. The conditional distribution of the resulting
statistic Z2 can be determined by a computational process similar to that used in
the two-strata case, except that here it will be advisable to generate F, as well as
W, by Monte Carlo rather than carrying out the convolution mathematically. This
will result in a Monte Carlo distribution of Z2-values, against which the observed
statistic can be compared.

6. Examples. The MADIT trial [10] was briefly described in Section 1. A
total of 196 patients were enrolled with 98 in each of the two device-type strata.
The trial terminated in favor of the defibrillator arm, with a p-value of 0.009 and an
estimated hazard ratio of 0.46 (median unbiased)—determined by PEST software
of Brunier and Whitehead [3].

This primary analysis was stratified, and based on the assumption that the two
versions of the defibrillator were equivalent in their effects on mortality. Information
accrual in the two strata was not at all proportional; v2{t), once positive, was very
much like a convex quadratic function of t. Hence, a naive analysis (ignoring the
stopping rule) is not justified.

The naive test for a differential treatment effect (interaction) yielded a p-value
of 0.87 while the test described here yielded a p-value of 0.71. (The computation on
a Sun Microsystems Ultra 5 workstation required 10 seconds; the output appears
as an appendix.)

Our computer program also provides some summary statistics of the null con-
ditional distribution of the test statistic Z. In the nonsequential case, and in the
sequential case of Section 3, this distribution is standard normal; in contrast, in
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this example this distribution had mean -0.201 and standard deviation 0.968, but
negligible skewness and excess kurtosis coefficients. Neither analysis showed any
evidence of an interaction, but the non-zero mean could make a naive analysis
misleading.

The distribution of Z under alternatives is not readily accessible. But if the
conditional distribution were a shift of the null, the conditional power at δ = \θι —θ2 \
could be approximated by

pow(δ) « Φ( - za - J/(0.968σ)) + Φ( - za + ί/(0.968σ))

with σ = (v^1 -hί^ 1 ) 1 / 2 = 0.556. (Conditional power refers to power at 5 > 0 of the
test of δ = 0, conditional on the stopping coordinates (#, t).) The conditional power
to detect a four-fold difference in strata-specific hazard ratios (δ = log 4), with a 5%
significance level, would be 30%. That this power is quite modest is not surprising:
The MADIT trial was designed to be efficient for the primary hypothesis, and it
stopped quite early with relatively little information accumulated. The conditional
power would be increased in a longer running trial.

The test was also used in another recent fully-sequential trial with two strata
[13]. In it, the p-value for a treatment effect in the primary analysis, assuming no
differential effect in the two strata, was 0.0006, with a hazard ratio estimated to be
0.348. However, the two strata-specific pairs of Kaplan-Meier survival curves showed
evidence of a treatment effect in only one of the two strata. The naive test for a
differential treatment effect had a p value (two-sided) of 0.17; the corrected p-value
was 0.09. (The null conditional mean was 0.222; information accumulation was not
proportional.) Although the statistical significance was borderline, the researchers
intend to recommend use of the treatment under study in only one of the two groups
defining the two strata.

Use of the methods to test for a treatment x center interaction in a multicenter
group-sequential trial will be reported elsewhere.

7. Final comments. (1) The methodology is not limited to sequential trials
based on survival analysis. But such trials provide popular examples in which infor-
mation might well be accumulated unevenly across strata. Indeed, if there was need
for stratification—that is, the baseline survival curves differ across strata—then
information, which is roughly proportional to counts of endpoints, will be accumu-
lated in a non-proportional way across strata, even when recruitment occurs in a
proportional way.

However, in any staggered-entry trial, it may well happen that recruitment in
different strata does not occur in a proportional way, and this would lead to non-
proportional accumulation of information in any kind of associated trial, whether
based on measured responses on every subject or on censored-data survival analyses.
For example, when stratifying by centers, it often occurs that some centers are
phased in late and others are phased out early; or extra efforts my be introduced
mid-way in a trial to stimulate recruitment in an under-recruited stratum (e.g.,
when strata are defined by gender or by race). We suspect that the non-proportional
case may well be the usual one.
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(2) In typical sequential trials, the power of the tests proposed here may be quite
limited: a trial efficiently powered for a primary hypothesis may have little power
for secondary questions. But if the secondary question is considered critical at the
design stage, power for it could be enhanced. Estimation and confidence limits for
the differential treatment effect δ = θ\ — Θ2 will be dealt with in a subsequent paper
[6]. Tests for individual contrasts among multiple strata effects will be presented
elsewhere.

(3) It should be understood that the word 'optimal' as used herein refers to
optimality when observing a Brownian motion with drift. This is therefore only an
asymptotic optimality when applied to a trial utilizing a log-rank-based survival
analysis, or other asymptotically-normal statistics.

(4) From our experience with examples, it appears that the error in naive analysis
is caused primarily by a non-zero null conditional mean of Z(i)\ a second order effect
is due to the conditional variance being slightly less than unity, but non-normality
plays a negligible role. Such a shift in mean (whatever its sign) would reduce the
p-value relative to the naive one. If a shift in mean generally occurs, the naive p
is generally conservative. (Ability to deal with a Brownian bridge constrained by
linear boundaries (7), or by a sequence of 'windows' (8), —even its mean path—
could perhaps lead to analytical approximations; see [15].)

(5) The test for interaction can also be used by a monitoring committee at
an interim analysis, conditioning on the current coordinates (x,t). (Unless close
to a boundary, the naive test may be adequately accurate.) Some modification of
the trial may be in order if sufficient evidence of a differential treatment effect is
discovered.

(6) Invariance concepts are often used in nonsequential inference problems like
these. Indeed, in the two strata case, the model for the two component Brownian
motions is invariant under the group {gc\c G Έ,} with gc adding the function cvi(t)
to Xi(t) (i — 1,2), and the process defined by (1) is a maximal invariant process
under this group. The induced group on the parameter space has δ = θ\ — Θ2 as
a maximal invariant. If inference about δ were the only issue, a different design
would have been used. A design aimed at inference about the common drift, which
would have reasonable power properties for various other convex combinations of
the two drift parameters if unequal, is not going to have an invariant stopping
time T. As a consequence, the model for (Z, X, T) has no invariance structure; in
particular, the stopped process Z(T) does not have δ as its sole parameter (except
in the proportionality case). And standard invariant testing concepts (see [7]) do
not apply.

The same reasoning applies in the multiple-strata case. The process defined
by (11) (with T replaced by t) is a maximal invariant process under the corre-
sponding group of transformations, but the stopping time is not invariant.

(7) A Fortran program for computing p-values, suitable for both the two-strata
and multiple-strata cases, may be obtained from the second author.
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9. Appendix: Strata Program Output for the MADIT Example

Testing Equality of the First 2 Strata-Specific Treatment Effects

number of strata = 2 number of data-inspect ions = 24

stratum x v[t] theta-hat

1 7.8992 7.6733 1.0294

2 5.2673 5.6033 0.9400

overall 13.1665 13.2766 0.9917

delta-hat= 0.089 sigma= 0.556 zobs = 0.161

naive one-sided p-values = 0.564, 0.436

naive two-sided p-value = 0.872

Statistics of the null conditional distribution

of Z = delta-hat/sigma = Y (normal) + W:

mean sd sk kur

Y 0 0.808 0 0
W -0.201 0.533 -0.104 -0.015
Z -0.201 0.968 -0.017 -0.001

Iterative solution for the other z-value:

z-value function derivative

1 -0.56371 -0.00014 -0.1388

2 -0.56451 0.00000 -0.1391

The two z-values are: -0.565, 0.161.

The corrected one-sided conditional p-values are: 0.645, 0.355.

The corrected two-sided conditional p-value is: 0.708.
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# of Monte Carlo runs: 100,000 random numbers rejected: 4.0#/

original seed = 212 start time: 17:34:12

final seed = 2025285029 end time: 17:34:22
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