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Abstract

A dependent bootstrap is shown to produce estimators which have
smaller variances but which are still consistent and asymptotically
valid. Simulated confidence intervals are used to examine possible gains
in coverage probabilities and interval lengths.

1 Introduction

Inference for stochastic processes seeks to provide more appropriate depen-
dent models to situations where the assumption of independence is not plau-
sible. The use of independent models is prevalent in bootstrapping. Efron
(1979) introduced the bootstrap as a tool to estimate the standard error
of a statistic, and an enormous amount of applied and theoretical research
on the bootstrap technique has followed in the past two decades. While
much of this ensuing research has been methodological adaptions and theo-
retical validity verifications for different statistics, considerable research has
been directed toward shortcomings and possible improvements to the basic
bootstrap technique. The traditional resampling of the sample observations
(with replacement) produces independent and identically distributed (boot-
strap) random variables (conditional on the original sample), and many of
the theoretical justifications of the bootstrap procedures are crucially related
to techniques involving independent random variables. Resampling without
replacement produces dependent random variables (actually negatively de-
pendent) which are still identically distributed (and in fact has the desir-
able property of exchangeability). The purpose of this paper is to consider
some estimation using a form of dependent bootstrapping. In particular,
confidence interval comparisons will be given for the traditional bootstrap
procedure and the dependent bootstrap procedure.
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Resampling without replacement is not new. The majority of research on
resampling without replacement has been for application in finite population
sampling. Gross (1980) introduced the concept and many others (Bickel and
Freedman, 1984; Chao and Lo, 1985; Sitter, 1992; Booth,Butler and Hall,
1994; and others) have extended this research.

In 1994 Politis and Romano examined resampling without replacement
from a data set to approximate the sampling distribution of a statistic Tn.
Under weak assumptions, they showed that the empirical distribution of the
suitably normalized values of the statistic computed for all subsamples of size
b from the original data is first order asymptotically valid for the true sam-
pling distribution of Tn. This is a generalization from Wu (1990) who studied
the same method in the i.i.d case for statistics which are asymptotically nor-
mal. Bertail (1997) showed second order correctness of this method for an
adequately chosen resample size. Their investigations differ from this pro-
posed research because they sample without replacement from the original
data rather than an enriched collection with a fixed number of copies of each
observation. Their procedure has been termed "ra out of n" where m(« n)
is the bootstrap sample size and n is the sample size of the original sample.
Bickel, Gόtze, and Van Zwet (1997) investigated the gains and losses for
"ra out of n" resampling where ra = o(ή). Praestgaard and Wellner (1993)
showed that "ra out of fcn" could allow larger bootstrap sample sizes and
some asymptotic results using exchangeability arguments. Babu and Singh
(1985) and Babu and Bai (1996) showed that Edgeworth expansions could
be used to obtain approximation results for estimators based on samples
drawn without replacement from a finite population. Their approximation
results provide for weak convergence of normalized absolute differences of
original sample statistics and bootstrap statistics. This paper will compare
the coverage probabilities and lengths of the more generally used bootstrap
confidence intervals for the traditional bootstrap and the dependent boot-
strap.

The formal definition of the dependent bootstrap procedure and the theo-
retical properties of consistency and asymptotic validity are listed in Section
2. Section 3 provides the description and results of the simulations for the
confidence intervals.

2 Properties of the Dependent Bootstrap

Consider the random sample observations X\, X2,..., Xn, that is, identically
distributed random variables with distribution function F. Often the ran-
dom variables X\yX2,... ,Xn are also assumed to be independent, but may
be dependent as when sampling from a finite population. A dependent boot-
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strap is defined as the sample of size ra, denoted by X^i, iXnmi drawn
without replacement from the collection of kn items made up of k copies
each of the sample observations, Xι,..., JΓnj where m < kn. This depen-
dent bootstrap is proposed as a procedure to reduce variation of estimators
and to obtain better confidence intervals.

Let £?*, Var*, and P* denote the conditional expectation, variance, and
probability given Xi, X2,..., Xn- It can be shown that

E*X*nm = Xn, (2.1)

Var*(X*nj) = Sl j = l , . . . , m , α n d (2.2)

j j n — -2^i=i(A ι - Λn) .

Notice that the multiplier in the variance of the dependent bootstrap sample
mean, ^irf, is similar to the finite population correction factor.

Random variables X and Y are said to be negatively dependent (ND) if

P[X <x,Y <y}< P[X < x]P[Y < y] (2.4)

for all α;, y G R. Negative dependence includes independence, and the termi-

nology of negative relates to (2.4) which (by dividing by P[Y < y]) implies

P[X < x\Y <y]< P[X < x]

Examples and properties of negative dependent random variables and the ap-

plications to the dependent bootstrap are given by Smith and Taylor (2001).

In particular, they showed that the dependent bootstrap produces negatively

dependent random variables. A collection of random variables {X\, X2,.. ,

Xn} is said to be exchangeable if the joint distribution of (Xi,X27 ,Xn)

is invariant with respect to permutations of the indices 1,... ,n. It can be

shown (cf: Smith and Taylor (2001)) that the dependent bootstrap random

variables, X* l 5 X* 2,..., Xnπn a r e exchangeable in addition to being negative

dependent.

Theorem 2.1 gives the consistency of the bootstrap mean for this de-

pendent bootstrap procedure established by Smith and Taylor (2001), while

Theorem 2.2 establishes the consistency of the dependent bootstrap variance.

The technique of the proof for Theorem 2.1 follows similar techniques for ob-

taining consistency in the i.i.d. bootstrap given by Hu and Taylor (1997)

and Bozorgnia, Patterson and Taylor (1997). Moreover, it is important to

observe that required moment conditions in Theorem 2.1 are identical to the

traditional i.i.d. bootstrapping procedure (cf: Athreya, Ghosh, Low and Sen

(1984)).
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Theorem 2.1 Let Xi,X25 ,Xn, - be i.i.d. random variables with mean
μ and E\X\\ι+δ < oo for some δ > 0. Along almost all sample sequences
X\,X<ι,... given (X\,...,Xn),

X^m ~^ f1 wϊth conditional probability 1. (2.5)

Theorem 2.2 Let Xi, X2, . . , Xγn be i.i.d. random variables with mean
μ, variance σ2 and E\Xι\2+δ < 00 for some δ > 0. Along almost all sample
sequences Xχ5 X2? given (X\,..., Xn),

Snm ~* σ<1 with conditional probability 1, (2.6)

nj ~ Λnm)

Theorems 2.3 and 2.4 are also from Smith and Taylor (2001) and provide
the asymptotic validity for the dependent Kolmogorov-Smirnov bootstrap
statistic.

Theorem 2.3 Let Xi,X25 ?-̂ n? be i.i.d. random variables with dis-
tribution function F. Along almost all sample sequences Xi,X25 given
(Xι,... ,Xn),

Fm(x) ~^ F(x) with conditional probability 1, (2.7)

where F*(x) = ±Σ7=iI[x:j<*]-

Theorem 2.4 Let X\,X2,... ^Xn-, be i.i.d. random variables with dis-
tribution function F. Then,

D*m = sup \F^{x) - F(x)\ -> 0 with conditional probability 1. (2.8)
—oo<x<oo

Theorems 2.1 - 2.4 were obtained using negative dependent limit theo-
rems and are valid for all k and for all m such that liminfn ^ > 0. Finite
population versions of these results were also obtained (cf: Smith and Taylor
(2001)). For the validity (asymptotic normality) for the dependent bootstrap
a stronger (more restrictive) form of negative dependence is needed, namely
negative association.

Random variables {Xn} are said to be negatively associated (NA) if for
each k > 2 and every pair of disjoint subsets Ai, A2 of {1,2,..., k}

Cσυ(f(Xi,i € AxUiXjJ e A2)) < 0 (2.9)

whenever / and g are monotone increasing, Borel functions. Using a com-
bination of exchangeable and negative association results, Patterson, Smith,
Taylor, and Bozorgnia (2001) obtained the following central limit thoerem
for the dependent bootstrap.
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Theorem 2.5 If {Xn} are i.i.d. random variables such that E\Xι\2+δ < oo
for some δ > 0, then conditionally on almost all sample paths

converges in distribution (2.10)
y/nsn

to a iV(0,1) random variable where sn =

It is important to observe that the normalizing factor sn in (2.10) includes
A;, and that the result holds for all choices of k = k(n) > 2 as n -» oo.
Moreover, Theorem 2.5 can be extended to include sample observations from
finite populations and bootstrap sample sizes m = m(n) such that

0 < inf '¥- < sup - ^ < 1. (2.11)
n kn n kn

In addition, the asymptotic validity of the dependent bootstrap distribution
function estimator F^(x) follows from these techniques. This result is stated
for i.i.d. random variables but is also obtainable when sampling from finite
populations.

mn m
Theorem 2.6 Let Fn(x) = £ g I[Xi<x] and F^(x) = i g I[X'ni<χ],

let (2.11) hold, then along almost all samle sequences XijX^ given

{Xι,... ,Xn)

F* (x) — F (x)
—^ TT^1 converges in distribution to a N(0,l) random variable,

sn{x)

where s2

n(x) = Var*(F^(x)) = i ^ F n ( a : ) ( l - Fn(x)).

3 Simulations

In this section the simulation results are given to compare the coverage prob-

abilities and average lengths of confidence intervals calculated using two

methods of calculating CΓs for both traditional and dependent bootstrap

methods. Also included in these simulation is the computation of the tra-

ditional normal theory confidence intervals for comparison, where the limits

are computed using

Xn±zA. (3.1)
2 v n

While there are many methods of computing bootstrap confidence inter-

vals (cf: DiCiccio and Efron (1996)), these simulations employed the general
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methods of percentile and bootstrap-t. Percentile method confidence limits

are

[Λnm i^nm J, \° Δ)

where Xnm is the B pth ordered value in the list of the B bootstrap sample

means, Xnm , b = 1,..., B.
For the bootstrap-t method the limits are given by

[Xn-z^ 2)—,χn-z^2)-7=\ (3.3)
y/n \Jn

where z^' is the B ^th ordered value in the list of the B standardized

bootstrap sample means, Z*^ — *n™^bf
n, b = l , . . .,i? and se*^ is the

estimated standard error of X*(b\ When resampling using the traditional

bootstrap method, &\ ' — - ^ , where Sζ is the sample standard deviation

of the 6th bootstrap sample, while for the dependent bootstrap, se^ =

^ly mtkn-m) a s P r o v id e d in Theorem 2.5.

For these simulations 1500 samples of size n = 20,40,100,200 were gen-
erated from the following distributions, each having mean 4 and variance 8:
normal (μ = 4, σ2 = 8), χ2 with 4 degrees of freedom, double exponential
with μ = 4 and σ = 2, and mixture of two normal distributions: 80 %
7^(4.8,6.45) and 20 % #(0.8,1.4).

For each original sample, the traditional normal theory 90% confidence
interval was calculated and the coverage probability and length of the 1500
intervals was computed. The 90% confidence level was chosen (rather than
the usual 95%) so that there would be sufficient number of confidence inter-
vals not including the mean of 4 for interesting comparisons.

Next, for each original sample the dependent bootstrap 90% CI was
formed by drawing 2000 dependent bootstrap samples of size m = n from
each of the original samples for varying replication factors, fc, specifically,
k = 2,4,6,8,10,20. Using the 2000 bootstrap samples, the percentile and
bootstrap-t confidence intervals were obtained. The same procedure was fol-
lowed using the traditional bootstrap. The estimated coverage probabilities
and average lengths are reported in Tables 1-4.

The results show that for all distributions there is little difference be-
tween the coverage probabilities and the lengths of the normal theory CI,
the traditional bootstrap and the dependent bootstrap procedure, when the
bootstrap-t method of CI computation is used. However, for the percentile
method of confidence interval computation, the dependent bootstrap per-
forms poorly when compared to the traditional bootstrap and the normal
theory method (cf: Tables 5-8). For all distributions, the dependent boot-
strap confidence intervals displayed far lower coverage probabilities than the
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other methods while yielding much shorter lengths. This result is to be ex-
pected since the variance of the dependent bootstrap mean estimator (cf:
(2.3)) is smaller than that of the sample mean or the traditional bootstrap
mean, and hence the distribution of the dependent bootstrap mean is nar-
rower. Thus, an adjustment to the percentile method is needed for the depen-
dent bootstrap confidence intervals to achieve desired coverage probabilities
while trying to maintain shorter lengths. Specifically, since the percentiles
are functionally related to the standard deviation, instead of using (3.2) in
obtaining the confidence interval limits, use

where p* satisfies 1 — Φ(Z(Q ^)) = *£• with

for 0 < θ < 1 and where Zs. is a standard normal (1 — §) percentile. Using
a = .1, this becomes

Note that θ — 0 is the usual percentile method described above whereas
for 0 < θ < 1 the attempt is to improve the coverage probabilies of the
confidence intervals while maintaining shorter lengths. Using the same dis-
tributions and sampling plan as before, these new simulations were carried
out with results for θ — 0,0.5., 0.75,1 given in Tables 9-12. For all distribu-
tions, even for moderate k (k = 4,6,8) and θ = 0.75, the dependent boot-
strap confidence intervals achieve comparable coverage probabilities while
retaining shorter lengths.

The simulation studies presented in this paper suggest some directions
for future research. While θ = 0.75 appears to be the best choice from these
simulations, more investigations might determine if θ is dependent on fc, n,
or the distribution the original sample was drawn from, or some combination
of these factors.
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Table 1: 90% Bootstrap-1 Confidence Intervals for

Normal(μ = 4, σ2 = 8)

Coverage Probabilities

n

20

40
100

200

Normal

Approx.
0.877
0.907
0.892
0.912

Traditional

Bootstrap
0.901
0.911

0.895
0.912

Dependent Bootstrap

k = 2
0.892

0.914
0.894
0.914

Jfe = 4

0.898

0.915
0.890
0.913

k = 6 fc = 8

0.896
0.912

0.890
0.912

0.899

0.913
0.897

0.911

fc = 10

0.899
0.914

0.891
0.917

fc = 12
0.897

0.918
0.891

0.916

Interval Lengths

n

20
40

100
200

Normal

Approx.
2.049
1.463
0.930

0.658

Traditional

Bootstrap
2.181

1.503
0.940
0.661

Dependent Bootstrap

k = 2
2.137
1.491

0.938
0.661

fc = 4

2.157
1.497
0.939

0.661

k = 6 k = 8

2.164

1.499
0.939

0.661

2.168
1.501

0.939
0.661

As = 10
2.172
1.502

0.939
0.661

k = 12

2.173
1.501

0.940
0.661

Table 2: Boots t rap-t m e t h o d 90% Confidence Intervals for Chi

Square(d/ = 4)

Coverage Probabilities

n

20
40
100

200

Normal

Approx.
0.867

0.863

0.901

0.893

Traditional

Bootstrap
0.852

0.883

0.911
0.895

Dependent Bootstrap

k = 2

0.887
0.881

0.910

0.889

k = A

0.886
0.885
0.911

0.892

k = 6 k=8

0.891
0.886

0.913
0.895

0.891
0.881
0.909

0.893

As = 10
0.895
0.883

0.911

0.893

A; = 12
0.889
0.883

0.909
0.897

Interval Lengths

n

20

40
100

200

Normal

Approx.

2.028
1.449

0.925
0.654

Traditional

Bootstrap
2.295

1.538

0.949

0.663

Dependent Bootstrap

k = 2
2.234

1.521

0.944

0.661

k = A
2.262

1.530

0.946
0.662

k=6 k=8
2.274

1.534

0.947

0.663

2.277
1.534

0.947
0.662

A; = 10
2.282

1.536

0.947

0.663

k = 12
2.283

1.536

0.948

0.663
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Table 3: Bootstrap-t method 90% Confidence Intervals for
Double Exponential(μ = 4, σ = 2)

Coverage Probabilities

n

20
40

100
200

Normal

Approx.
0.877
0.894

0.905
0.902

Traditional

Bootstrap
0.865
0.887

0.899
0.896

Dependent Bootstrap

A; = 2
0.865
0.891

0.897
0.901

A: = 4
0.863
0.894
0.902

0.897

A; = 6 A; = 8
0.863
0.889
0.902

0.898

0.867

0.889

0.901
0.896

A; = 10

0.867
0.891

0.899
0.897

A; = 12

0.863
0.888

0.900

0.899

Interval Lengths

n

20
40
100
200

Normal

Approx.

2.008
1.458

0.927
0.656

Traditional

Bootstrap

1.954
1.438
0.922
0.654

Dependent Bootstrap

k = 2

2.184
1.517
0.941
0.662

A; = 4

2.187
1.515
0.940
0.661

A; = 6 A; = 8

2.191
1.514
0.941

0.661

2.193
1.514

0.939
0.661

A; = 10

2.193
1.515
0.940
0.661

A; = 12

2.195
1.516
0.940
0.661

Table 4: Bootstrap-t method 90% Confidence Intervals for
mixture of two normal distributions

Coverage Probabilities

n

20
40

100
200

Normal

Approx.

0.885

0.888
0.901
0.903

Traditional

Bootstrap

0.905
0.902

0.907
0.902

Dependent Bootstrap

A; = 2

0.895
0.896
0.905
0.904

A: = 4

0.903
0.897

0.906
0.905

A; = 6 A; = 8

0.902
0.899
0.906
0.905

0.904
0.901
0.907
0.904

A; = 10

0.904
0.903
0.905
0.905

A; = 12

0.905
0.902
0.907
0.902

Interval Lengths

n

20
40

100

200

Normal

Approx.

2.069
1.469

0.929
0.656

Traditional

Bootstrap

2.197

1.509

0.940

0.660

Dependent Bootstrap

A; = 2

2.145
1.491

0.936

0.659

A; = 4

2.168
1.501

0.938

0.659

A: = 6 A; = 8

2.179
1.504

0.938

0.660

2.183
1.506

0.940
0.659

A; = 10
2.185

1.506
0.939

0.660

A; = 12
2.188
1.507

0.939
0.660
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Table 5: Percentile 90% Confidence Intervals for
Normal(μ = 4, σ2 = 8)

Coverage Probabilities

n

20

40

100
200

Normal

Approx.
0.877
0.907
0.892
0.912

Traditional

Bootstrap
0.869
0.901
0.892
0.907

Dependent Bootstrap

k = 2
0.728

0.767

0.775
0.783

A; = 4

0.814

0.855
0.835
0.861

A; = 6 k=8

0.830

0.879

0.853
0.875

0.840
0.887

0.865
0.889

k = 10

0.849

0.886
0.867

0.893

A; = 12
0.852

0.893
0.876

0.893

Interval Lengths

n

20
40

100
200

Normal

Approx.

2.049

1.463

0.930
0.658

Traditional

Bootstrap

1.997

1.443

0.925

0.656

Dependent Bootstrap

A; = 2

1.433

1.029

0.657

0.465

A; = 4

1.743

1.256

0.803

0.569

A; = 6 A; = 8

1.834

1.323

0.846

0.600

1.877

1.355
0.867

0.614

A; = 10

1.903
1.374

0.878

0.623

k = 12

1.920

1.386

0.888
0.629

Table 6:
Percentile method 90% Confidence Intervals for Chi Square(cίf = 4)

Coverage Probabilities

n

20
40

100
200

Normal

Approx.

0.867
0.863
0.901

0.893

Traditional

Bootstrap

0.852

0.859
0.903
0.887

Dependent Bootstrap

A: = 2

0.726

0.735
0.763
0.732

A; = 4

0.806

0.813
0.850

0.833

A; = 6 A; = 8

0.824

0.830
0.867
0.852

0.833
0.841

0.878
0.864

A; = 10

0.840

0.845
0.883

0.868

A; = 12

0.840
0.852

0.885
0.875

Interval Lengths

n

20
40
100

200

Normal

Approx.
2.028
1.449

0.925
0.654

Traditional

Bootstrap

1.973
1.428
0.920

0.653

Dependent Bootstrap

A; = 2

1.423
1.021

0.653

0.463

A; = 4

1.725
1.244

0.799
0.566

A; = 6 A; = 8

1.813

1.311
0.842

0.597

1.855
1.341

0.862

0.613

A; = 10

1.881
1.362

0.874

0.620

A; = 12

1.895

1.373
0.882

0.626
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Table 7: Percentile method 90% Confidence
Intervals for Double Exponential(μ = 4, σ = 2)

Coverage Probabilities

n

20

40

100

200

Normal

Approx.
0.877
0.894

0.905

0.902

Traditional

Bootstrap
0.859

0.885

0.900
0.897

Dependent Bootstrap

k = 2
0.721

0.738

0.754

0.755

k = A
0.802

0.833

0.839
0.849

k=6 k=8
0.822

0.855

0.855

0.869

0.833

0.866

0.870

0.876

k = 10
0.837

0.869

0.876

0.881

A; = 12
0.840
0.874

0.878

0.885

Interval Lengths

n

20

40
100

200

Normal

Approx.

2.008

1.458
0.927
0.656

Traditional

Bootstrap
1.954

1.438
0.922

0.654

Dependent Bootstrap

k = 2

1.408

1.027
0.655
0.464

k = 4

1.708

1.253
0.801

0.568

fc = 6 k = 8

1.797

1.318
0.845

0.598

1.838

1.349

0.863
0.613

k = 10

1.862

1.370

0.876
0.622

fc = 12

1.879
1.382

0.884

0.627

Table 8: Percentile method 90% Confidence Intervals for Mixture
of Two Normal Distributions

Coverage Probabilities

n

20

40

100

200

Normal

Approx.

0.885

0.888

0.901
0.903

Traditional

Bootstrap

0.875
0.885

0.901

0.900

Dependent Bootstrap

k = 2

0.733

0.749

0.759

0.759

k = 4

0.812

0.837

0.849
0.844

fc = 6 A; = 8

0.838

0.854

0.868

0.865

0.847

0.862

0.875

0.879

k = 10

0.854

0.866

0.877
0.884

k = 12

0.856

0.873

0.886
0.885

Interval Lengths

n

20

40

100

200

Normal

Approx.

2.069

1.469

0.929

0.656

Traditional

Bootstrap

2.018

1.451

0.925
0.654

Dependent Bootstrap

k = 2
1.448

1.032

0.656

0.464

fc = 4
1.759
1.262

0.803

0.568

λ; = 6 λ; = 8
1.852

1.330

0.846

0.599

1.895
1.361

0.868

0.613

Jfc = 1 0
1.921
1.379

0.879

0.622

A; = 12
1.938
1.393

0.886

0.628
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Table 9: Modified Percentile 90% Confidence Intervals:
Normal(μ = 4, σ2 = 8)

Coverage Probabilities

θ

0

.5

0.75

1

n

20
40
100
200

20
40
100
200

20
40
100
200

20
40
100
200

Normal

Approx.

0.877
0.907
0.892
0.912

0.877
0.907
0.892
0.912

0.877
0.907
0.892
0.912

0.877
0.907
0.892
0.912

Traditional
Bootstrap

0.901
0.911
0.895
0.912

0.869
0.901
0.892
0.907

0.869
0.901
0.892
0.907

0.869
0.901
0.892
0.907

Dependent Bootstrap

k = 2

0.892
0.914
0.894
0.914

0.801
0.853
0.830

L0.858

0.839
0.881
0.863
0.887

0.864
0.901
0.890
0.913

fc = 4

0.898
0.915
0.890
0.913

0.842
0.883
0.866
0.887

0.855
0.892
0.876
0.904

0.869
0.901
0.889
0.912

k = 6

0.896
0.912
0.890
0.912

0.855
0.893
0.878
0.896

0.865
0.898
0.881
0.905

0.873
0.903
0.891
0.910

k = S

0.899
0.913
0.897

L0.911

0.858
0.894
0.877
0.904

0.863
0.899
0.883
0.907

0.868
0.901
0.891
0.915

k = 10

0.899
0.914
0.891
0.917

0.861
0.895
0.880
0.903

0.865
0.901
0.883
0.909

0.869
0.902
0.887
0.911

θ

0

0.5

0.75

1

n

20
40
100
200

20
40
100
200

20
40
100
200

20
40
100
200

Normal
Approx.

2.049
1.463
0.930
0.658

2.049
1.463
0.930
0.658

2.049
1.463
0.930
0.658

2.049
1.463
0.930
0.658

Traditional
Bootstrap

2.181
1.503
0.940
0.661

1.997
1.443
0.925
0.656

1.997
1.443
0.925
0.656

1.997
1.443
0.925
0.656

Interval Lengths
Dependent Bootstrap

k = 2

2.137
1.491
0.938
0.661

1.713
1.240
0.792
0.562

1.849
1.343
0.861
0.610

1.982
1.448
0.927
0.658

A; = 4

2.157
1.497
0.939
0.661

7.874
1.356
0.867
0.614

1.939
1.396
0.897
0.636

1.997
1.447
0.929
0.659

λ; = 6

2.164
1.499
0.939
0.661

1.919
1.385
0.889
0.630

1.963
1.416
0.907
0.643

2.003
1.446
0.929
0.659

k = 8

2.168
1.501
0.939
0.661

1.938
1.400
0.899
0.637

1.968
1.423
0.913
0.647

2.002
1.446
0.929
0.659

fc = 10

2.172
1.502
0.939
0.661

1.954
1.411
0.903
0.640

1.980
1.428
0.915
0.648

2.004
1.448
0.926
0.657
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Table 10: Modified Percentile 90% Confidence Intervals:
Chi-Square (df = 4)

Coverage Probabilities

θ

0

0.5

0.75

1

n

20
40
100
200

20
40
100
200

20
40
100
200

20
40
100
200

Normal

Approx.

0.867
0.863
0.901
0.893

0.867
0.863
0.901
0.893

0.867
0.863
0.901
0.893

0.867
0.863
0.901
0.893

Traditional

Bootstrap

0.852
0.859
0.903
0.887

0.852
0.859
0.903
0.887

0.852

0.859
0.903
0.887

0.852
0.859
0.903
0.887

Dependent Bootstrap
k = 2

0.726
0.735
0.763
0.732

0.798
0.805
0.844
0.823

0.827
0.833
0.876
0.862

0.849
0.860
0.899
0.890

fc = 4

0.806
0.813
0.850
0.833

0.831
0.841
0.879
0.863

0.845
0.851
0.893
0.880

0.859
0.861
0.901
0.893

fc = 6

0.824
0.830
0.867
0.852

0.841
0.848
0.888
0.875

0.849
0.853
0.894
0.881

0.860
0.863
0.899
0.894

fc = 8

0.833
0.841
0.878
0.864

0.841
0.851
0.890
0.877

0.850
0.855
0.897
0.887

0.857
0.862
0.903
0.888

fc = 10

0.840
0.845
0.883
0.868

0.847
0.855
0.893
0.877

0.852
0.857
0.899
0.888

0.855
0.863
0.902
0.895

θ

0

0.5

0.75

1

n

20
40
100
200

20
40
100
200

20
40
100
200

20
40
100
200

Normal
Approx.

2.028
1.449
0.925
0.654

2.028
1.449
0.925
0.654

2.028
1.449

0.925
0.654

2.028
1.449
0.925
0.654

Traditional
Bootstrap

1.973
1.428
0.920
0.653

1.973
1.428
0.920
0.653

1.973
1.428
0.920
0.653

1.973
1.428
0.920
0.653

Interval Lengths
Dependent Bootstrap

k = 2

1.423
1.021
0.653
0.463

1.688
1.225
0.787
0.558

1.819
1.326
0.854
0.607

1.947
1.427
0.920
0.654

k = A

1.725
1.244
0.799
0.566

1.850
1.342
0.862
0.611

1.914
1.384
0.893
0.633

1.972
1.432
0.924
0.655

A; = 6

1.813
1.311
0.842
0.597

1.897
1.372
0.884
0.628

1.939
1.403
0.902
0.639

1.978
1.432
0.924
0.655

k = 8

1.855
1.341
0.862
0.613

1.917
1.386
0.894
0.634

1.947
1.408
0.909
0.644

1.980
1.433
0.923
0.655

k = 10

1.881
1.362
0.874
0.620

1.962
1.398
0.898
0.638

1.958
1.415
0.909
0.645

1.980
1.434
0.921
0.654
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Table 11: Modified Percentile 90% Confidence Intervals:
= 4,σ=2)

Coverage Probabilities

θ

0

0.5

0.75

1

n

20
40
100
200

20
40
100
200

20
40
100
200

20
40
100
200

Normal
Approx.

0.877
0.894
0.905
0.902

0.877
0.894
0.905
0.902

0.877
0.894
0.905
0.902

0.877
0.894
0.905
0.902

Traditional
Bootstrap

0.859
0.885
0.900
0.897

0.859
0.885
0.900
0.897

0.859
0.885
0.900
0.897

0.859
0.885
0.900
0.897

Dependent Bootstrap
fc = 2

0.721
0.738
0.754
0.755

0.793
0.829
0.833
0.845

0.827
0.867
0.869
0.874

0.860
0.890
0.901
0.901

fc = 4

0.802
0.833
0.839
0.849

0.830
0.870
0.872
0.877

0.850
0.876
0.889
0.893

0.861
0.888
0.903
0.899

fc = 6

0.822
0.855
0.855
0.869

0.839
0.877
0.884
0.885

0.856
0.883
0.893
0.893

0.861
0.887
0.899
0.899

fc = 8

0.833
0.866
0.870
0.876

0.845
0.879
0.889
0.889

0.853
0.884
0.895
0.896

0.859
0.885
0.901
0.898

fc = 10

0.837
0.869
0.876
0.881

0.849
0.885
0.889
0.893

0.855
0.885
0.895
0.897

0.857
0.885
0.903
0.898

θ

0

0.5

0.75

1

n

20
40
100
200

20
40
100
200

20
40
100
200

20
40
100
200

Normal
Approx.

2.008
1.458
0.927

Lθ.656

2.008
1.458
0.927
0.656

2.008
1.458
0.927
0.656

2.008
1.458
0.927
0.656

Traditional
Bootstrap

1.954
1.438
0.922
0.654

1.954
1.438
0.922
0.654

1.954
1.438
0.922
0.654

1.954
1.438
0.922
0.654

Interval Lengths>
Dependent Bootstrap

k = 2

1.408
1.027
0.655
0.464

1.672
1.233
0.789
0.560

1.801
1.335
0.857
0.608

1.925
1.434
0.923
0.656

fc = 4

1.708
1.253
0.801
0.568

1.834
1.351
0.863
0.612

1.898
1.394
0.895
0.635

1.953
1.442
0.926
0.657

fc = 6

1.797
1.318
0.845
0.598

1.880
1.380
0.886
0.629

1.922
1.412
0.903
0.641

1.961
1.443
0.927
0.656

fc = 8

1.838
1.349
0.863
0.613

1.900
1.396
0.897
0.636

1.928
1.418
0.911
0.647

1.961
1.443
0.926
0.657

k = 10

1.862
1.370
0.876
0.622

1.914
1.408
0.900
0.639

1.937
1.425
0.912
0.646

1.961
1.442
0.923
0.655



BOOTSTRAP CΓS 107

Table 12: Modified Percentile 90% Confidence Intervals: Mixture of
Two Normals

Coverage Probabilities

θ

0

0.5

0.75

1

n

20
40
100
200

20
40
100
200

20
40
100
200

20
40
100
200

Normal

Approx.

0.885
0.888
0.901
0.903

0.885
0.888
0.901
0.903

0.885
0.888
0.901
0.903

0.885
0.888
0.901
0.903

Traditional

Bootstrap

0.875
0.885
0.901
0.900

0.875
0.885
0.901
0.900

0.875
0.885
0.901
0.900

0.875
0.885
0.901
0.900

Dependent Bootstrap

k = 2

0.733
0.749
0.759

Lθ.759

0.803
0.831
0.840
0.843

0.843
0.856
0.868
0.871

0.869
0.889
0.901
0.897

k = ±
0.812
0.837
0.849
0.844

0.847
0.861
0.875
0.877

0.857
0.875
0.885
0.893

0.874
0.889
0.899
0.900

k = 6

0.838
0.854
0.868
0.865

0.862
0.873
0.883
0.886

0.871
0.879
0.891
0.897

0.875
0.885
0.896
0.903

fc = 8

0.847
0.862
0.875
0.879

0.863
0.875
0.889
0.894

0.871
0.877
0.898
0.895

0.878
0.885
0.897
0.902

k = 10

0.854

0.866
0.877
0.884

0.896
0.880
0.889
0.891

0.872

0.881
0.893
0.899

0.876
0.887
0.905
0.904

θ

0

0.5

0.75

1

n

20
40
100
200

20
40
100
200

20

40
100
200

20
40
100
200

Normal
Approx.

2.069
1.469
0.929
0.656

2.069
1.469
0.929
0.656

2.069

1.469
0.929
0.656

2.069
1.469
0.929
0.656

Traditional
Bootstrap

2.018
1.451
0.925
0.654

2.018
1.451
0.925
0.654

2.018
1.451
0.925
0.654

2.018
1.451
0.925
0.654

Interval Lengths
Dependent Bootstrap

fc = 2

1.448
1.032
0.656
0.464

1.732
1.246
0.792
0.560

1.872

1.350
0.861
0.608

2.008
1.455
0.930
0.657

k = A

1.759
1.262
0.803
0.568

1.891
1.360
0.866
0.613

1.956
1.404
0.897
0.635

2.016
1.453
0.929
0.657

fc = 6

1.852
1.330
0.846
0.599

1.939
1.392
0.889
0.629

1.983
1.423
0.907
0.642

2.023
1.453
0.928
0.657

fc = 8

1.895
1.361
0.868
0.613

1.959
1.407
0.900
0.636

1.991

1.429
0.913
0.646

2.022
1.452
0.930
0.657

fc = 10

1.921
1.379
0.879
0.622

1.974
1.418
0.902
0.639

1.998
1.434
0.914
0.647

2.023
1.455
0.926
0.655






