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The Lasso with within group structure

Sara van de Geer1

Seminar for Statistics, ETH Zurich

Abstract: We study the group Lasso, where the number of groups is very
large, and the sizes of the groups is large as well. We assume there is within
group structure, in the sense that the ordering of the variables within groups in
some loose sense expresses their relevance. We propose a within group weight-
ing of the variables, and show that with this structure, the group Lasso satisfies
a sparsity oracle inequality.

1. Introduction

We study a procedure for regression with group structure, in the linear model

Y = Xβ0 + ϵ.

Here, Y is an n-vector of observations, and X a (n × M)-matrix of co-variables.
Moreover, ϵ is a vector of noise, which, for simplicity, we assume to be N (0, I)-
distributed. We consider the high-dimensional case, where M ≫ n, and in fact,
where there are p groups of co-variables, each of size T (i. e., M = pT ), where both
p and T can be large. We rewrite the model as

Y =

p∑
j=1

Xjβ
0
j + ϵ,

where Xj = {Xj,t}Tt=1 is an (n × T )-matrix and βj = (βj,1, · · · , βj,T )
T is a vector

in RT . To simplify the exposition, we consider the case where T ≤ n and where the
Gram matrix within groups is normalized, i. e., XT

j Xj/n = I for all j. The number
of groups p can be very large.

The group Lasso was introduced by Yuan and Lin [10]. With large T (say T = n), a
standard group Lasso will generally not have good prediction properties, even when
p is small (say p = 1). Therefore, one needs to impose a certain structure within
groups. Such an approach has been considered by Meier et al. [4], Ravikumar et al.
[5], and Koltchinskii and Yuan [3].

In this paper, we use a similar approach as in Meier et al. [4], but now with a
very simple description of structure. This will greatly simplify the theory, i. e., we
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need no high-level entropy or concentration of measure arguments. Moreover, it
will provide more insight into the required “compatibility condition” (see van de
Geer [7] and van de Geer and Bühlmann [8]) or “restricted eigenvalue condition”
(see Bickel et all. Bickel et al. [1], Koltchinskii [2]). We remark that the papers
Ravikumar et al. [5], and Koltchinskii and Yuan [3] use a fundamentally different
penalty. The first puts certain coefficients a priori to zero, whereas the second uses
a single penalization instead of the double penalization considered here.

We stress that the present paper is of theoretical nature, giving simplifications of
the arguments in Meier et al. [4]. For practical applications and motivations, we
refer to the above mentioned papers Meier et al. [4], Ravikumar et al. [5], and
Koltchinskii and Yuan [3].

We assume that for all j, there is an ordering in the variables of group j: the
larger t, the less important variable Xj,t is likely to be. Given positive weights
{wt}Tt=1 (which for simplicity we assume to be the same for all groups j), satisfying
0 < w1 ≤ · · · ≤ wT , we express the (lack of) structure in group j with the weighted
sum

∥Wβj∥22 :=
T∑

t=1

w2
t β

2
j,t, βj ∈ Rp.

Examples of weights wt and of the interpretation of ∥Wβj∥2 are given in Section
2. The structured group Lasso estimator is defined as

β̂ := argβ∈RpT

∥Y −Xβ∥22/n+ λ

p∑
j=1

∥βj∥2 + λµ

p∑
j=1

∥Wβj∥2

 ,

where λ and µ are tuning parameters. Note that the penalty involves two terms
proportional to ℓ2-norms. Penalties proportional to squared ℓ2-norms (as in ridge
regression) will in the high-dimensional case generally lead to inconsistent estima-
tors. Note also that when T = 1, the above estimator reduces to the standard Lasso
as considered by e. g. Tibshirani [6].

We show in this paper that β̂ satisfies a sparsity oracle inequality (see Theorem
6.1). This essentially means that the prediction error of the estimator is almost as
good as in the case where it is known beforehand which groups are relevant.

The paper is organized as follows. Section 2 gives a typical example for the choice
of the weights. In Section 3, we describe how we deal with the noise term. Section
4 discusses approximating quadratic forms βT Σ̂β, where Σ̂ = XTX/n is the Gram
matrix. The reason for doing so is that we need a certain amount of identifiability
of the parameters, expressed in terms of the compatibility condition of Section 5.
The compatibility condition is an extension of the restricted eigenvalue condition
of Bickel et al. [1] (see also van de Geer and Bühlmann [8] for a comparison of
conditions). It holds for non-singular matrices Σ, and the singular matrix Σ̂ inherits
this if Σ and Σ̂ are close enough. One may for example think of Σ as a “population”
version of Σ̂. Section 5 presents the details for the present context. Our main result,
a sparsity oracle inequality, can then be found in Section 6. The result is given in
a non-asymptotic form. A brief discussion of its implications for a typical case is
given in Section 7, using orders-of-magnitude to clear up the picture. All proofs are
deferred to Section 8.
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2. The amount of structure

Let
R2(t) :=

∑
s>t

1

w2
s

, t = 1, . . . , T,

and let T0 ∈ {1, . . . , T} be the smallest value such that

T0 ≥ R(T0)
√
n.

Take T0 = T if such a value does not exist. We call T0 the hidden truncation level.
The faster the wj increase, the smaller T0 will be, and the more structure we have
within groups. The choice of T0 is in a sense inspired by a bias-variance trade off.

An extreme case. Suppose we know beforehand that all variables Xj,t with t ≥ 2
are irrelevant. We then take wj = ∞ for all j ≥ 2, and we get that R(t) ≡ 0. In
that case, T0 = 1.

A typical case. Suppose that T is large, and that for some m > 1
2 ,

wt = tm.

This may for example correspond to having the basis functions of the Sobolev space
of m times differentiable functions as variables. Then ∥Wβj∥2 can be thought of

as a Sobolev norm. For t large, R(t) ≍ t−(2m−1)/2, and we find T0 ≍ n
1

2m+1 , and

T0/n ≍ n− 2m
2m+1 .

We will throughout take the tuning parameters such that λ ≥
√
T0/n and λµ ≥

T0/n.

3. Handling the noise

It turns out that the noisy part of the problem can be handled by appropriately
bounding, for all β, the sample correlations ϵTXβ/n. We note that

ϵTXβ/n = ϵT
p∑

j=1

Xjβj/n =
1√
n

p∑
j=1

V T
j βj ,

with V T
j := ϵTXj/

√
n, j = 1, . . . , p. Write

χ2
j :=

T0∑
t=1

V 2
j,t.

Lemma 3.1. For all β, it holds that

|ϵTXβ|/n ≤
(

max
1≤j≤p

√
χ2
j

T0

)√
T0

n

p∑
j=1

∥βj∥2 +
(

max
1≤j≤p

∥Vj∥∞
)
T0

n

p∑
j=1

∥Wβj∥2.

The idea of penalization is to prevent a complex model from overfitting i. e., to
reduce the estimation error. In our setup the estimation error is due to the noise



238 S. van de Geer

ϵ, through the term ϵTXβ/n. The above lemma will be invoked to show that the
penalty

λ

p∑
j=1

∥βj∥2 + λµ

p∑
j=1

∥Wβj∥2

will overrule the noise, provided we choose the tuning parameters λ and µ large
enough.

We now derive bounds for the χj and ∥Vj∥∞. Note that, for each j, the {Vj,t}
are i.i.d. N (0, 1)-distributed, and hence that χ2

j is chi-square distributed with T0

degrees of freedom. Our bounds are based on the following expressions (see Lemma
3.2). Let, for x > 0,

ν20 := ν20(x) = (2x+ 2 log(pT )),

and

ξ20 := ξ20(x) = 1 +

√
4x+ 4 log p

T0
+

4x+ 4 log p

T0
.

Define the set

T :=

{
max
1≤j≤p

χ2
j/T0 ≤ ξ20 , max

1≤j≤p
∥Vj∥∞ ≤ ν0

}
.

Lemma 3.2. It holds that

IP(T ) ≥ 1− 3 exp[−x].

By Lemma 3.1, on T ,

|ϵTXβ|/n ≤ ξ0

√
T0

n

p∑
j=1

∥βj∥2 + ν0
T0

n

p∑
j=1

∥Wβj∥2.

With these result in mind, we will choose λ ≥ 8ξ0
√
T0/n and λµ ≥ 8ν0T0/n (the

constant 8 is chosen for explicitness).

4. Comparing quadratic forms

Recall that the (sample) Gram matrix is

Σ̂ := XTX/n.

As M = pT is larger than n, it is clear that Σ̂ is singular. To deal with this, we
will approximate Σ̂ by a matrix Σ, which potentially is non-singular. For example,
when the rows of X are normalized versions of n i.i.d. random vectors, the matrix
Σ could be the population variant of XTX/n. We let Σj be the (T × T )-submatrix

of Σ corresponding to the variables in the jth group (as Σ̂j := XT
j Xj/n = I, we

typically take Σj = I as well). We write, for general Σ,

∥β∥2Σ := βTΣβ, ∥βj∥2Σj
:= βT

j Σjβj , j = 1, . . . , p.

Define
pen1(β) := λ

∑
j

∥βj∥2, pen2(β) := λµ
∑
j

∥Wβj∥2,
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and
pen(β) := pen1(β) + pen2(β).

Let
∥Σ̂− Σ∥∞ := max

j,k
|Σ̂j,k − Σj,k|.

Lemma 4.1. For all β

|∥β∥2Σ − ∥β∥2
Σ̂
| ≤ n∥Σ̂− Σ∥∞pen2(β).

5. The compatibility condition

For an index set S ⊂ {1, . . . , p}, we let

βj,S = βj l{j ∈ S}.

Define the set of restrictions

R(S) :=

{
β : pen1(βSc) + pen2(β) ≤ 3pen1(βS)

}
.

Definition The structured group Lasso compatibility condition holds for the set
S, with constant ϕ(S) > 0, if for all β ∈ R(S) it holds that∑

j∈S

∥βj∥Σj

2

≤ |S|∥β∥2Σ/ϕ2(S).

This condition is a generalization of the compatibility condition of van de Geer
[7] to the case T > 1, which is in turn a slightly more general condition than the
restricted eigenvalue condition of Bickel et al. [1]. A comparison can be found in
van de Geer and Bühlmann [8].

Note that the above condition depends on the choice of Σ. Note also that the
compatibility holds if the matrix

Σ
−1/2
1 · · · 0
...

. . .
...

0 · · · Σ
−1/2
p

Σ


Σ

−1/2
1 · · · 0
...

. . .
...

0 · · · Σ
−1/2
p


is non-singular. One can then take ϕ2(S) as the smallest eigenvalue of this matrix.

The next lemma shows that the structured grouped Lasso compatibility condition
implies an analogous compatibility condition with Σ replaced by Σ̂, provided |S| is
sufficiently small (depending on ∥Σ̂−Σ∥∞). This will be used in the sparsity oracle
inequality of the next section.

Let

S(Σ) :=
{
S :

64nλ2∥Σ̂− Σ∥∞|S|
ϕ2(S)

≤ 1

2

}
.

Lemma 5.1. For all S ∈ S(Σ) and all β ∈ R(S)

pen21(βS) ≤ 4λ2|S|∥β∥2
Σ̂
/ϕ2(S).
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6. A sparsity oracle inequality

Theorem 6.1. Consider the structured group Lasso

β̂ := argmin
β

{
∥Y −Xβ∥22/n+ pen(β),

}
where

pen(β) := pen1(β) + pen2(β),

and where

pen1(β) := λ

p∑
j=1

∥βj∥2, pen2(β) := λµ

p∑
j=1

∥Wβj∥2,

with
λ ≥ 8ξ0

√
T0/n, λµ ≥ 8ν0T0/n,

with ξ0 and ν0 given in Section 3. Let also T be as in Section 3. Then IP(T ) ≥
1− 3 exp[−x]. On T , we have for all S ∈ S(Σ) (with S(Σ), as given in Section 5,
the small enough index sets), and all βS,

∥β̂ − β0∥2
Σ̂
+ pen(β̂ − βS) ≤ 4

{
4λ2|S|
ϕ2(S)

+ ∥βS − β0∥2
Σ̂
+ 2pen2(βS)

}
.

The above theorem gives a bound for the prediction error

∥β̂ − β0∥2
Σ̂
= ∥X(β̂ − β0)∥22/n.

In addition, it bounds the ℓ1/ℓ2 estimation error

p∑
j=1

∥β̂j − βS∗∥2,

where βS∗ can be taken as the “oracle” minimizing the right hand side, i. e.,

βS∗ := arg min
βS : S∈S(Σ)

{
4λ2|S|
ϕ2(S)

+ ∥βS − β0∥2
Σ̂
+ 2pen2(βS)

}
.

Thirdly, it bounds the estimated “smoothness”

p∑
j=1

∥Wβ̂j∥2.

7. A typical case

Let S0 := {j : ∥β0
j ∥2 = 0} be the active set of β0.

— Suppose that β0 itself is sparse, in fact that S0 ∈ S(Σ).

— Let T = n, wt = tm (m > 1/2), and p ≥ n.

— Assume moreover that ∥Wβ0
j ∥2 ≤ 1.
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We may choose λ ≍
√
log(p)T0/n, and (invoking log p/T0 = O(log(p))) λµ ≍

log(p)T0/n. Recall moreover that (with this particular choice of weights), T0/n ≍
n− 2m

2m+1 . Taking βS = β0 in Theorem 6.1. now yields

∥β̂ − β0∥2
Σ̂
+ pen(β̂ − β0) = O

(
n− 2m

2m+1 log(p)
|S0|

ϕ2(S0)

)
.

In other words, the rate of convergence is roughly the same as in the case where
S0 is known beforehand. The price paid is a logarithmic term and a possibly very
small constant ϕ(S0).

Let us now have a closer look at the requirement S0 ∈ S(Σ). Recall that the
compatibility constant depends on Σ, say ϕ(S) := ϕΣ(S). The assumption S0 ∈
S(Σ) is a means to get a hold on ϕΣ̂(S). A typical case (say the case where the
rows of X are normalized versions of n i.i.d. sub-Gaussian random vectors, and Σ
is the population Gram matrix) is

∥Σ̂− Σ∥∞ ≍
√

log(p)

n
.

We then require that |S0|/ϕ2
Σ(S0) is sufficiently small, say

|S0|
ϕ2
Σ(S0)

= o

(
n

2m−1
2(2m+1)

log3/2(p)

)
.

8. Proofs

Proof of Lemma 3.1. We have

|ϵTXβ|/n ≤
p∑

j=1

|V T
j βj |/

√
n

≤
p∑

j=1

√
χ2
j

T0

√
T0

n
∥βj∥2 +

p∑
j=1

∥Vj∥∞
R(T0)√

n
∥Wβj∥2

≤
(

max
1≤j≤p

√
χ2
j

T0

)√
T0

n

p∑
j=1

∥βj∥2 +
(

max
1≤j≤p

∥Vj∥∞
)
R(T0)√

n

p∑
j=1

∥Wβj∥2.

The choice of T0 guarantees that R(T0)/
√
n ≤ T0/n. ⊔⊓

Proof of Lemma 3.2. As Vj,t is N (0, 1)-distributed, it follows from the union
bound that

IP

(
max
1≤j≤p

max
1≤t≤T

|Vj | >
√
2x+ 2 log(pT )

)
≤ 2pT exp

[
−(x+ log(pT ))

]
= 2 exp [−x] .

Furthermore, by the inequality of Wallace [9], for all a > 0,

IP

(
χ2
j ≥ T (1 + a)

)
≤ exp

[
−T0

2

(
a− log(1 + a)

)]
.
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We now use that

a− log(1 + a) ≥ a2

2(1 + a)
.

This gives

IP(χ2
j ≥ T0(1 + a)) ≤ exp

[
−T0

4

(
a2

1 + a

)]
.

Insert

a =

√
4x

T0
+

4x

T0
.

Then
a2

1 + a
≥ 4x

T0
,

so

IP

(
χ2
j ≥ T0

(
1 +

√
4x

T0
+

4x

T0

))
≤ exp[−x].

Finally, apply the union bound to arrive at

IP

(
max
1≤j≤p

χ2
j/T0 ≥ ξ20

)
≤ exp[−x].

⊔⊓

Proof of Lemma 4.1.

|βT Σ̂β − βTΣβ| ≤ ∥Σ̂− Σ∥∞∥β∥21,

and
∥βj∥1 ≤

√
T0∥βj∥2 +R(T0)∥Wβj∥2,

Hence

∥β∥1 =

p∑
j=1

∥βj∥1 ≤
p∑

j=1

{√
T0∥βj∥2 + T0/

√
n∥Wβj∥2

}
,

where we use R(T0) ≤ T0/
√
n. Finally, invoke

√
T0/n ≤ λ and T0/n ≤ λµ. ⊔⊓

Proof of Lemma 5.1. Let β be some vector in R(S). Then

pen(βS) = pen1(βS) + pen2(βS) ≤ 4pen1(βS),

and
pen(β) = pen1(βS) + pen1(βSc) + pen(β) ≤ 4pen1(βS).

Define
η2 := nλ2∥Σ̂− Σ∥∞|S|/ϕ2(S).

Then, since ϕ(S) ≤ 1, and |S| ≥ 1,

λ2∥βj∥22 = λ2∥βj∥2Σ̂j
≤ λ2∥βj∥2Σj

+ η2(λ∥βj∥2 + λµ∥Wβj∥2)2.

It follows that

pen1(βS) = λ

p∑
j=1

∥βj∥2 ≤ λ
∑
j∈S

∥βj∥Σj + ηpen(βS)
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≤
√
|S|λ∥β∥Σ/ϕ(S) + 4ηpen1(βS)

≤
√

|S|

(
λ∥β∥2

Σ̂
+ ϕ(S)ηpen(β)/

√
|S|

ϕ(S)

)
+ 4ηpen1(βS)

≤ λ
√
|S|∥β∥Σ̂ + 8ηpen1(βS).

The assumption

8η ≤ 1

2

gives
pen1(βS) ≤ 2λ

√
|S|∥β∥Σ̂/ϕ(S).

⊔⊓

Proof of Theorem 6.1. Throughout, we assume we are on T .

We have for all β,

∥β̂ − β0∥2
Σ̂
+ pen(β̂) ≤ 2ϵTX(β̂ − β)/n+ pen(β) + ∥β − β0∥2

Σ̂

≤ 1

4
pen(β̂ − β) + pen(β) + ∥β − β0∥2

Σ̂
.

It follows that for all S and for β = βS ,

∥β̂ − β0∥2
Σ̂
+

3

4
pen1(β̂Sc) +

3

4
pen2(β̂ − βS)

≤ 5

4
pen1(β̂S − βS) + 2pen2(βS) + ∥βS − β0∥2

Σ̂
.

Case i)

If
pen1(β̂S − βS) ≥ ∥β̂ − β0∥2

Σ̂
+ 2pen2(βS),

we get

(8.1) 4∥β̂ − β0∥2
Σ̂
+ 3pen1(β̂Sc) + 3pen2(β̂ − βS) ≤ 9pen1(β̂S − βS).

So we then have β̂ − βS ∈ R(S). We therefore can apply Lemma 5.1, to find that
when S ∈ S(Σ), from (8.1),

4∥β̂ − β0∥2
Σ̂
+ 3pen(β̂ − βS) ≤ 12pen1(β̂S − βS)

≤ 24λ
√

|S|∥β̂ − βS∥Σ̂/ϕ(S) ≤ 3∥β̂ − βS∥2Σ̂ +
16λ2|S|
ϕ2(S)

.

Hence

∥β̂ − β0∥2
Σ̂
+ 3pen(β̂ − βS) ≤

16λ2|S|
ϕ2(S)

,

so also

∥β̂ − β0∥2
Σ̂
+ pen(β̂ − βS) ≤

16λ2|S|
ϕ2(S)

.



244 S. van de Geer

Case ii)

If
pen1(β̂S − βS) < ∥β − β0∥2

Σ̂
+ 2pen2(βS),

we obtain

4∥β̂ − β0∥2
Σ̂
+ 3pen1(β̂Sc) + 3pen2(β̂ − βS) ≤ 9∥βS − β0∥2

Σ̂
+ 18pen2(βS),

and hence

4∥β̂ − β0∥2
Σ̂
+ 3pen(β̂ − βS) ≤ 12∥β − β0∥2

Σ̂
+ 24pen2(βS).

This gives

∥β̂ − β0∥2
Σ̂
+ pen(β̂ − βS) ≤ 4∥β − β0∥2

Σ̂
+ 8pen2(βS).

⊔⊓
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