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11.1 Improving pedigree samplers 

The ways in which MCMC samplers can be extended, combined, and improved, 
are almost limitless. One method has been discussed in section 10.6. Where the 
pedigree is not too complex, so that the L-sampler is feasible (and practical), 
combining the L-sampler and M-sampler on extended pedigrees can achieve 
more robust and reliable results with higher Monte Carlo precision (Heath and 
Thompson, 1997). The M-sampler (section 8.4) does not suffer poor mixing due to 
tightly linked loci, but can mix poorly where there are extended ancestral paths 
of descent in a pedigree. Additionally, the M-sampler may not be irreducible. 
Since the L-sarnpler is irreducible (section 8.3), combination of the L-sampler and 
M-sampler can ensure irreducibility, as well as improve mixing. Whereas the L­
sarnpler is often the more computationally intensive, and seems to take longer to 
achieve stable probability estimates, the M-sampler may simply fail to sample the 
part of the space containing the majority of the probability mass (Table 11.1). The 
examples of section 10.6 all combined L and M steps with the same probability 
(20%) that any given step is an L-step. Obviously, there is scope for other patterns 
of systematic or random resampling. 

There are ways to improve the meiosis sampling itself. Updating all indicators 
at a meiosis jointly shows much improved performance over single-site updating 
(Thompson and Heath, 1999). Moreover, updating by· meiosis avoids problems 
of poor mixing due to tight linkage. However, clearly there would be greater 
improvement if the vectors S;,. for several meioses i were to be updated jointly. 
Likewise the L-sampler can be improved. For very tightly linked loci, single-locus 
updates are ineffective. However, where feasible, the L-sampler might update jointly 
S.,j for several loci j. For the L-sampler, on a complex pedigree, usually no more 
than two or three loci can be updated jointly. 

One case where updating several meioses jointly is effective and easily done is 
147 
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Update 
by 
meiosis 

Update by locus 
singly jointly 

--
singly single-site: Update Si,j· 1-sampler: Update S.,j· 

Performance poor Performance poor for 
tight linkage 

jointly M-sampler: Update Si,•· 1M-sampler. Improved 
Performance poor for mixing and more robust 
extended pedigrees estimation 

TABLE 11.1. Single-site and joint updating schemes on a pedigree 

pat,mat 

¢,anc 

¢,anc 

¢,anc 

4-plex 
meiosis 

FIGURE 11.1. A multiplex meiosis consisting of an ancestral chain of four meioses. These 
meioses may be jointly updated. For additional details, see text 

where there is a succession of several ancestral meioses over several generations 
with no phenotypic data, in each case there being one founder parent with a single 
offspring in the pedigree (Figure 11.1). A number of such chains may be seen in the 
pedigree of Figure 10.1. Reeall (section 8.4) that, for such a founder parent, the 
meiosis to the single offspring is not scored. The relevant gene in eaeh offspring (in 
this example, the paternal gene) is, in effeet, a founder gene. We refer to the chain of 
meioses from the pedigree (non-founder) parents as a multiplex meiosis. For the first 
meiosis of the chain, we score, as usual, whether the offspring receives the parent's 
maternal or paternal gene. For subsequent meioses, the state is characterized by 
whether, at a given locus, the transmitted gene is the parent's gene from a peripheral 
( ¢) or pedigree ( anc) parent. The state of the multiplex meiosis is characterized by 
the number of meiosis indicators in the chain that eurrently point to a gene from 
one of the peripheral founders (0,1,2,3 in Figure 11.1), and the state (O=maternal, 
1=paternal) of the first meiosis. With this specification, the transition probabilities 
remain first-order Markov along the chromosome. A pre-processing of the pedigree, 
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assigning each multiplex meiosis its appropriate Markov transition probabilities, can 
greatly improve efficiency of the MCMC. There are fewer (multiplex) meioses to 
resample: in the example we have replaced four meioses with a total of 24 = 16 
states by a single multiplex meiosis with 2 x 4 = 8 states. For example, the state 
(1, 2) would denote that the first individual of the chain receives her mother's 
paternal gene, and that for 2 of the subsequent meioses the offspring receive their 
mother's founder gene. (In Figure 11.1, the founder parents are male, and the 
pedigree parents are female.) Although this single factor of two in the number 
of states is not large, repeated over a large pedigree this can lead to a significant 
reduction. More important than the number of states is the mixing of the MCMC. 
Even when transition probabilities for descent down the chain are small, with joint 
updating alternative descent paths for an allele are more readily sampled. The 
ability to change the descent path down the whole chain in a single MCMC step 
greatly improves mixing. 

The joint updating of meioses may be carried further. The Lander-Green 
algorithm for exact computation can be readily performed on up to 15 meioses. 
While one might not want to incorporate such an intensive computation into an 
MCMC, computation is quite feasible for, say, a subset of rn• = 10 of the total set 
of rn meioses in the pedigree. The procedure is exactly as in equations (8.8) and 
(8.9), except now that, instead of the two values of s, Q1(s) must be evaluated and 
normalized for each of the 2m• vectors of the indicators for these rn• meioses, say 
1024 values to be stored for each locus along the chromosome. Additionally the 
penetrance probabilities P(YU: I s.,j) would be needed for each of the 1024 values. 
The extent to which improved mixing compensates for the increased computation 
remains to be investigated, but there is no doubt that joint updating will help 
in some cases. When the L-sampler in infeasible due to extreme complexity of the 
pedigree, joint updating of several meioses could ensure irreducibility of the meiosis 
sampler. However, this is an area where many open questions remain. In particular, 
on an extended pedigree, appropriate choke of the meioses to be updated jointly 
is far from obvious. 

11.2 Interference by Metropolis-Hastings 

In the absence of interference, but where different meioses exhibit different 
recombination probabilities, the proredure of resampling a whole meiosis jointly 
over loci (section 8.4) is more convenient than other forms of MCMC. Sex-specific 
maps can be routinely incorporated, provided they are known, and no assumptions 
regarding the relationship between male and female recombination frequencies 
are necessary. Each meiosis is resampled, and the relevant computations made, 
under the map appropriate to that meiosis. For multiplex meioses (section 11.1), 
which may contain individuals of different sexes, male and female meioses must be 
accounted separately, and the transition probabilities must be pre-computed, but 
there is no intrinsic computational difficulty. 

Genetic interference in meiosis (Chapter 5) is a more complex issue, since it 
destroys the first-order Markov conditional-independence structure of the meiosis 
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indicators along a chromosome. The assumption of first-order dependence in the 
S.,i is crucial to the computations of sections 6.1 and 7.1 and to the M-sampler 
as developed in section 8.4. There is no general computational algorithm for 
exact computation of multilocus linkage likelihoods under interference, although 
Weeks et a!. (1993) and Lin and Speed (1996) have shown how to incorporate 
interference in some cases. However, as for any multilocus problem, exact likelihood 
computation on an extended or complex pedigree remains computationally 
infeasible. In fact, for exact computations under interference, the numbers of 
markers, and(or pedigree structures, are severely limited, and computation is 
cumbersome. The erstwhile practice of transforming recombination frequencies 
between markers using a genetic map function, and then performing a no­
interference computation becomes increasingly futile as maps become denser, and 
marker data on observed individuals more complete. 

Although genetic interference is very seldom incorporated into linkage 
computations, it exists in human meiosis (Broman and Weber, 2000). Failure to 
incorporate it can reduce the power to detect linkage (Goldstein eta!., 1995). In an 
analysis of data at multiple tightly linked markers from actual meioses, Thompson 
and Meagher (1998) have shown that interference can have a significant impact 
on patterns of joint segregation of genes at distances of 20cM to 30cM. Using our 
whole-meiosis M-sampler (section 8.4), since all the meiosis indicators for all the 
linked loci in an entire meiosis are resampled jointly, incorporation of an interference 
model is feasible. 

In the M-sampler, given marker data Y at loci j = 1, ... , L, meiosis indicators 
at meiosis i, S;,. = (Si,l, ... , S;,L) are realized from 

(11.1) P(S;,. I Sk,o, k "# i, Y) ex P(Y I S) pCH: (S) 

where S is the total set of meiosis indicators for all loci at all meioses of the 
pedigree, and the super-script (H) denotes the Haldane (no-interference) model. 
We now continue to use equation (11.1) as our proposal distribution, and add 
a Metropolis acceptance step (Metropolis ct a!., 1953), to provide the correct 
conditional distribution of S;,. under interference (denoted pu: ( ·)). The required 
Hastings-ratio h(St; S) (equation 8.2) for currentS and proposed st is 

cr t ur · P ·(S ,Y) P ·(S;,.I Sk,.,k-:f;l,Y) 

pU:(S,Y) pcH:(sJ,.I Sk,.,k-:f;i,Y) 

pu: (St, Y)PCH: (S, Y) 
pu: (S, Y) pcH: (S t, Y) 

P(YISt)pu: (St)P(YIS)pcu: (S) 

P(YIS)PU: (S)P(YISt)pCH: (St) 

m pU:(st ) pCH:(S ) = II k,o k,o 
k=l pu:(Sk,.) pCW(S!_.) 

= 
pu:(Sl,.) pCW(S;,.) 

pu:(s;,.) pCI((Sl,.) · 
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·-··· 
recombination prob under prob under prob under prob prob 
patterns model I model II model 0 ratio ratio 

d = 25.54cM d = 0.2cM d = 25.54cM (I) (II) 
p = 0.2554 p = 0.2 p = 0.2 

r r r r 0.0 0.0 0.0016 0.0 0.0 
r r r n, n r r r 0.0 0.0 0.0064 0.0 0.0 
r r n r, r n r r 0.0027 0.0 0.0064 0.422 0.0 
r r n n, n n r r 0.0027 0.0 0.0256 0.106 0.0 
r n r n, n r n r 0.1196 0.05 0.0256 4.672 1.953 
rnnr 0.0054 0.05 0.0256 0.212 1.953 
nrrn 0.0054 0.0 0.0256 0.212 0.0 
n n n r, r n n n 0.1223 0.1 0.1024 1.194 0.977 
n n r n, n r n n 0.125 0.15 0.1024 1.221 1.465 
nnnn 0.2446 0.35 0.4096 0.597 0.854 

TABLE 11.2. Probabilities of recombination {r) and non-recombination (n} in four equal marker 
intervals, under interference models I and II and under the Haldane model of no interference 
(model u} 

The acceptance probability is then a= min(l, h(St; S). This considerable reduction 
in the expression for h(St; S), and consequent ease of computation of the acceptance 
probability relies on three facts: 
(1) the probability of data y given meiosis patterns or st does not depend on the 
interference process (!) or (H), giving rise to S, 
(2) the independence of meiosis patterns Sk,. at different meioses k (when not 
conditioned on data Y), and 
(3) st,. = Sk,. for k f. i. 

As an example, consider again the standard test pedigree (Figure 1.1): this 
example was also given in Thompson (2000a). As in section 10.4, consider 
five equispaced marker loci, 25.54cM apart (recombination frequency 20% under 
the Haldane no-interference model). We consider the case of extreme position 
interference, but no chromatid interference, in which chiasmata on the underlying 
tetrad are equispaced at 50cM spacing. Then using the notation of section 5.3 
for the indicator vectors C of presence (1) or absence (0) of chiasmata in the 
four intervals there are only 5 possible values: C = (1,0,1,1), (1,1,0,1), (0,1,1,0), 
(1,0,1,0) or (0,1,0,1). Under a model which places the first marker uniformly in 
an interval between two chiasmata, these five possible chiasmata indicator vectors 
have probabilities 0.0216, 0.0216, 0.0216, 0.4676 and 0.4676 respectively. Using 
equation (5.2), these translate to the probabilities of patterns of recombination (r) 
or non-recombination (n) given in under model (I) in Table 11.2. In this table, pairs 
of vectors having the same probability under any model are listed together. For 
example, for equispaced markers, patterns rrrn and nrrr have the same probability, 
by symmetry. The tabulated probability refers to the probability of each of the two 
patterns. We see there are substantial differences in the probabilities under this 
interference model (I) and under no interference (model 0; Haldane), However, 
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the ratios are not so extreme as to make the MCMC ineffective. All probabilities 
are strictly positive under the proposal (Haldane) distribution, and non-zero ratios 
differ by a factor of at most 22 (0.212 to 4.672). 

It is not clear that the correct assessment of interference effects should be through 
imposing equal genetic distance; that is, total expected numbers of crossovers. If 
instead we constrain the recombination frequency between adjacent markers to 
be 20%, the distance under our model of complete position interference is 20cM. 
Again there are five possible indicator vectors C of chiasmata presencejabsence, 
but this time these are (0,0,1,0),(0,1,0,0),(0,1,0,1),(1,0,0,1), and (1,0,1,0), 
each having probability 0.2. Since chiasmata have an exact 50cM spacing and the 
marker intervals are 20cM, it is not longer possible for there to be chiasmata in two 
adjacent intervals. Again assuming the first marker is randomly and uniformly 
placed relative to the chiasmata, and using equation (5.2), the corresponding 
probabilities of patterns of recombinationfnon-rccombination are as given for model 
(II) in Table 11.2. Again the ratios, for model (II) relative to the proposal (Haldane) 
model are not extreme; this time the non-:t:ero ratios range only from 0.854 tO 
1.953. Although both models (I) and (II) have some recombination vector events of 
probability 0, this does not lead to invalid estimates. If proposed, these vectors will 
not be accepted. The total probability under the Haldane model of recornbinatiou 
vectors that cannot be accepted under the interference models is not large (0.014 
under model I, 0.104 under model II). 

Gene ibd single- single- no interference 
pattern locus locus marker marker 

prior conditional M5 M3 
All 4 genes ibd genes 29 133 127 180 
3 of 4 genes ibd 156 286 356 381 
2 pairs of ibd genes 84 154 118 130 
2 of 4 genes ibd 484 354 303 251 
all 4 non-ibd 247 73 96 58 
mean log-probability log Po (S)) -44.69 
mean log-probability logPo(YIS) -33.23 
MCMC steps (accepted %) 107 (100%) 

TABLE 11.3. Gene zba probabilztzes (xlOOO) for smgle locz, ana under no mterference (Halaane 
moael) 

The marker data at each locus assumed are as in sections 10.4 and 10.6 for the 
five individuals of the pedigree with marker phenotypes observed (Figure 10.3). 
The allele frequencies are again assumed to be 0.2, 0.2, 0.4, and 0.2 for the four 
alleles at each locus. Again, sampling latent meiosis indicators S conditional on the 
marker data, we score gene ibd probabilities among the four potentially distinct C 
alleles. In Table 11.3 are shown the gene ibd probabilities for single loci, and for 
linked markers under the Haldane model of no interference for the central marker 
M3 and an end marker M5. These are the same values seen for marker loci in 
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Gene ibd Model I Model II 
pattern marker marker marker marker 

M5 M3 M5 M3 
All 4 genes ibd 74 104 101 152 
3 of 4 genes ibd 305 339 334 370 
2 pairs of ibd genes 94 114 106 126 
2 of 4 genes ibd 349 321 327 276 
all 4 non-ibd 178 122 132 76 
mean log-probability log-~Po(S) -50.74 -45.23 
mean log-probability loge Po(YIS) -34.12 -33.58 
MCMC steps (accepted %) 107 (68.6%) 107 (80.4%) 

TABLE 11.4. Gene ibd probabilities ( x 1000) under the recombination pattern probabilities given 
for interference models (I) and (II) in Table 11.2. Each run consisted of 10,000,000 whole-meiosis 
Gibbs/Metropolis updates, and took about 1 hour CPU on a DEC Alpha 400-23.'1 work-station 
with 256MB memory 

Table 10.3 in the case of a trait locus unlinked to the markers: they are shown 
again here for easier reference in the context of interference effects. The prior is 
the probability given by the pedigree alone, without marker data. The conditional 
is the probability when the marker phenotypes are assumed for a single locus. The 
table shows that the data increase probability of gene ibd·--not surprisingly since 
the four genes scored are of the same allelic type. Having data at five linked markers 
reinforces the inference of gene ibd, particularly for the marker M3 in the center 
of the map. Note that the marker spacing is 25.54cM, so that the five loci extend 
over 1 Morgan. In every meiosis of the pedigree there is a probability 0.5904 of at 
least one recombination among these five markers. Even so, the concordant data 
at these linked markers reinforces probabilities of gene ibd. 

The results of 107 MCMC meiosis resamples are given in Table 11.4. We see 
a substantial effect of interference on the conditional probabilities of gene ibd. 
In particular, probabilities that all four C alleles arc ibd are reduced, and that 
all are distinct arc increased. The percentage of MCMC proposals accepted and 
the expected base-e complete-data log-likelihoods both provide an indication of 
the effect of interference. In comparison to the non-interference case, matching 
recombination frequencies (model (II)) provides closer results than does matching 
genetic distances (model (I)). 

The interference models considered in this section are extreme, assuming 
complete position interference, although no chromatid interference. Other less 
extreme examples still show substantial impact on genome sharing among relatives 
at distances of 20 to 30cM. For example, Browning and Thompson (1999) considered 
the aunt-niece-sibs example of section 4.5, using a chi-square model with parameter 
rn = 2 for the interference process (example (4) of section 5.7). Although the 
impact of interference on genetic inferences remains a little studied area, the results 
here suggest that further study is warranted. Although interference will have 
little impaet on mapping Mendelian traits when markers are highly informative, 
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it will affect the resolution of genes contributing to quantitative traits or to disease 
liability. Its impact will also be greater in using tightly linked but less informative 
markers, such as Single Nucleotide Polymorphisms (SNPs): see section 1.1. For 
such markers, haplotypes cannot be readily inferred, even with data on pedigrees, 
and interference will affect the imputation probabilities for such haplotypes. 

11.3 Inference of typing or pedigree error 

Throughout this monograph, we have focused on the case where the pedigree 
relationship among individuals is known, and often where the marker map and 
other parameters of the model for the marker data are assumed known without 
error. We have also not explicitly considered the possibility of errors in marker 
genotypes. However, as noted in section 1.4, the probability of data under a known 
genetic model is a likelihood for the pedigree relationships among the individuals. 
Also, on an assumed pedigree it is clearly possible to address other aspects of the 
model for the data, induding possible typing errors. In analyses of real data, 
errors, uncertainty, or heterogeneity in the marker model often arise and may 
have an impact on inference. Traditionally, the approach has been to correct for 
errors in advance of other analyses, usually on a marker-by-marker basis. This 
can be unsatisfactory (Broman, 1999), and with greater automation of marker 
genotyping it becomes important to have methods of analyzing rnultilocus marker 
data, and allowing within the analysis for possible errors in typing or specification 
of individual relationships. 

For inference of possible data error, the general method is simply one of 
generalizing the model for the relationship between underlying latent variables s.,j 
or genotypes G.,j at locus j, and the observable data Y.,j on the individuals. The 
likelihood is most easily considered as in equation (3.9) or (6.1): 

Pr(Y) = L Pr(S, Y) L Pr(Y I S) Pr(S) 
s s 

( 
L L ) 

(11.2) ~ Pr(S.,l) g Pr(S.,j I s.,j-d }1 Pr(Y.,j I s.,j) 0 

The dependence structure (Figure 6.1), and hence general Baum-algorithm 
computational approach (section 6.1) remain unchanged. The generalization is 
only in Pr(Y.,j I S.,j) for each locus j. It may be easier to consider likelihood 
computation with an additional layer of latent variable the true genotypes 
determined by the underlying pattern of gene ibd (Kumm et al., 1999): 

(11.3) Pr(Y.,j I s.,j) = L Pr(Y.,j I G.,j)Pr(G.,j I s.,j)· 
a.,j 

Assuming typing errors are individual-specific 

Pr(Y.,j I G.,j) = 11 Pr(Y:· ·I G·) 'l,J l,J 
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a product over individuals i. Nonetheless, computation of (11.3) and hence the 
likelihood (11.2) can become computationally intensive for general error models 
and more than a very few individuals. In principle, the likelihood (11.2) can be 
used to estimate the form and the parameters of the error model. More practically, 
the reverse Baum algorithm (section 7.1) can be used to to determine the loci 
at which there is a high probability of error given all the observed data: that is, 
Pr( Gi,J =f. Yi,J I Y) is large. 

Under a given penetrance model, the likelihood of alternative relationships can 
be compared. Boehnke and Cox (1997) used the Baum algorithm to compute 
likelihoods for alternative sib and half-sib relationships from multilocus marker 
data. Browning (1999) extended this to a variety of extended-family relationships, 
up to second cousins. On larger pedigrees, in principle at least, MCMC may be 
used to obtain a Monte Carlo likelihood ratio. Since the likelihood is given by 
equation (11.2), we have the likelihood ratio equation (9.1) which, in the present 
context becomes 

where the subscripts on probabilities and expectations designate two alternative 
relationship hypotheses. Any of the MCMC samplers of earlier sections can be 
used to sample from 

PI (S I Y) 
I\ (Y, S) 

PI (Y) 
()( PI (Y I S)Pl (S). 

Care is needed in implementing these likelihood ratio estimators, since different 
relationships may imply a different number of relevant meioses. Unlike in the 
comparison of different genetic models, the pcnetrance probabilities P 1 (Y I S) may 
depend on the hypothesized relationship. Nonetheless, we must consider MCMC 
sampling of S not of ibd patterns J(S), although the latter are more readily 
compared for alternative relationships. In the assumed absence of interference, 
the segregation process S is Markov along the chromosome, but the agglomerated 
process J(S) is not (seetion 4.8). 

In any give meiosis, there arc relatively few changes in Si,J as j changes. As the 
number of linked marker loci becomes very large and they are thus tightly linked, 
it becomes inefficient to use the complete set of components of S as the latent 
variables, and also difficult to get effective samplers on this space. Instead, one may 
consider a set of latent processes Si(z) where z is the position on the chromosome 
measured in terms of genetic distance. This framework was first developed 
by Donnelly (1983), and used by Dickeboller and Thompson (1996a; 1996b) to 
study the descent of genome in small pedigrees. Browning (1998) used the same 
underlying model to develop importance-sampling methods of estimating Monte 
Carlo likelihoods for alternative pedigree relationships. Browning (1999) extended 
the approach to the development of Monte Carlo likelihood methods to distinguish 
between alternative models of meiosis and genetic interference, including the models 
discussed in sections 5.6 and 5. 7. 
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11.4 Other Monte-Carlo procedures for linkage 
analysis 

Another broad area of linkage analysis not addressed in this monograph is the 
mapping of loci contributing to quantitative traits, or quantitative trait loci ( QTL). 
For linkage designs in experimental organisms there are well developed methods for 
detecting, mapping, and resolving the QTL contributing to increasingly complex 
traits (Knott and Haley, 1992; Zeng, 1994; Long et al., 1995). Increasingly, on 
larger or more complex problems MCMC is used (Hoeschele, 1994; Sorensen et al., 
1995; Satagopan et al., 1996). Heath (1997) developed methods of segregation 
and linkage analysis on extended pedigrees, for models involving multiple QTL 
contributing additively to a complex quantitative trait. 

There are two main differences between MCMC methods for QTL analysis and 
the methods developed in this monograph. First, a Bayesian approach (section 2.4) 
is normally taken. For complex models, with many nuisance parameters, a 
likelihood approach has limitations. The traditional likelihood approach has been 
to maximize over these parameters, obtaining a profile likelihood for the parameters 
of interest. However, a Bayesian approach which integrates or samples (in the case 
of Monte Carlo) over nuisance parameters may provide a better reflection of the true 
information regarding parameters of interest. Using MCMC, samples are realized 
from the posterior probability distributions of parameters. A disadvantage of a 
Bayesian approach is that there is no exact computational approach against which 
MCMC results can be compared. As seen in section 10.6, even our best MCMC 
samplers need tuning to produce accurate likelihood estimates. For a Bayesian 
posterior probability distribution for parameters of a complex model, there is no 
way to assess the accuracy of Monte Carlo results. There is also no standard 
interpretation of findings. Whereas there may not be unanimity regarding the 
exact meaning of a base-10 lod score of 3.5, say, there is no collective experience at 
all regarding, say, a finding of 97% probability that at least two QTL contribute to 
a trait. 

A second major difference between the methods of this monograph and MCMC 
methods for QTL analysis also relates to the model complexity, but to its effect 
on the MCMC methods used. For a model such as that of Heath (1997) in which 
the number of QTL contributing to a trait can vary, the dimension of the model 
is not fixed. In sampling over the parameters of a varying number of QTL, the 
number of parameters sampled changes. Thus methods of reversible-jump MCMC 
(Green, 1995) must be used, to sample between models of varying dimension. 

11.5 Monte-Carlo 
genetics 

likelihoods . 
Ill population 

One of the earliest uses of MCMC in genetic analysis was not on pedigrees, but 
on the evolutionary history of populations and species. Since data are normally 
observed in the present, forwards simulation of the evolutionary process is of limited 
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use in developing Monte Carlo inference procedures. Just as on a pedigree, effective 
realizations must be conditioned on the data. Kingman (1982) developed the theory 
of the coalescent, which allows for study of the ancestry of a current sample from 
a population. Kuhner et al. (1995) developed Monte Carlo likelihood methods 
for estimating evolutionary parameters, based on MCMC resampling of coalescent 
ancestries of the current population sample. Griffiths and Tavare (1994b; 1994a) 
also developed a Monte Carlo likelihood approach to similar problems. Their 
approach uses importance sampling (section 7.3) rather than MCMC, and they 
realize successive events in the ancestry of a current sample. Stephens and 
Donnelly (2000) have given a recent synthesis, discussion, and extension of these 
two approaches. 

More recently, Monte Carlo likelihood approaches have been used in a wide 
variety of population-genetic: areas. One of these is the development of Monte Carlo 
likelihood methods for fine-scale mapping. Due to the limited number of meioses, 
the resolution of loci from pedigree data is no finer than about 1 c:M (Boehnke, 
1994). As described briefly in section 4.6, allelic associations resulting from slow 
decay of initial linkage disequilibrium between a new mutation and a tightly linked 
marker locus can provide evidence for linkage and for precise localization of a disease 
locus. This has been a recent focus of several successful mappings of loci with 
rare recessive disease alleles (Cox et al., 1989; Hi:istbacka et al., 1992; Goddard 
et al., 1996). The current marker haplotypes of chromosomes carrying disease 
alleles are the outcome of their patterns of shared ancestry, and recombination 
events occurring in the meioses of that ancestry. 

The first attempt at Monte Carlo likelihood analysis for this problem (Kaplan 
et al., 1995) used forwards simulation of the population, but suffered again from the 
disadvantage of being unable to condition effectively on current data. The methods 
of Rannala and Slatkin (1998) and Graham and Thompson (1998) use Monte Carlo 
realization of the coalescent ancestry of the disease sample as the basic tool in 
obtaining a Monte Carlo likelihood for fine-scale localization of a rare allele. Note 
that the ancestry of a sample ascertained for a rare allele is quite different from 
that of a random sample from the population. There is a very strong ascertainment 
effect: Griffiths and Tavare (1998) provide applicable results. 

In the case of Graham and Thompson (1998), recombinations relative to the 
putative disease locus are then realized on the ancestry, and exact computational 
methods used to compute the likelihood contribution of a given recombination 
history. For a single marker at recombination frequency p to the disease locus 

(11.4) L(p) Pq,p,u(Y) = 2: Pq(Y I X)Pp,n(X) 
X 

where X denotes the latent variables of coalescent ancestry at the disease locus, and 
recombination events between disease locus and marker occurring in the meioses 
of that anc:estry. The nuisance parameters are marker allele frequencies q whic:h 
enter only into the penctranc:e probability Pq(Y I X), and II the parameters of 
the demographic history of the population. Note the similarity of equation (11.4) 
to those of likelihoods on pedigrees, for example equations (1.5), (3.9), or (7.8). 
However, unlike the Monte Carlo likelihoods based on those equations, here 
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Pq(Y /X) is computed exactly, while the latent variables X are realized from their 
distribution under the given population model and hypothesized recombination 
frequency p. Thus a direct Monte Carlo estimate of the likelihood (11.4) is obtained. 

Between the time-scale of evolution and coalescent ancestry and that of meioses 
in a defined pedigree, are the population-genetic models that provide probability 
distributions for the change of allele frequencies over generations, due to migration, 
population admixture, and random genetic drift. Here also, Monte Carlo methods 
of likelihood computation may be applied, the data Y being allele sample counts 
for different alleles, at different generations, and the latent variables X being the 
underlying true allele counts. Parameters of interest are those that determine 
the rate of change of allele frequencies, including the effective population size. 
Estimation of effective population size is of interest in the assessment of endangered 
populations. The dependence structure is identical to that of Figure 6.1. Instead 
of first-order Markov dependence of meioses at loci along a chromosome, we have 
first-order Markov generation-to-generation transitions of allele frequencies. The 
samples Y j ta.ken at a given generation j depend only on the allele frequencies 
Xi at that time. Equation (6.1) gives the form of the likelihood. Anderson and 
Thompson (1999) have used MCMC to obtain Monte Carlo likelihoods for the 
problem of estimating effective population size. 

At every level, genetics provides examples of clearly defined highly structured 
probability models. The latent variables of genetics are "real": meioses, genotypes, 
recombination events, allele counts, and ancestral history. Monte Carlo methods 
are well suited to these problems, and often exact computation of likelihoods and 
probability distributions is infeasible. This final chapter has described a number of 
areas in which these methods are being applied, beyond those of linkage analysis 
from pedigree data which has been the focus of earlier chapters. These are only a 
few current examples; doubtless others will follow. 
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