
CHAPTER 9 

N oninformative Priors 

9.1. Introduction. Determination of noninformative priors obtained by 
matching posterior and frequentist probabilities depends on higher order 
asymptotics. The noninformative priors introduced by Bernardo (1979) and 
Berger and Bernardo (1989) are based on first order asymptotics, namely, the 
asymptotic normality of posteriors. We discuss both briefly in this chapter, 
partly for the sake of completeness and partly because for a small number of 
parameters, the choice of a prior is usually important only for a moderately 
large n, n = 10 or so; for large n, the asymptotic normality of posterior 
(under regularity conditions on p and smoothness of 7T) leads to practically 
no influence of the prior on the posterior. So the choice of such priors does 
seem to be within the domain of higher order asymptotics. 

Bernardo (1979) and Berger and Bernardo (1989) have called their nonin­
formative priors reference priors. This seems an appropriate terminology for 
all noninformative priors. They may be viewed as an origin or a reference 
point against which a given prior, incorporating subjective opinion, can be 
judged. Moreover the posterior based on such a prior provides a Bayesian 
reporting of data which is close to being "objective" or free from prior 
subjective belief as far as this is permitted in the Bayesian paradigm. For 
both these reasons they are likely to play an important role in Bayesian 
analysis. [See also Berger (1985).] An emerging terminology for them is 
default or automatic priors, which indicates their use in quick Bayesian data 
analysis in default of a fully subjective Bayesian treatment. 

As discussed in Ghosh and Mukerjee (1992b), there are usually four 
notions associated with noninformative priors: 

1. Maximizing entropy or minimizing information. 
2. Matching what a frequentist might do (since, one may argue, that is how a 

noninformative Bayesian should act). 
3. Invariance. 
4. Minimaxity (in a weak form). 

In the next two sections we will be discussing notions 1 and 2. Asymptoti­
cally, consideration of invariance or minimaxity leads one to the Jeffreys 
prior, which will also appear as an entropy minimizing prior in the next 
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seetion. Invariance under a group often leads to choosing the right Haar 
measure as a noninformative prior. Such a prior will also emerge from 
considerations like notion 2; we have already seen this in Example 8.2. If the 
inference problem is one of estimating the density itself and the loss is the 
entropy loss, then the criterion of Bernardo (1979) may be interpreted as 
choosing an asymptotically least favorable prior. We will not discuss notions 3 
and 4 any further, except to remark that there is a vast literature on 3 and 
almost none on 4; 4 deserves more attention from noninformative Bayesians. 

9.2. Reference priors. For a r.v. or random vector, with density (or 
probability function) p( z ), let 

(9.1) I ( p) = entropy of p = -- E P (log p ( Z)) . 

We will also write J(Z) for J(p). If Y, Z are two r.v.'s with joint density p, 

l(p) =l(Y,Z) =l(Y) +ly(Z), 

where 

ly(Z) =E(I(ZIY)) 

and 

J(ZIY) = -E{log p(ZIY)IY}. 

Let X= (X1, X 2 , ..• , Xn) have density (or p.f.) p(xle) and let e have prior 
density p(O). We will always assume X 1, ... , Xn are i.i.d. and p(xiO) satisfies 
the sort of regularity condition needed for asymptotic normality of the 
posterior. 

Lindley's measure of information in X is 

(9.2) I(X,p(e)) =l(O) -Ix(e), 
def 

which may be written as a Kullback--Leibler divergence between prior and 
posterior or as an expected divergence between p( xI 0) and p( X) = 

jp(xiO)p(O) de. Thus, 

{ p(Oix)} { p(xiO)} 
(9.3) I( X, p( 0)) = E log p( O) = E log p(X) . 

Bernardo (1979) points out that the more information there is in X, the less 
information there is in the prior. He therefore proposed maximizing I in 
some asymptotic sense as n ~ oo. Fix an increasing sequence of compact sets 
K; whose union is the whole parameter space. In the following text, initially 
we fix K; and let n ~ oo. Then, as shown in Clarke and Barron (1990), under 
regularity conditions, 

(9.4) 

d n J 1/2 I(X,p) =-log-+ p(O)log{detlp(O)} de 
2 21Te K, 

-- J p ( (})log p ( (}) d (} + o ( 1) , 
K; 
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where d is the dimension of 8 and lp(H) is the d X d Fisher information 
matrix. (The suffix F will be dropped when there is no fear of confusion.) 
While (9.4) can be guessed easily from the posterior normality of Chapter 5 or 
Chapter 8 (see Theorem 8.1), it does not follow from them because the 
entropy distance used here is finer than £ 1 distance, being more influenced 
by the tails. Similar results have also been obtained by many others including 
Polson (1988) and Ibragimov and Has'minskii (1982). According to (9.1), I is 
the sum of a constant which does not depend on the prior and a term which 
converges to the functional 

(9.5) J(p,K;) = fp(O)log{detlp(0)} 112 d0- J p(O)logp(O)dO. 
Ri ~ 

We may therefore maximize J with respect to all priors p over K;. This gives 
the Jeffreys prior restricted to K; and normalized to integrate to 1, that is, 

1/2 
PK,( 0) = const.{det lp( 0)} 

(9.5a) 
if 0 E K ,, 

= 0 otherwise. 

If we now let i ---'> oo, we may regard PK/s as converging to the ,Jeffreys 
improper prior 

(9.6) P.1 (0) = det{lp(O)} 
1/2 '\;;/(} 

in the sense that for any two Borel sets B 1 , B2 contained in a compact set 

Kio' 

(9.7) 

The most interesting application of this idea occurs when we have nui­
sance parameters. Let () = (01, 02 ), where 01 is the d 1-dimensional parameter 
of interest and 02 is the d 2-dimensional nuisance parameter, d 1 + d 2 =d. 
Suppose p;{02 I01 ) is given on K; and our only object is to find p;(01 ) on K;. 
Then p;( 01) is determined as follows. Consider the functional 

(9.8) 

where K; 1 is the projection of K; to 01 space, I(X, p;( 02 101 )) is Lindley's 
measure (9.2) with 01 held fixed and P;(e2 I01 ) taking the role of the prior. 

Assuming that integration with respect to 01 and limit as n ---'> oo can be 
interchanged, we get fi·om (9.4) applied to l(X, p(02 I01)), 

d 1 n J { 1/1; ( 01) } I(X,p;(e 1 )) = - 2 log 2- + P;(e1 ) log ·(O) de, 
1re Kit P, 1 

(9.9) 
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where 

(9.10) 

(9.11) lp( ()) = Fisher information matrix for 0, 

(9.12) / 22 (0) = Fisherinformationmatrixfor02 ,given £J 1 is fixed, 

(9.13) K1(0 1 ) = {02 ;(fi1 , fi2 ) E K;}. 

Maximizing with respect to all marginals supported on K 11 gives 

(9.14) 

89 

The limiting process described in Berger and Bernardo (1989) is as follows. 
Let the compact sets K 1 be rectangles K 11 X K 12 , so that K 1(fi 1 ) = K 12 for 
fi 1 E K 11 • Consider the prior 

(9.15) 

Fix 00 and assume 

(9.16) 

p 1( Ou 82 ) = p 1( fi 1)p1( 82 l8r) on K 1 

= 0 outside K 1• 

exists for all 0. Then p(fi1 , fi2 ) is the reference prior when 01 is the parame­
ter of interest and 02 is the nuisance parameter. If the convergence in (9.16) 
is uniform on compact sets of 8, then (9.7) will hold with p 1, replacing PK. 

Berger and Bernardo (1989) choose p;(fi2 lfi1 ) as follows. For fixed e;, 
choose a reference prior for fi 2 over K 12 , that is, in view of (9.5), 

(9.17) 

EXAMPLE 8.2 (Revisited). Here X;'s are i.i.d. normal with mean 02 and 
variance fi 1 ; fi 1 is the parameter of importance. Here, dropping the suffix F, 

1 

(9.18) 
2 e'f 0 

l(fi) = 
1 

0 
()1 

(9.19) p 1 ( fi2 1 81 ) = const. (i.e., free of 82 ) · fi 1 1 on K 12 , 

that is, 

(9.20) 
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Hence 

(9.21) 

So 
(9.22) 

and 
(9.23) 
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1/Ji( 0) = exp[f di log ; d0 2 ] = exp{log ; . } . 
K, 2 v2 81 v2 81 

which is (induced by) the right invariant Haar measure and also a solution of 
the differential equation (8.51). Jeffreys himself thought that this was the 
right choice of the noninformative measure in this example. The Jeffreys 
prior {det I(O)}li 2 is proportional to Oi 312 , which is (induced by) the left Haar 
measure. 

If we do not take pi(0 2 I01 ) as given, but choose both pi(01) and p;{02 I81) by 
maximizing (9.8), then, as pointed out in Ghosh and Mukerjee (1992b), the 
solution is usually unacceptable because pJ 02 1 01 ) tends to be discrete, in the 
way that least favorable priors sometimes turn out to be discrete. It is 
suggested in Ghosh and Mukerjee (1992b) that we should maximize (9.8) 
after introducing a penalty term for deviation from the uniform. An inspec­
tion of (9.5) will show that the second term on the right in (9.5) is such a 
penalty term. The reason for introducing a penalty is that one then has a 
compromise between maximizing I without deviating too much from the 
uniform. If one maximizes 

(9.24) ( det I ) 112 

f JP i ( o 1 o 2) log d I d 01 d 0 2 - AI (Pi ( e 1 , o 2)) 
K, et 22 

with ,\ = 1, one gets 

(9.25) 

which in Example 8.2 again leads to the Berger-Bernardo reference prior 
(9.23). Clarke and Wasserman (1992) have examined the consequence of 
introducing a penalty for deviating from the Jeffreys prior. 

We end this section with a quick comment on why all noninformative 
priors should depend on the relative importance of the parameters. As in the 
case of tests of randomness for a finite sequence, one cannot expect that the 
criteria for being noninformative would be satisfied by the prior with respect 
to all parametric functions or even all the components of the parameter. One 
tries to satisfy most of the criteria only for the components considered most 
important. 

9.3. Noninformative priors via matching posterior and frequentist 
probabilities. We proceed as in Section 8.4, but with more stress this time 
on one-sided confidence sets. We assume there is a one-dimensional parame­
ter (J = 81, Or 0 is two dimensional, (J = (01, 82), 81 is the parameter of 
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importance and, without loss of generality, (} 2 is orthogonal to 01 in the sense 
of Chapter 8. Let 7T == p stand for the prior density in both cases. Choose 
(} 1, "(X), depending on the prior, such that the posterior probability 

(9.26) P{e 1 s e1,"(X)IX} = 1- a+ O(n 1 ). 

Now choose the prior satisfying any one of the following three conditions. 

CONDITION A (No nuisance parameter). 

(9.27) P{B1 s 81,,,(X)Ia1} = 1- a+ O(n 1 ) 

uniformly on compact sets of 81. 

CONDITION B (Orthogonal nuisance parameter). 

(9.28) P{0 1 s 81,"(X)I81 , 82 } = 1 --(X+ O(n 1 ) 

uniformly on compact sets of e. 

CONDITION C (Integrated out orthogonal nuisance parameter). 

(9.29) 

uniformly on compact sets of 81• 

In each case, the condition is to be satisfied for all a. 
The fact that we want O(n ·- 1 ) in these conditions can be explained as 

follows. If we replace O(n- 1 ) by O(n 112 ), then by posterior normality, the 
conditions would hold for all smooth priors. On the other hand, if we replace 
0( n ·1 ) by O(n- 312 ), we would get two sets of differential equations for p to 
satisfy and, generally, they will not have a solution. So O(n - 1 ) is just right 
for these one-sided intervals. One the other hand, for similar reasons, 0( n- 2) 
is right for two-sided intervals as in Section 8.4. 

The solution of Condition A owing to Welch and Peers (1963) and rediscov­
ered by Stein (1985), is p(01 ) = /I( 81), the Jeffreys prior. Condition A has 
no obvious generalization to dimension greater than 1. One possible general­
ization will be considered later, but, in general, one does not get the Jeffreys 
prior. 

Condition B leads to the differential equation [Tibshirani (1989)] 

(9.30) 

where 

a( J2o)1;2 

1 
[20 =-

[20' 

-(! 20 )112 7Tw, 
7T 
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rl7r 
1T1o = -. 

r70 1 

In the absence of orthogonality, (9.30) takes the form 

(9.30a) ~a:,(w(o);) ~o. 
The solution of (9.30) is 

(9.31) 

where d(()2 ) is an arbitrary function. In general, one cannot increase the 
dimension of 01 since then an orthogonal 02 , needed for (9.31), may not exist. 
Tibshirani (1989) notes that the reference prior for the product mean problem 
in Berger and Bernardo (1989) satisfies this equation. We come back to this 
point after discussing Condition C. 

Condition C leads to the equation 

(9.32) 

On writing 1r(O) = 7r(01)7r(02 I01 ) above, we get the solution 

1 
(9.33) 

The solution of Condition B has the following implications noted in Ghosh 
and Mukeijee (1992b): 

1. The reference prior for 01 is, in general, not a solution, although it often is 
in practice. 

2. Curiously enough, the reference prior for () 2 is a solution. In general, 
because of the requirement of orthogonality, () 2 is not a "natural" parame­
ter. However, where 02 appears in the natural or common parametrization 
and is orthogonal to Ou as in Example 8.2, one may prefer the reference 
prior for 02 even when the parameter of interest is 01. 

3. The new prior suggested in Section 9.2 with a penalty term added is a 
solution, provided 02 is orthogonal to 01. This seems to be an attractive 
choice if, as in Example 8.2, the natural nuisance parameter is orthogonal 
to () 1, but again, it is difficult to say generally. 

4. Sometimes a reference or otherwise desirable prior may satisfy (9.30) 
approximately and hence meet Condition B approximately but satisfacto­
rily for practical purposes. This too needs further study, at least partly 
through simulation. One particular case involving the MANOVA is con­
tained in a thesis of Anindya De, which is under preparation for submis­
sion to Purdue University. 
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One may ask similar questions on the choice of 1T based on matching 
posterior and frequentist probability for "two-sided" intervals as in Section 8 
up to O(n 2 ): 

1. This fails for two-sided symmetric intervals of the kind e ±A( X!' ... ' XII). 
The solution depends on a. This is shown in Lee (1989). 

2. This works for all other natural two-sided intervals, namely, 
(a) highest posterior density sets, 
(b) equal tail interval (rather than equal cutoff points like notion 1), 
(c) likelihood ratio based intervals. 

For 2(a), see Ghosh and Mukerjee (1993a); 2(c) has been discussed earlier. 
The case 2(b) has been considered in Peers (1968) and unpublished work of 
Ghosh and Mukerjee. 

In many examples, the reference prior is also a probability matching 
noninformative prior. We list a few such examples. 

EXAMPLE 9.1 [The product mean problem of Berger and Bernardo (1989)]. 
Let X; = (X; 1 , X; 2 ), X;'s are i.i.d. and X; 1 , X; 2 are independent normal 
N( fL 1, 1), N( fL 2 , 1), M1 > 0, 1-Lz > 0. We wish to estimate e1 = 1-LI • 1-Lz· Berger 
and Bernardo (1989) discuss why this example is interesting from a practical 
point of view. Let e2 = 1-L~ - 1-L~. Then one can check that e1 , e2 are orthogo­
nal. The reference prior with e 1 as the parameter of importance is 

(9.34) 1r( e) =canst. (of+ 4e~) 114 

The solution to Condition B is 

(9.35) 

where A(-) is arbitrary. 

EXAMPLE 9.2 (Ratio of normal means). Consider the same example as 
above, but suppose the parameter of interest is e1 = 1-Ld 1-Lz· Let 02 = ( Mi + 
fL~) 1 1 2 • Then e1 and 02 are orthogonal. The solution of Condition B is 

(9.36) 

The reference prior is 

( 2) 1 1r( e) =canst. 1 -t- e1 . 

EXAMPLE 9.3 (Exponential regression model). We have n i.i.d. random 
vectors with common density 

p(xle) = n[{e2 exp(e1Z;)} 1 exp{-2e- 111 z;}], 
!~ 1 ez 

where XI, Xz, ... ' xp > 0, e = (81, Oz), --co< el <co, e > 0 and Zl,Z2, ... ' zp 
are known constants such that L,fZ; = 0. Here e1 , e2 are orthogonal. A 
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solution of Condition B is 

(9.37) 1r(O) =A(02 ) 

and the reference prior is 

(9.37a) 1r(8) = const./02 . 

We now indicate how (9.30) for Condition B is obtained. (Equations for 
Conditions A and C are derived in a similar way.) We also suggest a possible 
generalization of Condition A. We follow the notations of Section 8.4; see 
(8.36) to (8.41). 

We first note (9.28) of Condition B is equivalent to matching the frequen­
tist and posterior probability up to o(n- 112 ), V 0 <a< 1, of the set 

(9.37b) 

The posterior density of Vn ( 81 - fJ 1) is given by 

1r(h 1IX1 , X 2 , ••• , Xn) 

(9.38) =cf>(hl,D 1)[1+n 1!2{1h3b h(lb 1 A A-]) 61 :JO+ 12 12Co2+7T1o7T 

+h3 R h R }] +o(·n 112 ), I 1- 1 2 

where cj;(-, D 1 ) is the density of a normal with zero mean and variance D 1 

(9.38a) _ I b 2 2 I -- 1 1 3 :J 
R1 - 2 12CnCo2 - 2b21cuco2 - 6bo3c11co2, 

Rz = 7To17T 1cncr)z1 + ~bo3cuCoz2 

and, because of orthogonality, c11 = opC1) and hence so are R 1 and R 2 . Hence 
the posterior probability of A" is, under 80 , 

1 e z,7 12 7T ,,, ( e ) 
1 I 1/2 10 'f' 0 ( 1) -ex+- --+---+on-Vn /27T 20 7T Vn ' 

where 1/J is free of 7T. We calculate P80(A") as in Section 8.4 by a Bayesian 
route, that is, we replace 7T by 1r8 -),L the measure sitting on 80, and 
calculate the limit of the coefficient of (In ) -l above. Thus 

(9.39) 

and 

(9.40) 
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Then 

(9.41) P,,( A") ~ 1 - a + ;,.");: ( ofr( e,) {2~ e'' 1' - a:, (I,o'J') I J 
+ o(n-112). 

Matching the coefficients of(/n)- 1, we get (9.30). 
The differential equation corresponding to Condition A is exactly the same, 

but instead of I20 , we have I, since the parameter is one dimensional. The 
solution will be given by (9.31) with d(82 ) being replaced by a constant. This 
leads to the Jeffreys prior, as noted earlier. The differential equation corre­
sponding to Condition C is obtained similarly. 

We now consider a possible generalization of Condition A when 0 is of 
more than one dimension. Arrange the components of (} in decreasing order of 
importance, that is, 81 is the most important, and so forth. We do not assume 
orthogonality. Choose a lower triangular matrix C* such that 

(9.42) 
where 

Let 

(9.43) 

C*C- 1C*' =identity, 

C·· = 
lj 

o2 log p( X!, ... , Xn18) 

i)(}i i)(}i 

w = C*(vnce- e)). 
Now match the posterior and frequentist distribution function of W up to 
o(n ·l/2). Note that the first element of W is the standardized version of 
Vn ( 81 - 01), and the ith element of W is the standardized regression resid­
ual of Vn ( 8; - e) on Vn ( eJ - 0), j = 1, 2, ... , i - 1. The differential equa­
tions under this requirement are 

(9.44) L~[~r7T(e)] = 0 
i i)(}i 

where I is the Fisher information matrix, I* is a lower triangular matrix 
such that I* r 1I*' is identity and i = (I*) · 1 

EXAMPLE 8.2 (Revisited). We take the normal mean as 81 and the vari­
ance as 82 • Then 81, 02 are orthogonal. Here (9.44) reduces to 

(9.45) ~({82-7T(e)) = o, ~(e2 7T(e)) = o. 
()(}1 ()(}2 

Then, 7T(8) = const.(02)- 1 is a solution, but the Jeffreys prior 1s not a 
solution, in spite of orthogonality. 

In general one cannot expect the same 7T to satisfy more than one equation 
as in (9.44), but in many important cases a solution does exist; see Ghosh and 
Mukerjee (1993b) for many examples. In particular, for some (but not all) 
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orderings of importance of the components of e, solutions have been obtained 
for the variance component problem and compared with the reference P!iors. 
Here we are matching the joint distribution of (standardized) Vn ( e - e). In 
the presence of orthogonality we get the same equations if, as in Tibshirani 
(1989), we require the marginals of each component to satisfy Condition A. 

We conclude this section with a discussion of what is to be done if the 
object is to match probabilities of two-sided intervals. Here the right order is 
o( n 1 ), in fact 0( n- 2 ), because of symmetry. 

We first consider the equal tailed case. Choose g;')X1, •.• , Xn), 
U,(X1 , ... , Xn) such that the posterior probability 

(9.46a) 

(9.46b) 

and then choose a prior 1r such that 

(9.47a) 

(9.47b) 

In the absence of a nuisance parameter e2 , that is, if e1 = e, (9.46) and 
(9.4 7) lead to 

(9.48) 
1r'( e) ( 2 ) 1r( e) 
--1- + Lu + 3Loo1 ~e = c 

for some constant c, each specification of c will provide a solution of (9.46) 
and (9.47). Here 

L. = Ef( d log p(X1IO) )i( d_log p(X1 IO) )J( d log p(X1 IO) )kle) 
'.!"' \ de de do 

and 
Li.i = LiJo· 

The case where there is a nuisance parameter can be handled similarly. 
If we replace equal tail cutoff points by equidistant cutoff points from fj, 

the resulting differential equation depends on a, which seems to indicate this 
matching is undesirable. 

Possibly the most attractive matching is based on highest posterior density 
(HPD) sets. For details, see Ghosh and Mukerjee (1993a). 

Other alternatives are confidence sets based on the likelihood ratio test, 
which have been discussed in Chapter 8, and the conditional likelihood ratio 
test; see Ghosh and Mukerjee (1992a). In the first case, the uniform prior is 
often a solution. It also appears that the sets have some Bayesian robustness 
properties. 
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9.4. Discussion of assumptions and interpretation. For the nonin­
formative priors based on one-sided intervals, we need n is continuously 
differentiable and n(8) > 0 for all fJ, that is, we need Johnson's (1970) 
condition for all 8 for posterior expansion up to o(n - 112 ) under all P0 • We 
need also the regularity condition on p assumed by Johnson. Note that we do 
not need n to be proper, provided there is an n 0 such that for n ~ n 0 , the 
posterior is proper for all ( x 1 , x 2 , ..• , x n ). We need also (i) valid Edgeworth r-A () 
assumptions on vn (8 - 8) up to o(n 112 ) and (ii) a condition on 

R' = ___;__ ( (} 2 log p(X1,X2 , ... , Xnle) _ nE( (} 2 log p( X 118l e)) 
n n .l/ 2 r!e{ r/8~ Be; i)f)j 

such that R~, satisfies (2.2a) with s = 3. This would be true if (nR'n) has a 
valid Edgeworth expansion up to o( n -l 12 ). Conditions (i) and (ii) above 
certainly hold under the assumptions made in Section 2.6. 

For matching based on two-sided intervals, we need Johnson's (1970) 
conditions for a posterior expansion up to o(n · 1 ) for all P11 , and the Edge­
worth assumptions of Section 2.6. 

In both cases, that is, for one-sided and two-sided intervals, it is the 
Edgeworth assumptions which are most restrictive. In particular, for discrete 
X's, they are not available. However, such assumptions are not needed if we 
are prepared to replace, for each 8, a condition like 

(9.49) 

by 

(9.50) 

P(A )=1-a+o(n<s· 2ll 2 ) II 1 a · ' s = 3 or 4 

lim jP (A )n-(e) de= 1- a+ o(n <s 2ll 2 ) 
(J 1 (t' 8 ' 

-n-;'i· -)w 8o 

where 811 is the probability measure with all its mass at 8 and n8 's satisfy the 
conditions of Chapter 5 in case 8 is real valued and analogous conditions on 
the boundary of its support when e is multidimensional. For example, it is 
sufficient if 81, 82 , • . . are independent and their marginals support the 
conditions of Chapter 5. One may think of (9.50) as a smoothed version of 
(9.49), which agrees with (9.49) only under Edgeworth assumptions. 

The above is in the spirit of Woodroofe (1986). 
Finally, a remark about interpretation seems desirable. Most of the solu­

tions are improper priors. The matching conditions on the priors try to reflect 
the following simulation scenario. Fix a e, draw a sample X;1, X,: 2 , .•. , X;n 
from p compute a posterior confidence interval A<Xil, ... ,X,,) for 8 (or 8) and 

II' 1 · a 1 

see if the frequentist probability 

N. 1#{i; 8dor8) EAI a(X;I, ... ,xin)} 
matches (1 - a), approximately, that is, up to o(n -l/2 ) or o(n -l ). 

9.5. Comments on reference and probability matching noninforma­
tive priors. In most examples the reference priors seem to he identical 
with some probability matching noninformative prior, or close to being so. It 
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would be interesting to know if there is some theoretical basis for this. Our 
own interest in the probability matching priors came from the hope that the 
reference priors would satisfy Conditions B or C of Section 9.3. That, unfortu­
nately, has turned out to be false. 

Also there is still some doubt as to the order of the steps in the algorithm 
for a reference prior. If 81 is the parameter of interest, should one use the 
reference prior for 81 or the reference prior for 82? 

We should point out that in examples studied so far, the reference priors 
seem to be good choices. 

We end with two technical questions. Under what conditions can a proba­
bility matching prior be obtained by maximizing a functional on the priors so 
that the differential equations obtained by matching coincide with the Euler 
equations for the variational problem? Second, are the probability matching 
priors least favorable in some sense? The answer to the second question 
would be yes if a functional described in the first question exists and can be 
interpreted as a Bayes risk. 
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