Visualizing Ricci Flow of Manifolds of Revolution

J. Hyam Rubinstein and Robert Sinclair

CONTENTS

. Introduction

. Preserving the Embedding into Euclidean Space
. Computational Formulation

. Use of the Software

. Three-Dimensional Manifolds of Revolution

S U1 A WN =

. Speculation
References

2000 AMS Subject Classification: Primary 53C44, 53-04

Keywords: Ricci flow, neckpinch, mathematical visualization

We present numerical visualizations of Ricci flow of surfaces
and three-dimensional manifolds of revolution. Ricci_rot is
an educational tool that visualizes surfaces of revolution moving
under Ricci flow. That these surfaces tend to remain embedded
in R? is what makes direct visualization possible. The numeri-
cal lessons gained in developing this tool may be applicable to
numerical simulation of Ricci flow of other surfaces. Similarly
for simple three-dimensional manifolds like the 3-sphere, with a
metric that is invariant under the action of SO(3) with 2-sphere
orbits, the metric can be represented by a 2-sphere of revolu-
tion, where the distance to the axis of revolution represents the
radius of a 2-sphere orbit. Hence we can also visualize the be-
haviour of such a metric under Ricci flow. We discuss briefly
why surfaces and 3-manifolds of revolution remain embedded
in R? and R?, respectively, under Ricci flow and finally indulge
in some speculation about the idea of Ricci flow in the larger
space of positive definite and indefinite metrics.

1. INTRODUCTION

Understanding Ricci flow has become fundamental to
attempts to prove Thurston’s geometrization conjecture
[Cao et al. 03], [Chow and Knopf 04], [Perelman 02],
[Perelman 03]. Since Ricci flow is geometric by nature,
it is natural to ask whether it can be visualized. Un-
like mean-curvature and related flows, which act in the
first instance as a force pushing on a surface and therefore
tend to keep surfaces embedded in Euclidean space, Ricci
flow acts directly on the metric of the surface, tending not
to preserve embeddedness. A number of interesting re-
sults have been obtained by restricting to classes of met-
rics of revolution, since such symmetries are preserved
under Ricci flow and the metric depends on considerably
fewer parameters in such cases [Simon 00], [Angenent
and Knopf 04], [Ivey 94]. We will discuss for this class
of metrics, why Ricci flow does preserve embeddedness
in Euclidean space [Engman 04]. Moreover, the key phe-
nomenon of neck pinching occurs naturally for metrics of
revolution. Good estimates are available to understand
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the limiting behaviour of metrics as they become sin-
gular under neck pinching in [Simon 00] and [Angenent
and Knopf 04]. Our visualization approach enables us to
generate interesting pictures and information about neck
pinching. In [Chow 00], it is shown that any metric on
the 2-sphere converges to the round metric under Ricci
flow, so neck pinching occurs only in higher dimensions.

Note that there are many interesting questions about
Ricci flow for three-dimensional manifolds. There are a
limited number of examples where one knows completely
how the metric evolves [Chow and Knopf 04]. It would be
very useful to have further examples where Ricci flow con-
tinues for infinite time, without developing singularities.
For example, there are important constructions (Dehn
surgery) of metrics with strictly negative sectional cur-
vature on 3-manifolds [Gromov and Thurston 87], [Bleiler
and Hodgson 96]. But even in this case, it is not clear
whether singularities will form under Ricci flow. In fact,
no examples are known where a metric with all sectional
curvatures negative flows to a metric with positive sec-
tional curvature at some points.

2.  PRESERVING THE EMBEDDING
INTO EUCLIDEAN SPACE

In this section, we give a quick discussion of why n-
dimensional spheres of revolution (K = 1; see Sec-
tion 5.1), which are initially isometrically embedded into
Euclidean (n+1)-dimensional space, remain isometrically
embedded, so long as Ricci flow has a smooth solution.

2.1 Characterising When Isometric Embeddings Exist

We observe a simple extension of [Engman 04]. Note
that in later sections, we will use extrinsic coordinates,
which are useful to see how points of the surface or man-
ifold move under Ricci flow when visualized in Euclid-
ean space. Here it is more convenient to use intrinsic
coordinates. So on S™, a metric is chosen of the form
ds? + o?(s)d#?, where s is arc length along a geodesic
joining the North Pole to the South Pole and 6 repre-
sents the coordinates in a hypersphere of radius af(s),
which is the orbit of an isometric action of SO(n) on S™,
where the orbit space is an arc. We assume that s varies
between 0 and L.

In [Engman 04], it is shown that a necessary and suffi-
cient condition that S2, with a metric of this form, can be
isometrically embedded in R? as a surface of revolution,
is that the integral of Gaussian curvature over any “polar
cap” is positive, where such a region consists of all points
where either 0 < s < k or k < s < L, for some k with

0 < k < L. Note also that a surface of revolution in R is
invariant under an isometric action of SO(2) by rotation
about the 2! axis. Similarly we define a manifold of rev-
olution in R("*1) as being invariant under the isometric
action of SO(n) by rotation about the z! axis. Finally
we follow [Engman 04], by requiring that any manifold
of revolution in R(™*1Y has at most one component of
intersection with any hyperplane of the form z! = k for
any constant k. Equivalently, the manifold is obtained by
rotating the graph of a function of one variable around
the x! axis, by the action of SO(n). Note that for vi-
sualization purposes, it is not essential but is certainly
convenient to have this restriction.

Theorem 2.1. Suppose that a metric of the form ds® +
a?(s)dh? is chosen on S™. Then there is an isometric
embedding as a manifold of revolution in R if and
only if the same metric, viewed as on S?, can be isomet-
rically embedded into R as a surface of revolution.

The proof of this theorem is very easy and is left to
the reader.

2.2 Ricci Flow Preserves Embeddability of Manifolds of
Revolution

An observation about the characterisation in [Engman
04] is as follows. For a polar cap, Gauss Bonnet shows
that the sum of the integral of the Gaussian curvature of
the cap and the integral of the curvature of the boundary
curve C is w. Therefore, positivity of the first integral is
equivalent to the second integral being strictly less than
7. Note that C is the orbit of SO(2) acting on a plane
parallel to the 2223 plane and so is a standard round cir-
cle in this plane, with centre on the intersection of the
plane with the z! axis. Hence the integral of its curvature
in R3 is exactly 7 and the direction of its curvature at
each point points towards the z! axis. But then to com-
pute the curvature in the surface of revolution, one has
to project onto the tangent space of this surface. Hence
the projected curvature vector will be shorter, unless the
tangent plane is vertical at every point of C. So this
shows that the condition on the polar caps remains true
as Ricci flow proceeds, unless at some time and for some
value of s, with 0 < s < L, |&/(s)] = 1. Therefore we
need to show that |&/(s)] < 1 remains true, away from
the poles, so long as Ricci flow produces a smooth so-
lution ([Angenent and Knopf 04],[Engman 04],[Ivey 94]),
to prove the following result.
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Theorem 2.2. If there is an isometric embedding of S™ as
a manifold of revolution in RtV | then the manifold re-
mains isometrically embedded so long as Ricci flow gives
a smooth solution.

Proof: Let v = o, where v and « are viewed as functions
of s and time ¢, and as above, the derivative of « is taken
with respect to s. By Equation (16) of [Angenent and
Knopf 04], v satisfies the following evolution equation:

n—2 n—1
VVs + 5
a

O = Vgg + (1-— vz)v.
Here we are using vs to denote partial differentiation in
the s variable.

Now initially, |[v| = |as| < 1 for all values 0 < s < L,
by assumption. Let ¢ be a first value of time for which

|v(s,t)] = 1, at some s not corresponding to the north
or south pole of the sphere. If v(s,t) = 1, then this is a
maximum value of o whereas if v(s,t) = —1, then this is

a minimum value.

So we see by the maximum principle, (see e.g., [Chow
and Knopf 04]) that this gives a contradiction, since 1 —
v? = vy = 0 for both cases. This shows that the sphere

does remain embedded, so long as it is smooth. O

3. COMPUTATIONAL FORMULATION

A two-dimensional surface of revolution of genus zero em-
bedded in R? can be defined in a polar representation
with coordinates z! = p and x2 = 0 € [0, 27| by a metric

of the form
] = [ h%f) Tn?p) },

where \/nTp) has the direct physical interpretation as
the radius from the axis of rotation. For a closed surface,
we require

m(ppole) =0.

We have chosen pNorth_Pole = 0 and psouth_Pole = T-
When h(p) is a constant, vh x p is the distance of a
point with coordinates (p, ) from the North Pole along
a meridian. Smoothness at the poles demands

LTTL(p) :mv

% e € 0.7
P=Ppole

(3-1)
Note that the necessary and sufficient condition for iso-
metric embeddability as a classical surface of revolution
in R? for S'-invariant metrics on S?—the nonnegativity
of the integrals of the curvature over all disks centred at

a pole—is given in [Engman 04]. The generating curve
(cross section) of the surface of revolution is given by

P 2
0y/m(s)
w>=/fm—<@;>m
0
ylp) = Vml(p) (3-2)
with p € [0, 7].
The Ricci tensor, [R,,], is
( /)2 m'’ m’ h
2;2 T 2m T dmh 0
(m/)2 m// m/ h/
0 Imh — ok T 4n2
when p €10, 7] and
'IYL//II h//
T 0
4m 2h (373)
0 0

when p € {0, 7}

where primes denote partial differentiation with respect
to p.
Ricci flow satisfies

)
ot

The possible initial metrics Ricci_rot provides are
given by

— —2R,,.

1 0
(3-4)

0 sinp 4+ c3sin3p + c5sindp 2
1+ 3c3 + 5cs

These surfaces are symmetric under reflections about
a plane normal to their axis of rotation which passes
through their centre of mass. This extra symmetry has
proven useful in making the simulation faster, since it
then suffices to compute on only half of the surface.

Attempting to integrate using Equation (3-3) and cen-
tral finite differences in a purely explicit scheme leads,
not surprisingly, to numerical instability, particularly
(but not only) at the poles. This instability can be re-
duced significantly by noting that

(m/)2 m! B 7(\/7%)//.

mZ om T i
3.1 Filtering and Reparametrization

persistent
We did not

The numerical instabilities are, however,

enough to require more potent measures.
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try any implicit scheme, which may have alleviated the
numerical instabilities, but would still have required very
small time-steps near the poles.

Inspired by spectral methods [Browning et al. 89], we
first introduced a filter which consists of transforming to
Fourier space (DFT), dropping shorter wavelength terms,
and then transforming back. This process is facilitated
by noting that the rotational and reflection symmetries
of the family of surfaces (3-4) are preserved by Ricci flow.
We can therefore write

Np,
h(p) = Z h; cos 2ip
=0

and
vm(p) = zm:mi sin ((2i+1)p),

where equality, of course, only applies to N, = N,,, = co.
We actually choose Nj and N,, to be much less than
the number of points used in the finite difference scheme,
and find that there is no need to implement the FF'T. We
need to ensure that (3—1) is satisfied at the poles, to be
sure that the generating curve (3-2) can be found. We
do this by multiplying the computed values of \/m by

7(ppotc)
> (20 1) x m;
1+ K (p— ppotc)?

+ K (P - ppole)2

where K is a small positive constant, but large enough
that this correction factor quickly becomes unity away
from the poles. Setting K = 0 has the unwanted side-
effect that local numerical errors near the poles can lead
to global changes in shape which do not satisfy the Ricci
flow.

By its very nature, the Ricci flow forces some parts of
a surface to contract while others expand. This means
that whatever set of nodes we have chosen for our finite-
difference scheme will effectively become less and less
evenly distributed, creating further sources of numerical
instability where they become too dense. The solution
to this problem is to recall that any given surface corre-
sponds to many different parametrizations, each with a
corresponding metric. From a numerical point of view,
the most pleasant parametrizations let h(p) be a con-
stant (this corresponds to p being directly proportional
to distance from a pole). Let

E(p):/\/h(s)ds

be the distance from the North Pole. We have the free-
dom to reparametrize:

o (e () |

where p € [0, 7] both before and after. It is this repara-
metrization which, performed after every few iterations
of the explicit integration and filtering steps, has made
Ricci_rot stable enough to use.

4. USE OF THE SOFTWARE

Ricci_rot.c, a readme file, and a MAC OS X applica-
tion can be found at http://www.expmath.org/expmath/
volumes/14/14.3 /Rubinstein /ricci_src.zip. First, a quick
introduction: press “n” and then drag the mouse to
choose an initial surface. Then hold down the up-arrow
key to watch the flow until it stops. Once one has begun
flowing, dragging the mouse will rotate the surface.

4.1 Details

Ricci_rot is an ANSI C program [Kernighan and Ritchie
88] which uses the OpenGL standard [Shreiner et al. 03]
to display graphics. It should therefore be portable, al-
though it has only been tested on a Mac OS X platform.

Upon launch, a window is opened with the image of
a sphere with blue meridians and parallels. This initial
shape can be deformed by holding down the left mouse
button and dragging in any direction. The possible initial
shapes belong to the family (3—4), where c3 is varied by
horizontal, and c5 by vertical motion. The program will
not accept all possible values of c¢3 and c5, so, dragging
very far in any direction, one may find that the shape
ceases changing.

To examine the shape, pressing “f” (for “flow”) will
put the program into flow mode.
parallels change colour. Now, dragging the mouse rotates
the surface. To make any more changes, pressing “n”
(for “new shape”) will put the program back in its initial

The meridians and

mode. The meridians and parallels change colour back
to blue, and dragging the mouse changes the shape.
When one has chosen a shape one wishes to flow, it
is enough to begin pressing the up-arrow key. Usually
this key will repeat if held down. Then one can see the
surface flow continuously. Since the program is now in
flow mode, dragging the mouse will rotate the surface.
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FIGURE 1. Deformation of a dumbbell-like surface of revolution under Ricci flow. The pictures have been taken at equal
time intervals and are drawn to the same scale.
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FIGURE 2. Deformation of the cross section of a dumbbell surface of revolution under Ricci flow. The axis of rotation is
horizontal. The pictures have been taken at equal time intervals. The initial and final curves are both shaded black.

Once the program has met with a numerical instabil-
ity, the flow will stop, and the parallels and meridians
will appear black. Any ripples which may appear on the
surface at this stage are a result of the numerical insta-
bility.

At any time, pressing the left-arrow or right-arrow
keys will rotate the surface anticlockwise or clockwise,
respectively.

The down-arrow key flows the surface backwards in
time. This evolution is highly unstable. One should not
expect to be able to flow for very long.

Pressing “m” at any stage will change the display mode
from showing the surface to showing the components of
the metric (911 = h in green and g2o = m in blue) and
the surface’s cross section in white. To revert to display-
ing the surface in E3, press “s”.

There is a bright spotlight. This can be turned on
or off by pressing the right mouse button. A menu will
appear, from which one can choose to turn the spotlight
on or off (or change to and from “flow” and “new shape”
modes). It can be rotated (in a rather nonintuitive way)
by dragging the mouse with the middle mouse button
held down.

4.2 Examples

The first example is of a dumbbell shape, given by Equa-
tion (3-4) with ¢3 = 0.766 and ¢; = —0.091. This
surface’s flow is illustrated in Figure 1 with time-step
dt = 0.01. The flow of its cross section is provided in
Figure 2 time-step dt = 0.002. It is interesting to com-
pare this with Figure 4 of [Chopp and Sethian 93], which
is an illustration of the mean-curvature flow of the cross
section of what is initially a dumbbell shape.

Figures 3, 4, 5, and 6 were all generated using the
initial surface given by c¢3 = 0.021 and ¢; = 0.598, and
with the time-step dt = 0.002. The values of g11 = h
(h(p) becomes a constant after reparametrization) are
1, 1.027938, 1.000526, 0.936608, 0.843907, 0.729106,
0.601463, 0.475008, 0.365054, 0.278860, 0.213761, and
0.163754.

The behaviour is in both cases what one expects—flow
towards spheres of constant positive Gaussian curvature
[Chow 00]. See also Chapter 5 of [Chow and Knopf 04],
in which it is shown that any solution of the unnormal-
ized Ricci flow on a topological S? shrinks to a round
point in finite time, following [Chow 00]. Note that the
“modified” Ricci flow in [Leviton and Rubinstein 86], for
the special case of surfaces of revolution embedded in
Euclidean space, could be visualized in a similar way.

5. THREE-DIMENSIONAL MANIFOLDS
OF REVOLUTION
5.1 A Line Crosses a Surface of Revolution
of Constant Curvature

Let K5 be the Gaussian curvature of a general abstract
Riemannian surface of revolution, where K5 is any real

constant.
The 3-manifold metric is
h(p) 0 0
[.g,uu] = 0 m(p) 0 N (5*].)

0 0

m(p) cos® (\/EH)

where p = ! plays the role of a latitude and § = z? the
role of a longitude on the abstract Riemannian surface of
revolution.
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FIGURE 3. Deformation of a surface of revolution under Ricci flow. The pictures have been taken at equal time intervals

and are drawn to the same scale. The cross sections are plotted in Figure 5.
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FIGURE 4. Deformation of a surface of revolution under Ricci flow. The pictures have been taken at equal time intervals
and are drawn to the same scale. These pictures are the continuation of the evolution of the surface begun in Figure 3
(and are drawn to the same scale). The cross sections are plotted in Figure 5.
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FIGURE 5. Deformation of the cross section of a surface of revolution under Ricci flow. The axis of rotation is horizontal.
The pictures have been taken at equal time intervals. The initial and final curves are both shaded black.

0.14
0.12
0.1
m(rho) 0.087
0.06

0.04

0.02 1

rho

FIGURE 6. Evolution of the metric component g22 = m(p) of a surface of revolution under the combined action of Ricci
flow and reparametrization—meaning that the corresponding curves g1 1 = h are independent of p. The curves have been
plotted at equal time intervals. The initial and final curves are both shaded black.

The nonzero elements of the Ricci tensor are

B (m/)2 m m' b
Far = 2m? m +2mh’
m' h! m"
Roo = 5 + Ko,

4h2 24

1 1"
Rs3 = (m h m +K2> cos® (\/ K5 6‘)7

4h2 24

and therefore unnormalized Ricci flow satisfies

@ B 2m/! B (m/)Q B m' b
ot m m2 mh’
om m" m'h

T 2 i

The scalar curvature is

B (m)*  2m” w'h 2K,
R_2m2h mh+mh2+ m (5-7)

With respect to the mutually orthogonal unit vectors

1 1
a=(—,0,0), b=10,—,0), and
(F09) o= (0 7m0)

1
=10,0, ———— |, 5-8
¢ ( V/m cos \/KQG) (5-8)
the sectional curvatures are
(m/)2 m! m' b
K(a,b) = K = - 59
(a.0) = Kla.c) = ooy ~ 5 T ampz. 9
and )
K i
K(be) = B2 _ M) (5-10)

m  4Am2h’
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FIGURE 7. Qualitatively correct evolution of the metric component gi11 = h(p) of a 3-manifold of revolution under Ricci

flow. The curves have been plotted at unequal time intervals.

5.2 An Example

We will study the pinching behaviour under unnormal-
ized Ricci flow of the initial 3-manifold with metric given
by

- 1 .9 (9mp
m(P) = Tgp00 + S ( 40 )
h(p) =1, and

Ky =1

at ¢t = 0. We denote the time at which pinching occurs
(m(0)=0) by t="T.

5.2.1 Qualitative Behaviour. The most direct ap-
proach to simulating the flow determined by Equations
(5-5) and (5-6) is to use an explicit finite-difference for-
mulation. Doing this, we found that the system is (not
surprisingly) highly unstable. We identified two modes
of instability. One was of a short wavelength—of the
type k x (—1)" where i is the spatial grid index and k
some constant. This type of instability could be removed
by simply performing the simulation in Maple [Heck 03],
using several hundred digits’ precision. The other type
of instability showed itself as a long-wavelength smooth
perturbation which diverged as the number of time-steps
was increased. We were not able to eliminate this second
source of instability. Practically, it meant that we were
restricted to fairly large time-steps. To be more precise,
we stepped between ¢t = 0.000025, 0.000050, 0.0000625,
0.00006875, 0.000071875, 0.000075000, 0.00007578125,

0.00007656250, 0.000076953125 (shown only in Figure 9),
and 0.000077343750. Since we are therefore not able to
claim that the method converges to the exact solution,
we have chosen to speak of the data from this simulation
as being only qualitatively correct.

It is nonetheless informative to consider Figures 7, 8,
and 9. Figures 8 and 9 would suggest that pinching oc-
curs before t = 0.000077343750. At t = 0.000077343750,
values of m at nodes near p = 0 are negative. Since
Equation (3-2) no longer makes sense for negative m, an
interval around p = 0 has essentially been cut out. This
would, of course, correspond to the view that pinching
creates two independent geometric bodies, as suggested
in Figure 9. Our single coordinate p should then be re-
placed by two new coordinates, one for each body, and
values of p which can no longer be attributed to the
one or the other body should then be discarded as being
“nongeometric.” It is indeed interesting to consider what
might happen after pinching, retaining the coordinate p
and dropping the condition that the metric should be
positive definite. It is, however, important to note that
the negative values of m seen in our qualitative numer-
ical results cannot be trusted, since they are an artifact
of Euler’s method being applied with a step-size so large
that a singularity was passed over. What we do claim is
that the cross sections plotted in Figure 9 do still have
some meaning, if one does not attempt to read anything
into the missing points at the caps of the two bodies
which resulted from pinching.
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FIGURE 8. Qualitatively correct evolution of the metric component g22 = m(p) of a 3-manifold of revolution under Ricci

flow. The curves have been plotted at unequal time intervals.

T

.

FIGURE 9. Qualitatively correct deformation of the cross section of a 3-manifold of revolution under Ricci flow. The axis
of rotation is horizontal. The pictures have been taken at unequal time intervals.

We return to this question in Section 6 from another
point of view.

5.2.2  Asymptotic Scaling. A second approach to
studying pinching involves series expansions of the metric
components h and m. We have expanded them to tenth
order in p (even terms only) and first order in ¢:

10
h(p,t) = Z(hz +hit)p' and
=0
10 _
m(p,t) = Z(mL + 1 t) pt.
=0

Substituting into Equations (5-5) and (5-6) we get, by
equating coefficients (and assuming higher-order terms
are zero) equations for the quantities hi and 7;. These
equations are quite cumbersome. We have used Maple
[Heck 03] both to derive the equations and also to gen-
erate C code [Kernighan and Ritchie 88] to allow us to
compute the flow as rapidly as possible. The C code
was modified to utilize the long double numerical data
type, and the code was run on a DEC alpha (the name
of a RISC microprocessor) machine with true 128 bit
floating-point arithmetic (the long double type). We
used Euler’s method with a very primitive form of adap-



296  Experimental Mathematics, Vol. 14 (2005), No. 3

160
140
1201
100

801

60

401

Y

201 7

0.00004 0.00006

t

0 " 0.00002

FIGURE 10. The evolution of i with time for a 3-manifold
of revolution. The points are numerical data. The curve
is a fit to the asymptotic behaviour of h near pinching.

tive step-size estimation, finding these to be satisfactory
for our purposes.

Our data are consistent with the qualitative results of
the previous section.

We are able to use these series expansions to make
some conjectures concerning the behaviour of various
The following scal-
ing laws are purely empirical. They are the result
of curve-fitting to the data we have, in particular for
the seven points, at ¢ = 0.000079300, 0.000079310,
0.000079320, 0.000079330, 0.000079340, 0.000079345,
and 0.000079350. The step-sizes used were significantly
shorter than the differences between the times of these
representative points. Figures 10 and 11 illustrate this
fitting process. It is clear from these illustrations that
what we believe to be asymptotic behaviour sets in fairly
late. One may, of course, ask if we have fitted to data
which is late enough in the flow to truly warrant being
called asymptotic. At this stage, we can only present the
data we have.

All of the following apply to p = 0:

quantities as t approaches T.

1.409 x (0.0000793514 — ¢) 0-985

Q

h ~  1.705 x (0.0000793529 — t)~0-235,
R~  0.570 x (0.0000793515 — )~ 1:025,
K(a,b) ~ —1.142 x (0.0000793513 — t)~0-826
K(b,e) ~  0.698 x (0.0000793514 — t)~0-986

(5-11)

It would therefore appear that T =~ 0.0000793514.
Note that this curve-fitting problem is ill-conditioned,
although Figure 11 does suggest that our fits are as ac-

180 1
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80

60

407

201

0 0.0000793  0.00007932 0.00007934

t

FIGURE 11. The evolution of h with time for a 3-manifold
of revolution close to pinching. The points are numerical
data. The dark curve is the fit 1.705 x (0.0000793529 —
t)79235 The lighter curves correspond to other attempts
at curve-fitting, in particular, in an attempt to match the
pinching time of 7" = 0.0000793514. These are 1.294 X
(0.0000793514 —t) %% 1.586 x (0.0000793514 —t) %23,
and 5.389 x (0.0000793514—1) 717,

curate as one could hope for. However, h appears to
diverge at a significantly later time than our estimate for
T, and we do not find that our curves of best fit for m
and K (b, c) obey m x K(b,c) = K3 exactly at p = 0.

We do find that the second derivative of the cross sec-
tion y(z) (see Equation (3-2)) at z = 0 diverges ast — T,
indicating that the neck becomes sharper rather than
longer as the surface approaches pinching. This makes
sense, since at t = T we expect to have two abutting
caps, as illustrated in Figure 9.

These results need to be reproduced independently
(perhaps via the DeTurck flow [Garfinkle and Isenberg
05]) to ascertain their validity. We present them on an
“as is” basis, freely admitting that we are not even in a
position to give a thorough error analysis (although the
comparisons with other work listed below allow one to
make rough estimates), but in the hope that even such
preliminary data may inspire or support some new ana-
lytical attack.

It is interesting to compare the excellent discussion in
the recent survey paper of [Knopf 05] on neck pinching
with our results. In [Knopf 05], the work of [Angenent
and Knopf 04] on singularity formation in the rotationally
symmetric case is summarised. In particular, in Claim 1
on page 145 of [Knopf 05], various facts are listed about
the behaviour of ¢ = /m, in our notation, in case the
scalar curvature is nonnegative initially and also |is| <1
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initially. We now translate these items from Claim 1
into our terminology and compare with the approximate
asymptotics obtained in Equation (5-11):

(2) becomes |K(b,c) — K(a,b)] < a2, whereas
from Equation (5-11), |K(b,¢) — K(a,b)| =~ 0.698
(T _ t)70,986 ~ 0.984 m71.001 = 0.984 w72.002.

(3) is that K(b,c) at p = 0 is nondecreasing. The corre-
sponding asymptotic in Equation (5-11) is K (b, ¢) ~
0.698 (T —)~9986 at p = 0, and this is a nondecreas-
ing function.

(4) is that |R,,| < Cv¢~2, where R, is the full Rie-
mann tensor, whereas from Equation (5-11), |R,| ~
Cw—2.002.

(5) includes that ¢, < 0, whereas from Equation (5—
11) we have that m at p = 0 satisfies m ~ 1.409
(T — )%-985 and so my < 0 at p = 0.

(6) is that m is a uniformly Lipschitz function of time,
which is strongly suggested by Figure 8. Similarly,

(7) is that the limit of m exists as ¢ — T and this agrees
with Figure 8.

Another interesting comparison is with (2) of Claim 2
on page 146 of [Knopf 05], which states that m at p =0
satisfies T —t < m(t) < 2(T —t), whereas from Equation
(5-11), m ~ 1.409 (T — t)°-985. This gives one an idea of
the size of the error in the approximation of the exponent
(0.985 # 1). Tt is tempting to see the coefficient 1.409 as
an approximation to v/2. More accurate numerical work
is needed to resolve any difference.

Next, (1) of Claim 3 on page 147 of [Knopf 05]
is that the singularity is of type I, ie., |R,| <
C/(T —t), whereas from Equation (5-11), |R,,| ~ 0.698
(T — t)~0-986,

Finally, Equation (1.4) of Theorem 2 on page 143 of
[Knopf 05] compares well with Equation (5-11) (m =
1.409 (T —1)°-98%) and the profiles of h and m as functions
of p in Figures 7 and 8.

It is perhaps appropriate to quote Kenko at this point
(from essay 82 of [Keene 98]):

Leaving something incomplete makes it inter-
esting, and gives one the feeling that there is
room for growth. Someone once told me, “Even
when building the imperial palace, they always
leave one place unfinished.”

One is tempted to think of level set methods (see
[Sethian 96] for a general introduction) as a possible

computational alternative to what we have tried. Level
set methods have been successfully applied to mean-
curvature flow [Chopp and Sethian 93], and indeed their
strength lies in their ability to cope naturally with
changes in topology of an evolving surface, as pinching
involves.

We feel that some reformulation of the problem, per-
haps along the lines of what follows, may facilitate a level
set formulation of Ricci flow, and that this is without
doubt a worthwhile focus for further work.

6. SPECULATION

The system of differential equations (5-5) and (5-6)
above makes sense when the metric tensor is not nec-
essarily positive definite, so long as smoothness occurs at
points where m = 0. So we are lead to speculate about
the idea of Ricci flow in the larger space of positive defi-
nite and indefinite metrics.

The advantage of such an approach might be that
instead of the manifold pinching, one might allow that
part of the manifold has a positive definite metric and
part has an indefinite metric, after a singularity occurs.
In this case, the computational problem might become
more tractible. The reason is that the flowing family of
indefinite metrics would always have a fixed domain of
definition.

In particular, at a neck pinch, the initially Riemannian
metric for a rotationally symmetric sphere should “jump”
to a metric with a positive definite part on two polar
caps and an indefinite part on an equatorial band. The
indefinite part will expand and the positive definite parts
contract until the metric on the whole space becomes
indefinite. Further numerical experimentation might give
a better idea of a suitable formulation for this process.

Note that Perelman [Perelman 02] has indicated how
his notion of entropy can be used as a potential function
for Ricci flow. Extending this approach to the larger do-
main of positive definite and indefinite metrics may lead
to a true level set formulation of Ricci flow, in this space
of metrics on a fixed manifold. Note that at singularities
where some components of the Ricci tensor become infi-
nite, one would expect the level sets to fatten (see, e.g.,
[Altschuler et al. 95]).

One of the referees has asked the interesting question
as to whether there might be a vector field inducing Ricci
flow in our situation of rotationally symmetric metrics on
S™ embedded in R**!. In particular, Perelman’s entropy
may be useful in finding such a vector field. This would
be very interesting theoretically and possibly would make
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a numerical study of neck pinching more stable than we
have found.

REFERENCES

[Altschuler et al. 95] S. Altschuler, S. Angenent, and Y. Giga.
“Mean Curvature Flow through Singularities for Sur-
faces of Revolution.” The Journal of Geometric Analysis
5 (1995), 293-358.

[Angenent and Knopf 04] S. Angenent and D. Knopf. “An
Example of Neck Pinching for Ricci Flow on S™*1”
Mathematical Research Letters 11 (2004), 493-518.

[Bleiler and Hodgson 96] S. Bleiler and C. Hodgson. “Spher-
ical Space Forms and Dehn Filling.” Topology 35 (1996),
809-833.

[Browning et al. 89] G. L. Browning, J. J. Hack, and P.
N. Swartztrauber. “A Comparison of Three Numeri-
cal Methods for Solving Differential Equations on the
Sphere.” Monthly Weather Review 117 (1989), 1058
1075.

[Cao et al. 03] H. Cao, B. Chow, S. Chu, and S. T. Yau, edi-
tors. Collected Papers on Ricci Flow, Series in Geometry
and Topology, 37. Cambridge, MA: International Press,
2003.

[Chopp and Sethian 93] D. L. Chopp and J. A. Sethian.
“Flow under Curvature: Singularity Formation, Minimal
Surfaces, and Geodesics.” Ezperimental Mathematics 2
(1993), 235-255.

[Chow 00] B. Chow. “The Ricci Flow on the 2-Sphere.” In
Collected Papers on Ricci Flow, edited by H. Cao et al.,
pp- 226237, Series in Geometry and Topology, 37. Cam-
bridge, MA: International Press, 2003.

[Chow and Knopf 04] B. Chow and D. Knopf. The Ricci
Flow: An Introduction, Mathematical Surveys and
Monographs, 110. Providence, RI: Amer. Math. Soc.,
2004.

[Engman 04] M. Engman. “A Note on Isometric Embed-
dings of Surfaces of Revolution.” American Mathemat-
ical Monthly 111 (2004), 251-255.

[Garfinkle and Isenberg 05] D. Garfinkle and J. Isenberg.
“Numerical Studies of the Behavior of Ricci Flow.”
In Contemporary Mathematics, Vol. 367, edited by
Shu-Cheng Chang, Bennet Chow, Sun-Chin Chu,

and Chang-Shou Lin, pp. 103-114. Providence, RI:
American Mathematical Society, 2005.

[Gromov and Thurston 87] M. Gromov and W. Thurston.
“Pinching Constants for Hyperbolic Manifolds.” Inven-
tiones Mathematicae 89 (1987), 1-12.

[Heck 03] A. Heck. Introduction to Maple, Third edition. New
York: Springer-Verlag, 2003.

[Ivey 94] T. Ivey. “The Ricci Flow on Radially Symmetric
R3” Communications in Partial Differential Equations
19 (1994), 1481-1500.

[Keene 98] D. Keene, translator. Essays in Idleness: The
Tsurezuregusa of Kenko. New York: Columbia Univer-
sity Press, 1998.

[Kernighan and Ritchie 83] B. W. Kernighan and D. M.
Ritchie. The C' Programming Language, Second edition.
Englewood Cliffs, NJ: Prentice Hall, 1988.

[Knopf 05] D. Knopf. “An Introduction to the Ricci Flow
Neckpinch.” In Contemporary Mathematics, Vol. 367,
edited by Shu-Cheng Chang, Bennet Chow, Sun-Chin
Chu, and Chang-Shou Lin, pp. 141-148. Providence, RI:
American Mathematical Society, 2005.

[Leviton and Rubinstein 86] P. R. A. Leviton and J. H. Ru-
binstein. “Deforming Riemannian Metrics on the 2-
Sphere.” In Miniconference on Geometry and Partial
Differential Equations (Canberra 1985), edited by L. Si-
mon and N. S. Trudinger, pp. 123-127, Proceedings of
the Centre for Mathematical Analysis ANU, 10. Can-
berra: Australian National University, 1986.

[Perelman 02] G. Perelman. “The Entropy Formula for
the Ricci Flow and Its Geometric Applications.”
arXivimath.DG/0211159, 2002.

[Perelman 03] G. Perelman. “Ricci Flow with Surgery on
Three-Manifolds.” arXiv:math.DG/0303109, 2003.

[Sethian 96] J. A. Sethian. Level Set Methods, Cambridge
Monographs on Applied and Computational Mathemat-
ics, 3. Cambridge, UK: Cambridge University Press,
1996.

[Shreiner et al. 03] Dave Shreiner, Mason Woo, Jackie Nei-
der, and Tom Davis. OpenGL Programming Guide,
Fourth edition. Reading, MA: Addison-Wesley, 2003.

[Simon 00] M. Simon. “A Class of Riemannian Manifolds
that Pinch when Evolved by Ricci Flow.” Manuscripta
Mathematica 101 (2000), 89-114.

J. Hyam Rubinstein, Department of Mathematics & Statistics, The University of Melbourne, Parkville,

Victoria 3010, Australia (rubin@ms.unimelb.edu.au)

Robert Sinclair, Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus, Nishihara City,

Okinawa 903-0213, Japan (sinclair@math.u-ryukyu.ac.jp)

Received May 27, 2004; accepted December 27, 2004.



