
Chapter 6 

Longitudinal Data Analysis 
for Counts and Binary 
Outcomes: Generalized 
Estimating Equations 
(GEE) 

In many settings, the outcomes recorded on individuals are counts or 
binary responses. In this chapter we extend the theory in the preceding 
chapters to permit a regression analysis which does not require the mean 
responses to be linear in Xi. In the univariate setting, the generalized 
linear model (GLM, McCullagh and Neider, 1989) offers an approach 
which unifies linear, log and logistic regression analysis. It was extended 
to the distribution free multivariate setting by Liang and Zeger (1988) 
and Zeger and Liang (1988). Extensions of the likelihood approach and 
the random effects models to the nonlinear setting is more complex; we 
will review some of the suggested approaches in subsequent chapters. In 
this chapter, we begin by reviewing the basic ideas for GLM's in the 
univariate setting, and then discuss the GEE extension to correlated 
data. 
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6.1 The Generalized Linear Model (GLM) for 
Univariate Outcomes. 

Suppose now that Yi is a scalar outcome, Xi is a 1 x p row vector of 
covariates, (3 is a p x 1 vector of regression coefficients and 

f..ti = E(Yi) = g(Xi/3), (6.1) 

where 
g-1(J.ti):::::: f(J.ti) = Xi/3. 

Here g( ·) and .€(-) are known functions; £(-) is called the link function 
and g(-) is the inverse link function. 

Examples. For the linear model, both£(·) and g(·) are the identity 
functions: f(J.ti) = f..ti, and .e(-) is called the identity link. If Yi is a count, 
so that f-li > 0, a natural link function is the log: 

log f..ti = Xi/3 =? f..ti = eXif3. 

Here R(·) is the log link. With binary data, E(Yi) = P(Yi = 1), hence 
0 < f..ti < 1 and a popular link function is 

or 

Here .e(-) is the logit link. 

As in the LMCD setting, it is possible to implement a distribution 
free analysis using only the assumption of the mean model (6.1), or we 
may fully specify the distribution of Yi (possibly as a function of other 
parameters) and use a fully parametric analysis. The distribution free 
approach estimates (3 by minimizing the objective function 

N 

Q(/3) = L Wi(Yi- f..ti) 2 

i=l 

for some arbitrary choice of weights, Wi. Straightforward differenti­
ation of Q(/3) with respect to (3 gives a p x 1 vector of derivatives 
8Q(f3)/8/3j,j = 1, ... ,p: 

N 
aQ(/3) '""" ( af-li) fi/3" = 2 {:t 813 wi (Yi - f-li) ; (6.2) 
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setting (6.2) equal to zero gives jj, since given /3, 

and the weights are assumed known. This can be viewed as a semipara­
metric approach because: 

i) Any estimator of /3 that is consistent and asymptotically normal, 
assuming only (6.1) is true, is asymptotically equivalent to iJ(W) 
for some choice of W. 

ii) The choice of weights which gives iJ(W) the smallest variance among 
estimators in this class is wi-1 = var(YiiXi) =Vi. 

iii) The asymptotic distribution of iJ(W) satisfies 

vN (iJ(W) - /3) --+ N(O, C) 

where 
(6.3) 

and 

A consistent estimator of Cis obtained by evaluating (8t-td8/3) at jj, and 
substituting (Yi- Jii) 2 for Vi. The same asymptotic limiting distribution 
will obtain when the wi are replaced by estimated wi. 

In the GLM, we additionally assume that 

where V(t-ti) is a known function depending upon the mean and cjJ is a 
known or unknown scalar factor. This implies that Vi depends upon the 
covariates Xi only through the mean f..ti· 

Examples. With Yi binary, var(Yi) = f..ti(l- f..ti) = V(t-ti) and cjJ = 1. 
If we assume a Poisson variance for count data Yi, var (Yi) = f..ticP, where 
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¢ is a dispersion parameter. In the linear case, we usually assume the 
variance does not depend upon J.li, and take V(J.Li) = 1 and cr2 = ¢. 

Notice that if 

¢ drops out of the estimating equations, so we may equivalently take 

so that the estimating equations become 

N 

?= ( ~i) _ V(lti)-1(Yi -lti) = 0. 
t=l 1,13 

(6.4) 

Under this assumption, the same limiting distribution holds, with now 

varVN (fj- (3) = C 

for 

(6.5) 

and 

REMARKS. 

(i) The GLM assumes that the model var(Yi) = V(J.Li)¢ is correct for 
var(Yi) = Vi; once we estimate (3, we have an estimate for Vi (up 
to a proportionality constant). 

(ii) Equation (6.5) for the var(v0'J(jj- (3)) is only consistent when 
var(Yi) = V(J.Li)¢ is correct. 

(iii) The estimating equations in (6.4) are called quasi-likelihood score 
equations (Weddeburn, 1974; McCullagh and Nelder, 1989). 

(iv) Suppose further that Yi has an exponential family distribution with 
canonical parameter (}i, so that 

where f.Li is some function of (}i, and 



100 LONGITUDINAL AND CLUSTER-CORRELATED DATA 

For this family of distributions, it is easily shown that 

and 

We now show that the quasi-likelihood equations correspond exactly to 
the likelihood score equations. Here we treat¢ as a fixed scale parameter. 
Note that (iv) implies 

N 

£q; ({3)) = IT f (Yi) ex e (L:~l Y;O, + L:~l a( ei)) /¢ 
i=1 

so that 

8ln£q;(/3) = [f=Yi (8ei) + £= (8a(ei))] !. 
8/3 i=1 8/3 i=1 8/3 ¢ 

Using the chain rule we have that 

But 

so that 

and 

8 f.ti 
8{3 

8a(ei) 8a(ei) 8ei 8ei 
8/3 = 8ei 8/3=-f.ti8/3. 

8a(ei) ( )-1 811i 
~ = -f.tivar Yi 813 . 

Now using the fact var(Yi) = V(f.ti)¢, we have that 

N 
8ln£q;(/3) '"""(8f.ti) V( ·)-1(1': _ ·) 

8 {3 ex ~ 8 {3 11~ ~ f.tt . 
~=1 

(6.6) 

This shows that the likelihood equations are equal to the quasi-likelihood 
score equations when Yi has an exponential family density with specified 
mean and variance, and Wi = V(f.ti)-1. 

With exponential families, ei is the canonical parameter. We can use 
it to define the canonical link. If 
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then .e is said to be the canonical link. In this case, the likelihood can be 
further simplified by noting that 

and 

8p,i _ 8p,i 8Bi _ 8p,i xr 
8!3 - 8ei 8!3 - 8ei i 

8p,i __ 82a(Bi) _ ("'7 ·) 

8{)i - 8e; - Var L i 

hence the likelihood equations become simply 

N 

:L xr (Yi - Iii) = o. 
i=l 

To continue with the likelihood approach assuming the exponential fam­
ily density (iv), the asymptotic variance of /3 is given by the expected 
value of -82 1nC¢(!3)/8(38(3T. Differentiating (6.6) with respect to (3T, 
we see that only one term has nonzero expectation: 

( 8ln£¢(f3)) ~ 8p,i _1 (8/-Li)T 
-E 8(38(3T = ~ 8(3 (var(Yi)) 8(3 ' 

hence 

in agreement with (6.5). As we will see, the estimating equation and 
likelihood based approaches generally do not coincide in the multivariate 
setting with generalized linear models. 

6.2 Generalized Linear Models for Longitudinal 
Data 

As before, we will assume an ni x 1 vector of outcomes, Yi, where any 
missingness in the data are MCAR. In addition, each observation is as­
sumed to have a p x 1 vector of covariates Xij so that 

E (Yij) = /-Lij = g (X'{jf3) 

and 
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for some suitable link function£(·). Thus we may write 

E (Yi) = /-li 

where 
C (f-li) = Xi(3 

and C(f-li) denotes the vector: (C(f-lil), ... ,£(1-linJf. This model is the 
natural extension of the longitudinal data model considered in the linear 
setting, with the only difference being that we allow for a generalized 
link-function linking the mean response vector f-li to the covariates. In 
all other respects, the two are similar; it permits unbalanced designs, 
unequal clusters, etc. It is sometimes referred to as a marginal model to 
emphasize the point that the means, /-lij, are marginal for each Y;: 

In this respect it does not differ from the linear model case. 

Example 1. The Harvard Six-Cities Study of Air Pollution and 
Health gathered data annually on school children in six cities. One out­
come studied was the presence or absence of respiratory illness in the 
preceding year. The relationship between maternal smoking status and 
rates of respiratory illness was one feature of interest in the study. Here 
each child has four annual indicators 

and we assume 

Yij = 1 
=0 

if illness is past year 
otherwise 

logit (f-lij) = l'o +!31M si + !32 ageij +!33M si X ageij 

where M Si = 1 if mother smoked at the beginning of the study, 0 oth­
erwise and ageij is the age of the ith child at the jth occasion. 

Example 2. Diggle et al. (1994) describe a clinical trial of progabide 
in the treatment of epileptic seizures. Patients were randomized to pro­
gabide (31 patients) or placebo (28 patients), and measured at baseline, 
and every two weeks until week 8. Responses were number of seizures in 
each period. Covariates include baseline seizure rate, period and treat­
ment group. Here Yij is a count of the number of seizures for the ith 
subject in the jth period, j = 1, ... , 4. We assume 

log /-lij = xlj /3 
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where Xij can include baseline seizure counts (perhaps transformed), 
treatment, period and treatment x period. 

It is natural in this setting to further assume that 

for suitable V(·) because with count and binary data, the variance does 
typically depend upon the mean. For example, if }ij is binary, then by 
definition V (f.lij) = f.lij (1 - f.lij) and cjJ = 1. With count data, var(}ij) = 
f.li can be a rather strong assumption derived from Poisson theory. Over 
dispersion, cjJ > 1, implies var(}ij) > f.li, so this can be a more reasonable 
model. In the multivariate setting 

where Ai = diag {V (f.lij)}. Now however, there is no natural set of 
assumptions as to how ~(a:) should depend upon f.li· Thus we will leave 
~ (a:) as unspecified. As before, we let the true variance of }i be denoted 
by ~i, and let 

Vi <X wi-1 = A~/2 ~(a:)A~/2 

denote a "working variance" assumption. Some authors refer to ~ (a:) 
as a "working correlation matrix," implicitly assuming the variance as­
sumption is correct, but not necessarily ~(a:). 

6.3 Estimation via GEE. 

The basic GEE strategy is to simply generalize the quasi-likelihood equa­
tions to the multivariate setting by replacing Yi and f.li by their vector 
counterparts, and using a weight matrix Wi· This yields 

~ (a 1-li) r ---- ~ 
0 813 _ wi (Yi - f.li) = o. 
~=1 I /3 

Here we define Of.li/8(3 as an ni x p matrix whose jth row is Of.lij/8(3T. 
Although optimally we would take Wi = v;-1, in fact any positive definite 
and symmetric matrix can by used for Wi. If Wi = v;-1 , it now depends 
upon (3, but Ri(a:) can be specified arbitrarily provided that each Wi 
remains symmetric and positive definite. In fact, if ~(a:) =I, then the 
GEE just reduces to the GLM analysis treating all }ij as independent 
observations, e.g., if V (f.lij) = /-lij(l- f.lij) and£(-) is the logit (or pro­
bit) link, then GEE reduces to ordinary logistic (or pro bit) regression, 
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treating all Yij as independent. Notice also, that for the identity link 
and Wi = :Ei\ the GEE reduces to the multivariate normal likelihood 
equations. 

We have the following property for 73: VN($(W) - (3) ----t N(O, C), 
where 

(6.7) 

As before, asymptotic efficiency of estimation is best with Wi = :Ei1. 

The GEE equations can be simplified as follows. First define 

a . ( ~]111 ... 
f..Lz . 

8(3 = : 
{)n· 
r-~n~ 

8{31 

!li!:il.) 8{3p 

OJ.Lin; 
8{3p n;Xp 

Recall that f(f..Lij) = X'f;/3 = fij, thus 

af..Lij af..Lij aeij _ af..Lij x 
8/3 = aeij 8/3 - aeij ij, 

so that 

( af..li)T T · A 

813 =Xi ~i With Ui = d. { af..Lij} 
lag a.eij ' 

and the GEE equations become 

N 
'"""' T~ .--.. ~xi ~iwi(Yi- J.Li) = o. 
i=l 

Examples. If fij is the identity link, then .eij = f..Lij and ~i = I 
and we have generalized least squares. If .eij = log(J.Lij/(1- /-Lij)), then 
8f..Lijja.eij = f..Lij(1- f..Lij) = V(f..Lij), and ~i = diag (f..Lij(1- f..Lij)). 

If, in addition, we assume that marginally, each Yij follows the exponen­
tial family density, with canonical parameter ei then 

af..Lij _ af..Li · aei · N;;-Ifi;;lii/; 
= bij var(Yij) 

80·· 
for bi· = ~ 

J i:Jlij' 
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and we can write /1i = BiAi, where Bi = diag {bij }, and Ai is diag{Yi}, 
so that 

( a/-li)r- xr B· A· - ~ ~ ~ . 
8(3 pxni ni xni ni Xni 

Note that if the canonical link is used £ij = eij and Bi =I, and further, 
if R(a) =I, so that 

N 

2: xr (Yi - 1-li) = o. 
i=1 

6.4 Estimating the Correlation Matrix. 

Assuming that var(Yij) = V(/-lij)¢ where V is known, the parameters 
in Ai will be determined by ii, thus to estimate Wi, it remains only to 
model and estimate a. Models for the correlation are not different from 
those considered in the linear setting (except for random effects models 
to be considered later), i.e., we may choose unstructured (in the balanced 
setting), compound symmetry, serial correlation models, etc. Zeger and 
Liang (1984) proposed the following procedure to estimate a: 

i) Estimate f3 by setting ~(a) =I to get iii (independence working 
assumption). 

ii) Obtain an estimate of a using the normalized residuals Ai/2 (Yi -
Jii), with 'jii evaluated at iii. The details of this step depend upon 
the model for a and degree of balance in the data. Call this &1 . 

..- 1 ~1/2 ~1/2 ~ 
iii) Set wi- = Ai ~(a1 )Ai and use GEE to get (31 , holding ~(&1 ) 

fixed. Here Ai depends upon Jii. 

Iterate ii) and iii) to convergence. In practice, one step is often used, 
and may, in fact, be preferable if estimates of ~(a) are unstable due to 
sparse data or small sample sizes. To compute ii given a fixed a we can 
use Fisher Scoring. 

Estimating the a parameter can be done using the same method-of­
moment approach used in the semi-parametric linear model setting. First 
consider the balanced and complete case with ni = n and unstructured 
R(a). As before, Ai = diag V(pi), so that Ai depends only on (3. Given 
73, we may estimate a and ¢ as follows. Let Iii denote f.li evaluated at 73, 
and 
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so in large samples we have (assuming var(Yi) ~ 4>Ai12 R(o:)Ai12 ): 

E (Vi) ~ 4>Ai12 R(o:)A:i12 . 

Thus we take 

and (6.8) 

- - 1/2 for '1/Jij = (Yij - f.Lij) / Aij , 

where N* = '2:!1 ni. Notice that 4> is a constant variance inflation 
function for V(P,ij ). In practice, using (6.8) yields an R such that diag(R) 
will not be all ones, so they are usually forced to one at each iteration. 
This is because the variance terms are estimated from the model, but 
the covariance parameters are not. 

We can formalize this method-of-moments estimation of o: by using 
a similar set of estimating equations for an arbitrary ~(o:). This is 
convenient for the setting where the occasions of measurement may vary 
from subject to subject, but the correlations can be modeled with a 
limited number of parameters. Let 

Pijk = Pijk ( o:) 

where 
Pijk = corr (Yij, Yik) , 

and 

so that 
E(rijk) = Pijk · 

Then estimating equations for o: are given by 

N 

where 

L crui-1(ri- Pi)= 0 
i=1 

pf = (Pi12, .. · 'Pin;(n;-1)f' 

rf = (ri12, · · · 'rin,(ni-1)), 

C. - 0 Pi and U ( ) 
t - Do: i = var ri . 
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Note that the dimension of ri and Pi is ni(ni -1)/2 =mi. Specifying 
Ui for optimal estimation requires both the third and fourth moments of 
Yij, so usually we set Ui = Imi, to give 

~C[h-Pi)=O. 

When the two sets of estimating equations are used to estimate (3 
and a, solving them iteratively but separately we have: 

Given ( ak, (3k): 

i) Fix ak, solve GEE equations to get (3k+ 1 , where 

Wik = ( Ai12 Ri(ak)Ai12 ) -l . 

ii) Fix (3k+l, solve for aCk+l) using the a estimating equations, where 
/-li, V(11i) are evaluated at (3k+l; ¢is estimated as before. 

Comments. 

1. In many cases, especially with Ui =I, the a estimating equations 
can be solved non-iteratively. 

2. When the data are highly unbalanced, these estimating equations 
for a may not be so attractive. 

3. One difficulty encountered with binary data is that the correlations 
are not a natural measure of association as they are in the linear 
model setting. In particular, the correlation is restricted by the 
range of the data; all values between -1 and + 1 are generally not 
possible. 

To elaborate on point 3, consider two binary variables Y1, Y2, with means 
/11,/12· Then 

E(Y1Y2) -Ml/12 
corr = ~=~=~==;=:==~ V /11 (1-Ml)/12(1 -112) 

But E(Y1Y2) = Pr(Y1 = Y2 = 1) = 1111 where 

Y2 
1 0 

1 /111 /11 - /111 /11 
yl 

0 /12 - /111 1 - /12 - /11 + /111 (1 - /11) 
/12 (1 - /12) 1 
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The maximum value of /-lll is min(J.Ll, J.l2)· Assume J.ll < J.l2, then the 
max of J.Ln = /-ll and 

/-ll - /-ll/-l2 /-ll (1 - /-l2) 
corr = --;:=::==='===~:=::::;:==::::;:: = --;:=:;='==='==;=::::::::;:==::::;: JI-ll (1 - /-ll) /-l2 (1 - /-l2) JI-ll (1 - I-ll) /-l2 (1 - /-l2) 

= JI-ll (1 - J.l2) < 1 
J(1- /-ll)/-l2 

because I-ll < /-l2 :::::} (1- J.l2) < (1- J.ll)· The correlation can attain one 
only if /-ll = /-l2. 

With binary response, and sometimes with count data as well, we 
often use odds ratios to describe association: 

P(Y1 = Y2 = 1)(P(YI = Y2 = 0) 
OR= . 

P(Y1 = 1, Y2 = O)P(Y1 = 0, Y2 = 1) 

This is an desirable measure of association for a variety of reasons: 

1. OR= 1 or ln OR= 0 implies (Y1, 1-'2) are independent. 

2. ln (OR) is symmetric about 0 and unbounded; it is not constrained 
by the marginal moments of (Y1, Y2). 

3. It is invariant to marginal specification of /-ll and /-l2· That is, any 
(J.LI, J.l2) pair is compatible with any value of OR; this explains its 
appeal in case-control studies. 

Various authors (Prentice, 1988; Lipsitz et al., 1990, 1991; Liang et al., 
1992) have suggested replacing the a estimating equations by a set of 
odds-ratio estimating equations. The idea is that in the 2 x 2 table, if 
the margins are fixed (J.LI, /-l2), there is one remaining degree-of-freedom 
for determining association. We can use it to estimate the odds ratio, 
then calculate the correlation needed for the (3 equations as a function 
of the odds ratio. This approach has some attractive features, but has 
limitations when there are more than two responses (ni > 2). In this 
case, the set of ni(ni- 1)/2 odds ratios are given by 

n. 'k _ P('Yij = 1, 'Yik = 1) P('Yij = 0, 'Yik = 0) 
~~ - . 

P(Yij = 1, Yik = 0) P(Yij = 0, Yik = 1) 

In particular, the parameter space of the Dijk's, like that of the Pijk's 
depends upon the J.li· 

Liang et al. (1992) proposed an extension to GEE termed GEE-1 
which can be used to estimate (3 and a for an arbitrary parameterization 
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of the association, say 'r/ijk, that permits a unique transformation from 'r/i 
to Pi· This permits one to obtain an expression for Wi in terms of ~(a). 
Let Sijk = (Yij -P,ij)(Yik -!Lik) and E(Sijk) = 'r/ijk = E(YijYik) -P,ij/Lik· 
Then the association parameters indexed by a can be defined in terms 
of 'r/ijk and f.Li· 

For example, 

and the odds ratio nijk can be expressed as: 

We define the a estimating equations by 

N 

"LcTui-1(si- 'rli) = o 
i=1 

where 

ci = 8rJd8a, 

S'[ = (Si12, ... , Sini(n,-1)) , 

rJ[ = ('r/i12, · · · ''rlini(ni-1)) · 

Again, Ui is often taken to be I. Notice that we could also use an 
appropriate link function, i.e., we might assume lnnijk = Z'f;ka for some 
covariates Zijk· Putting these two sets of equations together we get 

These estimating equations are called GEE-1 by Liang et al. (1992). 

COMMENT. If our primary interest is in estimating (3, then asymp­
totic theory tells us that it matters little how we estimate a, since the 
same asymptotic distribution for jj applies for any consistent estimate of 
a. With finite samples, less is known about the impact of the estimate 
for a. 
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