
LECTURE 8 

Examples of Long-Range 
Dependence 

An early example of a process that might be termed long-range dependent 
was given in Rosenblatt (1961). The process {X1) is a quadratic function 

X"= Y"2 - 1 

of a Gaussian stationary sequence Y11 with EY1, = 0 and covariance sequence 

- 2) y r" -- ( 1 + k , y > 0. 

The spectral density g( ,.\) of the process Yk is continuous and bounded away 
from zero if l..\1 > t: > 0. Further, if y < L g has a singularity of the form 
I..\I 2 Y 1 in the neighborhood of ,.\ = 0. The covariance sequence of X 11 is 
r" = 2(1 + k 2 )- 2Y. Let y < -i- Then the spectral density {(,.\) of {X1,) has a 
singularity of the form l..\l 4 r- 1 in the vicinity of,.\ = 0. Actually this family of 
processes was constructed to give simple examples of stationary sequences that 
are not strongly mixing. One can show that 

" n I +2r L X,,. 
"~ 1 

has a non-Gaussian limiting distribution as n ---7 oo. This implies that the 
sequence {Xk} is not strongly mixing for if it were, by the theorem of 
Rosenblatt (1956b), the limiting distribution would have to be normal since all 
the assumptions other than strong mixing are satisfied. The process { X1J 
would today be called long-range dependent because the partial sums have a 
non-Gaussian (and nonstable) limiting distribution. The non-Gaussian limiting 
behavior is easy to exhibit. The characteristic function of the normalized 
partial sum is 

II- 2itn- 1 + 2rRI- 112 exp{ --in2Yt} = exp{~ '[, (2itn 1 12Y) 1' sp(R''')/k} 
2 k 2 
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and 

k 

as n ~ oo. Here sp(R) is the trace of the covariance matrix R of the process 
{Y1J Clearly the limiting distribution is non-Gaussian (and nonstable). It is an 
infinite weighted sum of independent x2 random variables. 

Taqqu (1979) and Dobrushin and Major (1979) identified a much larger 
collection of processes obtained as nonlinear functionals of Gaussian sequences 
and their shifts as long-range dependent and obtained corresponding limit 
theorems. It will be convenient to follow the discussion of Dobrushin and 
Major. Assume that one is initially given a normal stationary sequence {Yn} 
with EY,, = 0, EYn2 = 1 and covariance function r( n) satisfying 

r(n) = n "L(n), 0 <a < 1, 

with L(t), 0 < t, a slowly varying function. The derived process X, is given by 
an instantaneous function H( · ) so that 

x" = H(Y,,), n = ... , -1,0,1, ... , 

with 

'X ( y2 ) dy 
EX,= EH(Y,,) = f_"'H(y)exp -2 {2rr = 0 

and 

( 2) d 2 2 '"' 2 y y 
EX,= (T (X,)= j H(y) exp -- --- < oo . 

. ·:XO 2 {2;:; 

Let the Fourier-Hermite expansion of H be 

H(y) = L c H (y) 
J J 

j c. 1 

with ll_;(y) the Hermite polynomial of degree j and 

I: c}j! < oo. 
j- 1 

The object is to consider the sequences 
1 Nn --1 

XN = --- " H(Y) " A L.. J' 
N j-,N(n-1) 

n = ... , -1,0,1, ... , N = 1,2, ... , 
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with A, a sequence of norming constants. The object is to determine circum­
stances under which there is a nontrivial limit process x,; in distribution. 
Since we will have AN~ oo, the limit process will be self-similar, that is, the 
probability structure of the proceSS X,; N will be the same as that of X,;. 

THEOREM. Let k be the smallest index for which c" cf. 0 and let ka < 1, 

AN= Nl-{lw)/'2£( N)''l'2. 

Then the finite dimensional distributions of X,~, n = ... , - 1, 0, 1, ... , tend to 
those of the sequence x,; given by 

exp(i(y 1 + · · · +y;,)) --1 
... +y,J )-· . . . 

l(.Yt + ... +y,J 

X I.Ytl(" ·l)/Z ... ly,f'·l)/'2 dW(yl) ... dW(yil) 

with 

x (arr) D = J exp(iy)lyl"- 1 dy = 2I'(a)cos -· . 
-X 2 

In the integrals above it is understood that there is no contribution from 
x.i = ±x1 for j =I= l. Also W is the random spectral function of the Gaussian 
white noise process. Here W is Gaussian with mean zero, 

W(b.) = W(-L\), 
1 

El W( b.) 1
2 = -lb. I 2rr 

for any interval b.. If Ll 1, •.. , L11 are disjoint intervals on the positive real axis, 
W(L\. 1), ..• , W(b.) are independent. Also Re W(Ll), Im W(b.) are independent 
variables with the same distribution if b. is an interval of positive reals of the 
Gaussian white noise process. 

First of all, note that if g and YJ are jointly normal variables with Eg = 

EYJ = 0, Egz = EYJ 2 = 1, EgYJ = r, Mehler's formula implies that 

EH1,(g)H1(YJ) = 8./,kr"k!. 

One can see that if ka < 1, 

uz( t H(~)) ~ Nz-'"'L(N)" 
j-l 

for 

N 

L ( N- lsi)E( H( Y0 )H( Y,)) 
s~ ·N 

N 

L (N -lsl)c~(l + lsi)- 1"'L(s) 1'. 

s- -N 
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A ;;:: B if the ratios A/ B, B 1 A are bounded. It is also clear that if a k > 1, 
then (T 2('[, .f_ 1 H( Yj)) ;;:: N. This suggests that if this is the case, there is 
short-range dependence for the X/s and the central limit theorem should hold 
(asymptotic normality) with the usual normalization. 

We first discuss the case H(y) = H 1,(y ). One can show that 

H 1,( Y,,) = H 11 ( J ei"AZG( dA.)) 

= j exp(in(A.1 + · · · +A.k))Z0 (A 1) · · · Z0 (dA. 1J 

with Z0 the random spectral measure of the Gaussian process ( Y, ). Then 

x;: = ~ Nfl j exp{i ~i(At + · · · +A.k) }zaN(dA.l) · · · ZoN(dA.") 
j ~N(n-1) 

with 

and ZGN is the random measure corresponding to GN. Also 

KN(A 1 , ... , A.k) = _I: ~ exp{i ~(A. 1 + · · · +A. 11 )} 

O:O:J <cN-1 

exp{i(A. 1 + · · · +A. 1J}- 1 
[ ~xp{ i ( 1/ N )(A. 1 + · .. + A.-k )...,...} ---1-c;--] N- . 

Let 

( 8.1) 
'PN(t 1 , ... ,tJJ = j exp{~(j 1 A.1 + ... +jkA.k)} 

xiKN(Al, ... ,A.")I2GN(dA.d ... GN(dA.,J 

where is= [t 8 N], s = 1, ... , k. By using (8.1) one can see that 

1 
'PN(tl, ... ' t,,) == 2- ""L N)k L r(p- q + jl) ... r(p- q + },,) 

N ( p,qEBN 

( 8.2) 

where 

B N = { p IO ~ p < N --- 1} ' jjN ={pi-N< p < N}. 

To prove the theorem one needs the following lemmas. 
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LEMMA 1. limN _. 00 'PN(t 1, ••• , t1) = g(t1, ..• , tk) uniformly in every bounded 
cube where 

k 

g(t1, ... , tk) = [ (1- lxl) TI lx + tF" dx. 
[-1,1] j~l , 

It is clear that g(t 1, ... , t k) is a continuous function. 
The claim is that if o:k < 1, then 

2 

I 
exp( i ( t\ + · · · + t\ ) ) -- 1 I f . 1 k . It\ 1"-1 ... It\ 1"-1 dt\ ... dt\ <co. 

i(t\ 1 + .. ·-tt\k) 1 k I k 

This lemma follows immediately from (8.2). 

LEMMA 2. Let J.L 1, J.L 2 ,... be a sequence of measures on R" such that 
fLN(Rk - [ -cNrr, cNrr ]") = 0 with a sequence eN~ co. Let 

with) E Z 1' and)= [tc,]. If ~p,(t) tends to a function ~p(t) continuous at the 
origin, then fLN tends weakly to a finite measure fLo and ~p(t) is the Fourier 
transform of fLo· 

This result is an analogue of the classical continuity theorem for character­
istic functions. 

We say that a sequence of locally finite measures fL N [J.L N( B) < co for 
every bounded B] tends to a locally finite measure J.L 0 locally weakly if 
fh(x)fLN(dx) ~ fh(x)p, 0(dx) for each continuous function h of bounded 
support. In the case of the sequence of measures GN( · ), one can show that 
they converge locally weakly to the measure 

(8.3) 

Further the measure G 0 has the self-similarity property 

( 8.4) 

The locally finite measure G 0 is determined by the relation 

. 1 - eos x 1 1 
2je'tx_. 2 G 0(dx)=j (1·-lxl)l l"dx. 

x -1 x+t 

If we apply Lemmas 1 and 2 in the case k = 1, the sequence of measures 
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. - 2 
With KN(x) = IKN(x)l converge to the finite measure fLo determined by its 
Fourier transform g(t). But then for any bounded open interval B, 

with 

- 1 --- COS X 1 - COS X _ 
K 0 (x) = 2---2 --- = lim -z------·-- = lim KN(x). 

x N->oo N (1- cos(2/N)) N+oo 

Thus GN converges locally weakly to G0 • Let M = [Njt]. We then have 

( N)"L(M) M ) 
G N ( tB ) ::::: M L( N) G M ( t N B 

forB an open interval. Since (NjM)"(L(M)jL(N)) -~ 1, G0(tB) = t"G 0(B). 
It is clear that G 0 must be characterized by (8.4) and so we have determined 
G0 as given by (8.3). 

LEMMA 3. Let G N be a sequence of nonatomic measures in R k tending 
locally weakly to a nonatomic measure G0 . Suppos~ K(x 1, ••• , x1,) is a se­
quence of measurable functions tending to a limit K0(x 1, ••• , x 11 ) uniformly 
continuous on any finite rectangle [-A, A]". Also let the K satisfy 

uniformly for N = 0, 1, .... The Wiener-Ito integrals 

(8.5) 

exist and the sequence of Wiener-Ito integrals 

( 8.6) 

converges in distribution to (8.5) as N -) oo. 

The following limiting relation can be seen to hold for functions of finite 
support h(x1, ••• , xk) taking on only a finite number of values and each value 
on a product set: 

in distribution as N -) oo. This follows because the expressions can be seen to 
be just polynomials in variables Z0N(B) and Z00(B). The general case of 
Lemma 3 follows by a standard approximation argument. 
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The proof of the main result for the case H(x) = H/x) follows by applying 
Lemma 3 with 

and 

l 

KN(x 1 , ... , xk) = L aJ exp(inj{x 1 + · · · +xk} )KN(x 1 ,- · ·, x,J 
j=l 

l 

K 0(x 1 , ••• ,xk) = L aiexp(inj{x 1 + ··· +x"})K0 (x 1 , ..• ,x1,). 

j=l 

In the case of a general H(x ), let 

N= 1,2, .... 

Then 

E(ZN) 2 = L cJj! L [r(s- t)]J 
jcck+l s,tEBN 

and this implies that 

E(ZN) 2 = O(N 2 -<k+llaL(N)k+ 1) + O(N) 

as N ~ oo. Therefore A,V1ZN ~ 0 in probability as N ~ oo. In the theorem 
H(x) can be replaced by ckHk(x). 

The results just obtained were for an instantaneous function of Y0 and its 
shifts Dobrushin and Major obtain a result for noninstantaneous functions of 
the Y process. Suppose ~ is a random variable with finite second moment, 
E~ = 0, that is defined on the space of the Y process. The random variable ~ 
can then be written 

where 

and 

00 1 f 2 L--:-;- laJ(y1 , ... ,yJ)I G(dy1 ) ••· G(dy;) < oo. 
)= 1). 

Let us assume the process {X"} is obtained by setting X" equal to the nth 
time shift of g. Then 

00 

xn = L f exp[in(yl + ... +yk)]ak(Yl, ... ,yk)Za(dyl) ... Za(dyk)• 
k=l 
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One sometimes refers to (X n) as a process subordinate to ( Yn ). Let 
Nn-1 

X~ =AN1 L Xi. 
i-N(n-1) 

83 

THEOREM. Let k be the largest integer such that for every j < k, ai = 0. 
Assume that ak(y 1, ••• , yk) is bounded, continuous at the origin and such that 

ak(O, ... ,O) ~ 0. 

Let ak < 1 and 

oc 1 N-(j ··k)" I 12 
L ~ -- .i - k J a.i ( YNt ' ... ' YN.i ) I K N (y 1' ... 'yJ 12 

i-kn.l· L(N) 

xGN(dy1 ) · · · GN(dy.i) ~ 0. 

Then if' AN= N<l-kali 2L(N)"I2, the finite-dimensional distributions of X,~ 
tend to those of (1/k!)a"(O, ... , O)X,;, with 

X,'{= j exp(in{y1 + ··· +yk})K0 (y 1 , ••. ,yk)Z00(dy 1 ) ••• Z 00(dyk)· 

A discussion of what may happen if a 1,(0, ... , 0) = 0 is given in Rosenblatt 
(1979) and Major (1981). References and a discussion of similar limit theorems 
for processes derived from one with a non-Gaussian distribution can be found 
in Giraitis and Surgailis (1986). 
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