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Is ignorance bliss: Fixed vs. random

censoring

Stephen Portnoy∗

Department of Statistics, University of Illinois

Abstract:
While censored data is sufficiently common to have generated an enormous

field of applied statistical research, the basic model for such data is also suf-
ficiently non-standard to provide ample surprises to the statistical theorist,
especially one who is too quick to assume regularity conditions. Here we show
that estimators of the survival quantile function based on assuming additional
information about the censoring distribution behave more poorly than esti-
mators (like the inverse of Kaplan–Meier) that discard this information. This
phenomenon will be explored with special emphasis on the Powell estimator,
which assumes that all censoring times are observed.

1. Introduction

In many situations where censored observations appear, it is not unreasonable un-
reasonable to assume that the censoring values are known for all observations (even
the uncensored ones). For example, one of the earliest approaches to censored re-
gression quantiles was introduced by work of Powell in the mid 1980’s. Powell [10]
assumed that the censoring values were constant, thus positing observations of the
form Y ∗ = min(Y, c) (where Y ∗ is observed and Y is the possibly unobserved sur-
vival time that is assumed to obey some linear model). More generally, we may be
willing to assume that we observe a sample of censoring times {ci} and a sample of
censored responses Y ∗

i = min(Yi, ci), a model that could apply to a single sample.
In this case, one could use the empirical distributions of the {Y ∗

i } and {ci} and take
the ratio of empirical survival functions to estimate the survival function of Y . This
is asymptotically equivalent to applying the Powell method on a single sample.

Despite some optimality claims in Newey and Powell [5], it turns out that the
Kaplan–Meier estimate is better (asymptotically, and by simulations in finite sam-
ples) even though it does not use the full sample of {ci} values. More generally, even
in multiple regression settings, the censored regression quantile estimators (Portnoy
[7]) are better in simulations than Powell’s estimator, even for the constant censor-
ing situation for which Powell’s estimator was developed. Remarkably, in the one
sample case, replacing the empirical function of {ci} by the true survival function
(assuming it is known) yields an even less efficient estimator. Thus, it appears that
discarding what appears to be pertinent information improves the estimators. Here
we will try to quantify and explain this conundrum.
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The basic phenomenon was first brought to my attention by Roger Koenker at
coffee some time ago. A specific example concerned asymptotics for estimators of the
survival quantile function in a single censored sample. Though the basic asymptotic
results all appeared in the standard literature, the computations were combined as
problems on a take-home exam for advanced econometric students to emphasize
the rather surprising result that the more information an estimator incorporates,
the poorer the asymptotic behavior. In fact, a recent treatment closely related to
the one sample case of Section 2 below appears in Wang and Li [11].

Specifically, consider the one-sample model: Yi are i.i.d. with cdf F (x), ci i.i.d.
with cdf G(x), and we observe Y ∗

i = min{Yi, ci}. The problem is to estimate Q(τ) ≡
F−1(τ) (nonparametrically). There are a number of estimators that converge in
distribution at rate n−1/2 to an asymptotic normal distribution with mean Q(τ)
and asymptotic variance:

(1) a V ar ≡ F (ξτ )(1− F (ξτ ))

f2(ξτ )
v(ξτ ) ξτ = Q(τ) = F−1(τ),

where f(x) is the density for F (x), and where v(x) depends on the estimator.
The most classical estimator of the quantile function is the inverse of the Kaplan–

Meier estimator. This inversion is trivial since the Kaplan–Meier estimator is mono-
tonic; and its asymptotic variance is well-known to have

(2) vKM (x) =
(1− F (x))

F (x)

∫ x

0

dF (w)

(1− F (w))2(1−G(w))
.

There are (at least) two alternatives that are appropriate if all the ci-values are
observed. The first is of particular interest here and was developed by Powell [10]:
define the quantile function estimate, Q̂(τ) to minimize the following (non-convex)
objective function over β:

(3)

n∑
i=1

ρτ (min{Y ∗
i , ci} −min{β, ci}).

This was originally introduced for fixed (constant) censoring in linear models for
the conditional median, but it was quickly recognized that the definition worked
whenever all ci-values were known. The asymptotic variance of Q̂(τ) is given by (1)
with

(4) vPOW (x) = (1−G(x))−1.

An alternative with exactly the same asymptotic variance is the “synthetic”
estimator (for example, see Leurgans [3]). Note that the c.d.f. for the observed
value min{Yi, ci} is H(x) = 1− (1− F (x))(1−G(x)). Thus, if all {ci} are known,
we can use the empiric c.d.f.’s (Ĥ for the observations, and Ĝ for the censoring
times) to estimate F:

(5) F̂ (x) = 1− (1− Ĥ(x))/(1− Ĝ(x)).

This function can be inverted (with perhaps some difficulty because of possible non-
monotonicity) to provide an estimate of the quantile function, whose asymptotic
variance can be shown directly to coincide with that of the Powell estimator. To
provide complete notation, define vĜ(x) ≡ vPOW (x).
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Finally, suppose we actually know G; that is, we have additional information.
Then we can replace Ĝ by G in (5) and invert. Here

vG(x) =
1− (1− F (x))(1−G(x))

F (x)(1−G(x))
.

For estimation of the median, ξ = Q(1/2) = F−1(1/2),

vKM =

∫ ξ

0

dF (w)

(1− F (w))2(1−G(w))

vPOW = vĜ = (1−G(ξ))−1

vG = (1 +G(ξ))/(1−G(ξ))

For τ = 1/2, it is immediate that:

vKM (ξτ ) ≤ vPow(ξτ ) = vĜ(ξτ ) ≤ vG(ξτ ).

These inequalities hold for all τ : vĜ(ξτ ) ≤ vG(ξτ ) since (1 − G(x)) ≤ 1 in the
numerator of vG(x). To show vKM (ξτ ) ≤ vĜ(ξτ ), note that (1−G(x)) ≥ (1−G(w))
in the denominator of the integral in (2), and the integral can be computed directly
to provide a cancellation of the initial factors.

To provide some specific calculations where the integral in vKM can be computed,
let 1 − F (x) = e−x and let G have density g(x) = c e−c(x−a) for x ≥ a. Figure 1
shows efficiencies for median estimators with respect to the asymptotic variance
of the Kaplan–Meier estimator for a = 1.8 as a function of c. The unobservable
estimate, med{Y }, is also plotted for comparison. Note that it is only slightly more
efficient than Kaplan–Meier.
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Fig 1. One Sample Efficiencies for exponential distributions.

Several remarks can be offered.
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• Newey and Powell [5] establish asymptotic optimality of the Powell estima-
tor among all “regular” estimators. Unfortunately, their regularity conditions
preclude estimators like the Kaplan–Meier estimator that does not admit an
asymptotic expansion whose second-order term is independent of the first-
order term. Thus, the fact that the Powell estimator performs more poorly
than the Kaplan–Meier estimator does not contradict their result.

• By convex optimization (specifically, the Generalized Method of Moment
Spaces – see Collins and Portnoy [1]), it is possible to find the range of values
for the efficiency of the Powell estimator for any given amount of censoring.
Specifically, if p is the probability of censoring, then the efficiency of the Pow-
ell estimator is greater than (1−2p), and this efficiency can be attained. This
bound is plotted in the lower panel of Figure 1.

• When a is nearly log(2) (the median for the negative exponential distribu-
tion), the probability of censoring is nearly .5, and serious computational
difficulties can occur in samples of size 50 or bigger for Powell and the “syn-
thetic” estimators. For the Powell estimator, the problem seems to be the
multimodality of the objective function, an issue that will be discussed for
regression quantiles later. For synthetic estimators, the ratio of survival func-
tions is not monotonic, which may lead to computational problems in the
inversion.

2. Regression comparisons

Since the Powell estimator was intended for the case of linear regression quantiles,
the results of the previous section may not seem unduly surprising. Nonetheless,
we show here that the message is remarkably similar in the regression case. Unfor-
tunately, current asymptotic theory for quantile regression estimator that require
only conditional independence of the duration and censoring variables do not admit
tractable formulas for asymptotic variances (see Portnoy and Lin [?], and Peng–
Huang [6]). Thus we will restrict to simulation comparisons. Since the methods
of Portnoy [7] and Peng–Huang [6] appear to be quite similar, we will also focus
on comparisons between the Powell method and the CRQ (“censored regression
quantiles”) method of Portnoy [7].

It is important to note that CRQ requires all estimable regression quantiles to be
linear (in the parameters). The Powell estimator does not impose this requirement,
positing a linear model only for the quantile of interest. Thus will we consider cases
where the conditional quantiles are not linear, expecting that the Powell estima-
tor should do better in such cases. Thus, it is surprising that even for moderately
large samples (n = 400), the CRQ method still outperforms the Powell estimator,
often quite substantially. This appears to be due to computational difficulties as-
sociated with fact that the Powell method is fitting a nonlinear response function
(max{x′

iβ, ci}), and so its objective function turns out to be multimodal.

Because of the computational difficulties involved in minimizing the Powell ob-
jective function, we will restrict to cases with a single explanatory variable, for
which the Powell estimator can be computed by exhaustive search. Specifically, the
Powell estimator can be taken to be an “elemental” estimator; that is, one interpo-
lating exactly p observations (at least when observations are in general position).
This holds for the same reason as for ordinary regression quantiles: if an optimal
solution is not elemental, the linear parameters can be changed without increasing
the objective function until p observations are interpolated. Thus, for simple linear
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regression, we will employ an algorithm that exhaustively examines all “n-choose-2”
elemental solutions and finds the one minimizing the Powell objective function

(6)

n∑
i=1

ρτ (min{Y ∗
i , ci} −min{x′

iβ, ci}).

While there are approximate algorithms that are much faster (especially in larger
problems), these methods depend strongly on a “starting value”, and will have
rather different distributional properties (depending on the starting value). The
Powell estimator will be compared with results from the R-function crq using the
default “grid” algorithm of Portnoy [7] as implemented in the quantreg R-package
(Koenker [2]).

To be specific, we consider the following design for a simulation experiment with
three models (two of which are heteroscedastic and nonlinear), two error distribu-
tions, and three choices for sample size (n = 50, 100, 200). In each case, we take
1000 replications with the pairs (xi, Yi) i.i.d., and take constant censoring with
c = 10. For all cases, we resample xi ∼ Unif(0, 4) in each replication. The Models
are:

Linear: Y = 5 + 2x + ε
Nonlinear: Y = 2.5x + max(x, 2) ε
Heavy Nonlin: Y = x + 4max(x, 2) ε

The error distributions are either ε ∼ N(0, 1) or ε has a location shift of a
negative exponential distribution with density f(x) = exp{−(x + a)} where a ≈
−.69 is chosen to provide med(ε) = 0.
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Fig 2. Deciles for heavy nonlinear model (Normal errors).

Note that only the first model has all linear regression quantiles; and thus CRQ
would be consistent only for this model. The conditional median is linear in all
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three models; and so the Powell estimator should be consistent in all cases. A plot
of the conditional quantiles for the case of “heavy” non-linearity is given in Figure 2.
Figures 3 and 4 provide the results of the simulations expressed as the ratios of the
median absolute errors for the CRQ estimator over the Powell estimator. Ratios of
mean squared errors showed much less efficiency for the Powell estimator.
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Fig 3. Efficiency for intercept: MAE(CRQ)/MAE(Powell).

The following conclusions seem quite clear from the plots:

• The one-sample story appears to hold for regression.
• Heavy nonlinearity hurts Powell (computational problems) more than CRQ
(bias) for n ≤ 200. For larger n, the bias may become more serious. Even if
we believe only the median is linear, CRQ seems to be better for moderate
nonlinearity and sample size.

One possible reason that CRQ seems so good concerns the fact that the CRQ
estimator weights each censored observation depending on the quantile crossing the
observation. Since each weight applies only to a small number of observations, the
accuracy in estimating the weights may not be very crucial. Also, most censoring
occurs near the median, where nonlinearity is smaller.

Some further complementary simulation experiments were run. One used the
approximate algorithm for the Powell estimator given in the “quantreg” R-Package
(see Koenker [2]). This algorithm is based on work of Fitzenberger and attempts
to find a local minimum of the Powell objective function (with the starting value
defaulting to the naive regression quantile estimator that ignores censoring). This
does correct the worst problems with the Powell estimator in the case of heavy
censoring; and in fact this version of the Powell estimator slightly outperforms
CRQ for estimating the slope parameter when n = 50. In all other cases, even
this version is less efficient than CRQ with efficiencies varying from .6 to .95 over
the range of cases in the simulation experiment above. Since this algorithm can
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Fig 4. Efficiency for slope: MAE(CRQ)/MAE(Powell).

differ from the formal Powell estimator, it is not clear what asymptotic properties
it has. Nonetheless, the simulations suggest that even this version is not preferable
to CRQ.

Finally, a simulation experiment was run with an alternative estimator suggested
by work in Lindgren [4]. This method is based on binning the data (by x-values) into
M bins, applying Kaplan–Meier to the data in each bin, and fitting the resulting
quantiles by linear least squares. Here we choose M = 8 bins equally spaced for
x ∈ (0, 4). Such proposals appear regularly in the literature, but binning difficulties
(the curse of dimensionality) seriously degrade such methods beyond the case of
simple linear regression. In any event, this estimator performed only slightly better
than the Powell estimator, and clearly suffered in comparison with CRQ.

3. Inconsistency of the Powell estimator

As noted above, if only the quantile of interest is linear, the Powell estimator can re-
main consistent while CRQ is inconsistent. However, the conditions for consistency
for these estimators differ in nontrivial ways. The author has obtained several ex-
amples where the Powell estimator is inconsistent while CRQ remains consistent
(Portnoy [8]). The basic idea is that the use of a nonlinear fit in the Powell es-
timator permits breakdown in cases where standard regression quantile methods
(RQ and CRQ) maintain breakdown robustness. In fact, CRQ can be consistent
even though some lower conditional quantiles are nonlinear: specifically, when the
lower quantiles are below all censored observations. The examples do appear to
violate conditions for known consistency results, and so do not suggest any error
in the proof of consistency for the Powell estimator. They do emphasize that the
nonlinear nature of the Powell objective function does impose additional regularity
conditions.

Though the examples of inconsistency are somewhat pathological, they do sug-
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gest cases where fitting a nonlinear response function (viz., the Powell estimator)
leads to a (very) incorrect estimate of the true regression line. In fact, the following
finite sample simulated example shows that Powell’s estimator may be extremely
poor even though the data do not appear unreasonable and the CRQ estimates
appear quite reasonable.

Specifically, we consider an example where x ∼ Unif(0, 4) and Y0 ∼ 5 + x +
4max{x, 2}N(0, 1). Here censoring is at the constant value, c = 10, and so we
observe Y = min(Y0, 10). The specific data may be generated in R as follows:

# generate powell-crq examples

set.seed(23894291)

for(i in 1:92) {
x <- 4*runif(50)

y0 <- 5 + x + 4*pmax(x,2)*rnorm(50) }
y <- pmin(y0,10)
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Fig 5. Example where the Powell estimator is very poor.

The Powell estimator (with exhaustive search) gives intercept and slope esti-
mates: (68.10, -20.76); while the CRQ method gives: (1.754, 1.571) The data is
plotted in Figure 5, and though there is an indication of heteroscedasticity, the
data do not appear to contain outliers or other discrepancies that should lead to
undue difficulties. Careful examination of the Powell objective function shows sev-
eral local minima. One local minimum is indeed near the CRQ estimates, but the
value at this local minimum is in fact somewhat larger than that at the global
minimum, and is only slightly smaller than one local minimum located rather far
from either Powell or CRQ.

4. Conclusions

• Beware of stating the results of theorems without stating the conditions. The
hypotheses in the Newey-Powell optimality result restrict consideration to a
class that ignores the most natural alternatives.
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• Is ignorance bliss? No! But seeing superfluous information can encourage one
to try to make use of the information in ways that may be detrimental!

• Be careful of using procedures whose computation may be problematic, es-
pecially those defined by minimization of a multimodal objective function.
Even if such procedures have provable asymptotic properties, finite sample
computational difficulties can result in extremely poor performance.
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