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Abstract: P-splines are penalized B-splines, in which finite order differ-
ences in coefficients are typically penalized with an �2 norm. P-splines can
be used for semiparametric regression and can include random effects to
account for within-subject correlations. In addition to �2 penalties, �1-type
penalties have been used in nonparametric and semiparametric regression
to achieve greater flexibility, such as in locally adaptive regression splines,
�1 trend filtering, and the fused lasso additive model. However, there has
been less focus on using �1 penalties in P-splines, particularly for estimating
conditional means.

In this paper, we demonstrate the potential benefits of using an �1
penalty in P-splines with an emphasis on fitting non-smooth functions. We
propose an estimation procedure using the alternating direction method
of multipliers and cross validation, and provide degrees of freedom and
approximate confidence bands based on a ridge approximation to the �1
penalized fit. We also demonstrate potential uses through simulations and
an application to electrodermal activity data collected as part of a stress
study.
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1. Introduction

Many nonparametric regression methods, including smoothing splines and re-
gression splines, obtain point estimates by minimizing a penalized negative log-
likelihood function of the form lpen = −l(β)+λP (β), where l is a log-likelihood,
P is a penalty term, λ > 0 is a smoothing parameter, and β are the coeffi-
cients to be estimated. Typically, quadratic (�2 norm) penalties are used, which
lead to straightforward computation and inference. In particular, �2 penalties
typically lead to ridge estimators, which have both closed form solutions and
are linear smoothers. The �2 penalty also has connections to mixed models,
which allows the smoothing parameters to be estimated as variance components
[13, 34, 44, 52].

However, nonparametric regression methods that use an �1-type penalty, such
as �1 trend filtering [20] and locally adaptive regression splines [23], are better
able to adapt to local differences in smoothness and achieve the minimax rate
of convergence for weakly differentiable functions of bounded variation [39],
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whereas �2 penalized methods do not [5]. The trade-off is that �1 penalties
generally lead to more difficult computation and inference because the objec-
tive function is convex but non-differentiable, and the fit is no longer a linear
smoother.

In this article, we propose P-splines with an �1 penalty as a framework for
generalizing �1 trend filtering within the context of repeated measures data and
semiparametric (additive) models [15]. In Section 2, we discuss the connection
between P-splines and �1 trend filtering which motivates the methodological de-
velopment. In Section 3, we present our proposed model, and in Section 4, we
discuss related work. In Section 5, we propose an estimation procedure using the
alternating direction method of multipliers (ADMM) [see 2] and cross validation
(CV). In Section 6, we derive the degrees of freedom and propose computation-
ally stable and fast approximations, and in Section 7, we develop approximate
confidence bands based on a ridge approximation to the �1 fit. In Section 8, we
study our method through simulations and evaluate its performance in fitting
non-smooth functions. In section 9, we demonstrate our method in an applica-
tion to electrodermal activity data collected as part of a stress study. We close
with a discussion in Section 10.

We have implemented our method in the R package psplinesl1. The
psplinesl1 package and all code for the simulations and analyses in this paper
are available as supplementary material [33].

2. P-splines and �1 trend filtering

In this section, we give brief background on P-splines and �1 trend filtering, and
show the relation between them when the data are independent and identically
distributed (i.i.d.) normal.

P-splines [8] are penalized B-splines [see 4]. B-splines are flexible bases that
are notable in part because they have compact support, which leads to banded
design matrices and fast computation. This compact support can be seen in
Figure 1, which shows eight evenly spaced first degree and third degree B-spline
bases on [0, 1]. We can define an order M (degree M − 1) B-spline basis with
j = 1, . . . , p basis functions recursively as [4]

φm
j (x) =

x− tj
tj+m−1 − tj

φm−1
j (x)+

tj+m − x

tj+m − tj+1
φm−1
j+1 (x), j=1, . . . , 2M + c−m,

1 < m ≤ M

φ1
j (x) =

{
1 tj ≤ x < tj+1

0 otherwise
, j = 1, . . . , 2M + c− 1

where tj are the knots, division by zero is taken to be zero, and c is the number
of internal knots. For order M B-splines defined on the interval [xmin, xmax], in
order to obtain j = 1, . . . , p basis functions, we set 2M boundary knots (M knots
on each side) and c = p−M interior knots. In general, one can set t1 ≤ t2 ≤ · · · ≤
tM = xmin < tM+1 < · · · < tM+c < xmax = tM+c+1 ≤ tM+c+2 ≤ · · · ≤ t2M+c.
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In order to ensure continuity at the boundaries, we set t1 < t2 < · · · < tM−1 <
tM = xmin and xmax = tM+c+1 < tM+c+2 < · · · < t2M+c. We also use equally
spaced interior knots, which is important for the P-spline penalty, and drop the
superscript on φ designating order when the order does not matter or is stated
in the text.

Fig 1. Eight evenly spaced B-spline bases on [0, 1]

B-spline bases can be used to fit nonparametric models of the form y(x) =
f(x) + ε(x), where y(x) is the outcome y at point x, f(x) is the mean response
function at x, and ε(x) is the error at x. To that end, let y = (y1, . . . , yn)

T be
an n × 1 vector of outcomes and x = (x1 . . . , xn)

T be a corresponding n × 1
vector of covariates. Also, let φ1, . . . , φp be B-spline basis functions and let F
be an n × p design matrix such that Fij = φj(xi), i.e., the jth column of F is
the jth basis function evaluated at x1, . . . , xn. Equivalently, the ith row of F is
the ith data point evaluated by φ1, . . . , φp. For i.i.d. normal y, a simple linear
P-spline model with the standard �2 penalty can be written as

β̂0, β̂ = argmin
β0∈R,β∈Rp

1

2
‖y − β01− Fβ‖22 +

λ

2
‖D(k+1)β‖22, (1)

where β0 is the intercept, β is a p × 1 vector of parameter estimates, 1 is an
n× 1 vector with each element equal to 1, λ > 0 is a smoothing parameter, and
D(k+1) ∈ R

(p−k−1)×p is the k + 1 order finite difference matrix. For example,
for k = 1

D(2) =

⎡⎢⎢⎢⎢⎢⎣
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2 1

⎤⎥⎥⎥⎥⎥⎦ ∈ R
(p−2)×p (2)

In general, as described by Tibshirani [39], D(k+1) = D(1)D(k) where D(1) is
the (p− k − 1)× (p− k) upper left matrix of:
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D(1) =

⎡⎢⎢⎢⎣
−1 1

−1 1
. . .

. . .

−1 1

⎤⎥⎥⎥⎦ ∈ R
(p−1)×p. (3)

Our proposed model builds on one in which the �2 penalty in (1) is replaced
with an �1 penalty:

β̂0, β̂ = argmin
β0∈R,β∈Rp

1

2
‖y − β01− Fβ‖22 + λ‖D(k+1)β‖1. (4)

Letting f(x) =
∑p

j=1 βjφ
M
j (x), for order M = 4 B-splines, Eilers and Marx

[8] show that∫ xmax

xmin

(
d2

dx2
f(x)

)2

dx = c1‖D(2)β‖22 + c2

p∑
j=4

∇2βj∇2βj−1

where ∇2 is the second-order backwards difference and c1 and c2 are constants.
As shown in Appendix C, a similar result holds for P-splines with an �1 penalty.
In particular, for 0 ≤ k < M − 1,∫ xmax

xmin

∣∣∣∣ dk+1

dxk+1
f(x)

∣∣∣∣ dx ≤ CM,k+1‖D(k+1)β‖1

where CM,k+1 is a constant given in Appendix C that depends on the orderM of
the B-splines and order k+1 of the finite difference. In other words, controlling
the �1 norm of the (k + 1)th order finite differences in coefficients also controls
the total variation of the kth derivative of the function.

�1 trend filtering is similar to (4). In the case where x1 < x2 < · · · < xn are
unique and equally spaced, �1 trend filtering solves the following problem (the
intercept is handled implicitly):

β̂ = argmin
β∈Rn

1

2
‖y − β‖22 + λ‖D(k+1)β‖1. (5)

Problem (5) differs from (4) in that (5) has one parameter per data point, and
the design matrix is the identity matrix. D(k+1) is also resized appropriately
by replacing p with n in the dimensions of (2) and (3). However, under certain
conditions noted in Observation 1, (4) and (5) are identical.

Observation 1 (Continuous representation). For second order (first degree) B-
splines with n basis functions, equally spaced data x1 < x2 < · · · < xn with knots
at t1 < x1, t2 = x1, t3 = x2, . . . , tn = xn−1, tn+1 = xn, tn+2 > xn, and centered
outcomes such that y(0) = 0, P-splines with an �1 penalty are a continuous
analogue to �1 trend filtering.

Proof of Observation 1. Under these conditions, for i = 1, . . . , n

φ2
j (xi) =

{
1 i = j

0 otherwise
.
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To see this, note that

φ2
j (xi) =

xi − tj
tj+1 − tj

φ1
j (xi) +

tj+2 − xi

tj+2 − tj+1
φ1
j+1(xi)

=
ti+1 − tj
tj+1 − tj

φ1
j (ti+1) +

tj+2 − ti+1

tj+2 − tj+1
φ1
j+1(ti+1). (6)

Now,

φ1
j (ti+1) =

{
1 tj ≤ ti+1 < tj+1

0 otherwise
and φ1

j+1(ti+1) =

{
1 tj+1 ≤ ti+1 <tj+2

0 otherwise
.

We have φ1
j (ti+1) = 1 for i = j − 1 and 0 otherwise, but for i = j − 1, we

have ti+1 − tj = tj − tj = 0. We also have φ1
j+1(ti+1) = 1 for i = j and 0

otherwise, and for i = j, we have tj+2 − ti+1 = tj+2 − tj+1 > 0. It follows that
for i = 1 . . . , n, (6) evaluates to 1 if i = j and 0 otherwise.

Let F be the design matrix in (4), where Fij = φ2
j (xi). Then from the previous

result, we have F = In, where In is the n × n identity matrix. This, together
with the assumption that β0 = y(0) = 0, implies that the objective functions
(4) and (5) are identical, which proves Observation 1.

We note that Tibshirani [39] shows that �1 trend filtering has a continuous
representation when expressed in the standard lasso form, and Observation 1
gives a continuous representation of �1 trend filtering when expressed in gener-
alized lasso form.

�1 trend filtering can be applied to irregularly spaced data, such as with the
algorithm developed by Ramdas and Tibshirani [26]. It might also be possible to
extend �1 trend filtering to repeated measures data to account for within-subject
correlations. However, due to Observation 1, we think it is beneficial to view �1
trend filtering as a special case of P-splines with an �1 penalty. We think this
approach has the potential to be a general framework, because higher order B-
splines could be used in combination with different order difference matrices just
as can be done with P-splines that use the standard �2 penalty. Furthermore,
expressing �1 trend filtering as P-splines with an �1 penalty may facilitate the
development of confidence bands (see Section 7), which could help to fill a gap
in the �1 penalized regression literature.

In addition, there are connections between P-splines with an �1 penalty and
locally adaptive regression splines. In particular, as Tibshirani [39] shows, the
continuous analogue of �1 trend filtering is identical to locally adaptive regression
splines [23] for k = 0, 1, and asymptotically equivalent for k ≥ 2.

3. Proposed model: Additive mixed model using P-splines with an
�1 penalty

To introduce our model, let yi = (yi1, . . . , yini)
T be an ni×1 vector of responses

for subject i = 1, . . . , N , and let y = (yT
1 , . . . ,y

T
N )T be the stacked n× 1 vector
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of responses for all N subjects, where n =
∑N

i=1 ni. Let xi = (xi1, . . . , xini)
T be

a corresponding ni×1 vector of covariates for subject i, and x = (xT
1 , . . . ,x

T
N )T

be the n× 1 stacked vector of all covariate values. In many contexts, x is time.
To account for the within-subject correlations of yi, we can incorporate random
effects into the P-spline model. To that end, let Zi be an ni × qi design matrix
for the random effects for subject i (possibly including a B-spline basis), and
let bi = (bi1, . . . , biqi)

T be the corresponding qi × 1 vector of random effect
coefficients for subject i. Also, let

Z =

⎡⎢⎣Z1

. . .

ZN

⎤⎥⎦
be the n× q block diagonal random effects design matrix for all subjects, where
q =

∑N
i=1 qi, and let b = (bT1 , . . . , b

T
N )T be the q × 1 stacked vector of random

effects for all subjects. We propose an additive mixed model with j = 1, . . . , J
smooths (tildes denote quantities that will be subject to additional constraints,
as described below):

minimize
β0∈R,b∈Rq,β̃j∈R

pj ,j=1,...,J

1

2
‖y − β01−

J∑
j=1

F̃jβ̃j − Zb‖22 +
J∑

j=1

λj‖D̃(kj+1)
j β̃j‖1

+ τ
1

2
bTSb (7)

where F̃j is a n×pj design matrix of B-spline bases for smooth j, D̃
(kj+1)
j is the

kj + 1 finite difference matrix, and σ2
bS is the covariance matrix of the random

effects b. For example, if b are random intercepts, then S = IN and Z would be
an n × N matrix such that Zil = 1 if observation i belonged to subject l and
zero otherwise. Alternatively, to obtain random curves using smoothing splines
and a B-spline basis, we could set

S =

⎡⎢⎣S1

. . .

SN

⎤⎥⎦
where Sj,il =

∫
φ′′
ji(t)φ

′′
jl(t)dt, and φ′′

j1, . . . , φ
′′
jpj

are the second derivatives of

the B-spline basis functions for the jth smooth. We would then set Z to be the
corresponding B-splines evaluated at the input points.

We note that (7) includes varying-coefficient models [17]. For example, as
pointed out by Wood [47, p. 169], if F̃1 are B-splines evaluated at x, we could
have F̃2 = diag(x′)F̃1, where x′ �= x is another covariate vector and diag(x′) is
a diagonal matrix with x′

i at the ith leading diagonal position.
As written, (7) is not generally identifiable. To see this, suppose ŷ(x) =

β̂0 + f̂1(x) + f̂2(x), where neither f1 nor f2 are varying-coefficient terms. Then

letting f̂ ′
1(x) = f̂1(x) + δ and f̂ ′

2(x) = f̂2(x)− δ for δ ∈ R, we also have ŷ(x) =
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β̂0 + f̂ ′
1(x) + f̂ ′

2(x). To make (7) identifiable, we follow Wood [47, Section 4.2]
and introduce a centering constraint on each non-varying coefficient smooth, i.e.∫
f̂j(x)dx = 0 for all smooths j = 1, . . . , J such that F̃j �= diag(x′)F̃l for some x′

and l �= j. To this end, let E = {j ∈ {1, . . . , J} : F̃j �= diag(x′)F̃l for some x′, l �=
j} be the indices of the non-varying coefficient smooths, and let Ē = {j ∈
{1, . . . , J} : j �∈ E} be its complement. We constrain 1T F̃jβ̃j = 0 for j ∈ E .
We accomplish this by defining new pj × (pj − 1) orthonormal matrices Qj , j =

1, . . . , J , such that 1T F̃jQj = 0. If desired, one can also define a q×(q−1) matrix
QJ+1 such that 1TZQJ+1 = 0. However, this last centering constraint is not
necessary, because the penalty on the random effect terms pulls the coefficients
themselves towards zero, as opposed to the finite order differences in coefficients.

As Wood [47, Section 1.8.1] shows, Q can be obtained by taking the QR de-
composition of F̃T

j 1 and retaining the last pj−1 columns of the left orthonormal

matrix.1 We can then re-parameterize the pj constrained parameters β̃j in terms

of the pj − 1 unconstrained parameters βj , such that β̃j = Qjβj . For j ∈ E , let
Fj = F̃jQj and Dj = D̃

(kj+1)
j Qj . For j ∈ Ē , let Fj = F̃j and Dj = D̃

(kj+1)
j .

If centering the random effects, then we redefine S := QT
J+1SQJ+1 and Z :=

ZQJ+1. Then we can re-write (7) in the identifiable form

minimize
β0∈R,b∈Rq,βj∈R

p′
j ,j=1,...,J

1

2
‖y − β01−

J∑
j=1

Fjβj − Zb‖22 +
J∑

j=1

λj‖Djβj‖1

+ τ
1

2
bTSb (8)

where p′j = pj − 1 for j ∈ E and p′j = pj for j ∈ Ē .
We note that the penalty matrix S given above for random subject-specific

splines defines non-zero correlation between nearby within-subject random effect
coefficients. This is in contrast to the approach of Ruppert, Wand and Carroll
[30] for estimating subject-specific random curves, which focuses on the case
in which nearby within-subject coefficients are not correlated. To see this, let
d̂i(x) =

∑qi
j=1 b̂ijφij(x) be the estimated difference between the ith subject-

specific curve and the marginal mean at point x. The smoothing spline approach
above constrains

∫
(d̂′′)2(x)dx = bTi Sibi < C for some constant C > 0, whereas

the approach of Ruppert, Wand and Carroll [30] constrains bTi Iqibi =
∑qi

j=1 b̂
2
j <

C. Whereas the non-diagonal penalty matrix S implies correlations between
nearby coefficients, the identity matrix in the approach of Ruppert, Wand and
Carroll [30] implies zero correlation.

Similar to the equivalence between Bayesian models and �2 penalized smooth-
ing splines [43], there is an equivalence between Bayesian models and �1 pe-
nalized splines. In particular, (8) is equivalent to the following distributional

1The matrices 1T F̃j , j = 1, . . . , J are of rank 1, so the remaining pj − 2 columns are arbi-

trary orthonormal vectors. In R [37], when taking the QR decomposition of F̃T 1, an appro-
priate matrix Q can be obtained as Q <- qr.Q(qr(colSums(F tilde)), complete = TRUE)[,

-1].
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assumptions, which we can use to obtain Bayesian estimates:

y|b = β01+

J∑
j=1

Fjβj + Zb+ ε

ε ∼ N
(
0, σ2

ε In
)

b ∼ N(0, σ2
bS

−1) for σ2
b = σ2

ε /τ (9)

ε ⊥ b

(Djβj)l ∼ Laplace(0, aj) for aj = σ2
ε /(2λj), l = 1, . . . , pj − kj − 1, j = 1, . . . , J

The last distributional assumption is an element-wise Laplace prior on the kj+1
order differences in coefficients.

In some cases, the random effects penalty matrix S may be positive semidef-
inite but not invertible. For example, the smoothing spline random curves out-
lined above lead to a penalty matrix S that is not strictly positive definite, but
that is still positive semidefinite. This does not cause problems for the ADMM
algorithm, but some changes are required for other algorithms as well as for
Bayesian estimation. Following Wood [47, Section 6.6.1], let S = UΛUT be the
eigendecomposition of a positive semidefinite matrix S, where UUT = Iq and Λ
is a diagonal matrix with eigenvalues in descending order in the diagonal posi-
tions. Let b̆ = UT b and Z̆ = ZU , so that bTSb = b̆TΛb̆ and Z̆b̆ = Zb. Let qr
be the number of strictly positive eigenvalues of S, where 0 < qr < q, and let
Λr be the qr × qr upper left portion of Λ. We can partition b̆ as b̆ = (b̆Tr , b̆

T
f )

T ,

where b̆Tr is a qr × 1 vector of penalized coefficients and b̆Tf is a qf × 1 vector

of unpenalized coefficients, where qr + qf = q. Then b̆TΛb̆ = b̆Tr Λrb̆r, and it

follows that b̆r ∼ N(0, σ2
bΛ

−1
r ) and b̆f ∝ 1.

However, allowing for unconstrained random effect parameters leads to iden-
tifiability issues. Therefore, in practice if qf > 0, we recommend using a normal

or Cauchy prior on b̆f . In particular, b̆f,l ∼ N(0, σf ) or b̆f,l ∼ Cauchy(0, σf ),
l = 1, . . . , qf with either a diffuse prior on σf and constraints to ensure σf > 0,
or a diffuse prior on log(σf ) without constraints. The Cauchy prior may be a
preferable first choice, as it provides a weaker penalty and is similar to the rec-
ommendations of Gelman et al. [11] for logistic regression. However, in some
cases, such as in Section 9, it is necessary to use a normal prior.

To further improve the computational efficiency of Monte Carlo sampling
methods, we can partition Z̆ into Z̆ = [Z̆r, Z̆f ] where Z̆r contains the first qr
columns of Z̆ and Z̆f contains the remaining qf columns. We then set b̌r =

Λ
−1/2
r b̆r and Žr = Z̆rΛ

1/2
r , so that Žrb̌r = Z̆rb̆r and b̌r ∼ N(0, σ2

b I), which
allows for more efficient sampling [47].

4. Related work

There are many nonparametric and semiparametric methods for analyzing re-
peated measures data. For an overview, please see Fitzmaurice et al. [10, Part
III]. However, most existing methods use an �2 penalty [e.g. 28, 14, 3, 32].
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Focusing on the optimization problem, our method puts a generalized lasso
penalty [38] on the fixed effects and a quadratic penalty on the random effects.
Unlike the elastic net [54], we do not mix the �1 and �2 penalties on the same
parameters, though this could be done in the future.

The additive model with trend filtering developed by Sadhanala and Tibshi-
rani [31] is similar to our approach. Sadhanala and Tibshirani [31] optimize

minimize
θ1,...,θJ∈Rn

1

2
‖y − ȳ1−

J∑
j=1

θj‖22 + λ
J∑

j=1

‖D(k+1)θj‖1 (10)

subject to 1Tθj = 0, j = 1, . . . , J.

In contrast to (8), (10) has one smoothing parameter and constrains all smooths
to be zero-centered. From Observation 1, we see that (10) is equivalent to (8)
when there is J = 1 smooth and no random effects, in which case there would
be only one smoothing parameter λ and no varying-coefficient smooths.

Sadhanala and Tibshirani [31] develop the theoretical and computational
aspects of additive models with trend filtering, including the extension of the
falling factorial basis to additive models. Similar to the B-spline basis, the falling
factorial basis allows for linear time multiplication and inversion, which leads
to fast computation [45].

When smooths j = 1, . . . , J are expected to have similar degrees of freedom
and n is not large enough to require dimension reduction, then (10) with the
addition of random effects and the relaxation of the zero-constraints for varying-
coefficient smooths may be a viable alternative to (8) that could potentially
adapt better to local differences in smoothness because it would have one knot
per data point.

While not developed for analyzing repeated measures, the fused lasso additive
model (FLAM) [25] is also similar to (8). FLAM optimizes the following problem:

minimize
θ0∈R,θj∈Rn,1≤j≤J

1

2
‖y− θ01−

J∑
j=1

θj‖22+αλ

J∑
j=1

‖D(1)θj‖1+(1−α)λ

J∑
j=1

‖θj‖2

(11)
where 0 ≤ α ≤ 1 specifies the balance between fitting piecewise constant func-
tions (α = 1) and inducing sparsity on the selected smooths (α = 0). From
Observation 1, we see that (11) is equivalent to our model (8) when: α = 1,
there is J = 1 smooth, our design matrix has p = n columns, the B-spline
bases have appropriately chosen knots, and our model has no random effects.
As Petersen, Witten and Simon [25] show, FLAM can be a very useful method
for modeling additive phenomenon, and as with the fused lasso [42], jumps in
the piecewise linear fits have the advantage of being interpretable.

We also mention the sparse additive model (SpAM) [27] and sparse partially
linear additive model (SPLAM) [22]. SpAM fits an additive model and uses a
group lasso penalty [51] to induce sparsity on the number of active smooths.
SPLAM fits a partially linear additive model and uses a hierarchical group lasso
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penalty [53] to induce sparsity in the selected predictors and to control the
number of nonlinear features.

One notable difference between our model and that of Sadhanala and Tibshi-
rani [31], as well as FLAM, SpAM, and SPLAM, is that we allow for multiple
smoothing parameters. In our applied experience with additive models and stan-
dard �2 penalties, we have found that in practice it can be important to allow
for multiple smoothing parameters, particularly when the quantities of interest
are the individual smooths as opposed to the overall prediction. This is equiva-
lent to allowing each smooth to have different variance. However, this flexibility
comes at a cost: estimating multiple smoothing parameters is currently the
greatest challenge in fitting our proposed model. Perhaps due in part to these
computational difficulties, several other authors also assume a single smoothing
parameter in high-dimensional additive models [e.g. 21, 24].

There are fast and stable methods for fitting multiple smoothing parameters
for �2 penalties paired with exponential family and quasilikelihood loss functions,
notably the work of Wood [46] using generalized cross validation (GCV) and
Wood [48] using restricted maximum likelihood. Furthermore, Wood, Goude
and Shaw [49] extend these methods to larger datasets, and Wood, Pya and
Säfken [50] extend these methods to likelihoods outside the exponential family
and quasilikelihood form. However, similarly computationally efficient methods
do not yet exist for fitting multiple smoothing parameters for �1 penalties.

In addition to allowing for multiple smoothing parameters, we also propose
approximate inferential methods, which is not typically provided for �1 penalized
models. Yuan and Lin [51], Ravikumar et al. [27], Lou et al. [22], and Petersen,
Witten and Simon [25] focus on prediction and provide bounds on the prediction
risk and related quantities. These are important results, and we think that
distributional results for individual parameters and smooths will also be useful
to practitioners.

We also note that Eilers [7] and Bollaerts, Eilers and Aerts [1] discuss a
variant of P-splines for quantile regression, in which the �1 norm is used in both
the loss and penalty function. However, we are not aware of existing P-spline
methods that combine an �1 penalty with an �2 loss function.

5. Point estimation

5.1. Regression parameters and random effects

To fit (8), we use the alternating direction method of multipliers (ADMM) [see
2]. ADMM has the advantage of being scalable to large datasets. To formulate
(8) for ADMM, we introduce constraint terms wj and re-write the optimization
problem as

minimize
1

2
‖y − β01−

J∑
j=1

Fjβj − Zb‖22 +
J∑

j=1

λj‖wj‖1 +
τ

2
bTSb (12)

subject to Djβj −wj = 0, j = 1, . . . , J
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The augmented Lagrangian in scaled form (using u to denote the scaled dual
variable) is

Lρ(β, b,w,u) ∝ 1

2
‖y − β01−

∑
j

Fjβj − Zb‖22 +
∑
j

λj ‖wj‖1

+
ρ

2

∑
j

‖Djβj −wj + uj‖22 +
τ

2
bTSb

where ρ > 0 is the penalty parameter. The dimensions are y ∈ R
n×1, β0 ∈ R,

Fj ∈ R
n×p′

j , βj ∈ R
p′
j×1, Z ∈ R

n×q, b ∈ R
q×1, Dj ∈ R

(pj−kj−1)×p′
j , wj ∈

R
(pj−kj−1)×1, uj ∈ R

(pj−kj−1)×1, and S ∈ R
q×q, where p′j = pj − 1 if j ∈ E

(non-varying coefficient smooths) and p′j = pj if j ∈ Ē (varying coefficient
smooths).

ADMM is an iterative algorithm, and we re-estimate the parameters for up-
dates m = 1, 2, . . . until convergence.2 It is straightforward to derive the m+ 1
updates [see 2, Section 6.4.1]:

βm+1
0 =

1

n
1T

⎛⎝y −
∑
j

Fjβ
m
j − Zbm

⎞⎠
βm+1
j := argmin

βj

Lρ(β
m+1
0 ,βj ,β

m+1
l<j ,βm

l>j , b
m,wm,um)

=
(
FT
j Fj + ρDT

j Dj

)−1
(
FT
j y(j,m) + ρDT

j (w
m
j − um

j )
)

bm+1 := argmin
b

Lρ(β
m+1
j=1,...,J , b,w

m,um)

= (ZTZ + τS)−1ZT (y − βm+1
0 1−

∑
j

Fjβ
m+1
j ) (13)

wm+1
j := argmin

wj

Lρ(β
m+1
j=1,...,J , b

m+1,wj ,u
m)

= ψλj/ρ(Djβ
m+1
j + um

j )

um+1
j := um

j +Djβ
m+1
j −wm+1

j

where y(j,m) = y−βm+1
0 1−

∑
l<j Flβ

m+1
l −

∑
l>j Fjβ

m
l −Zbm and ψλ/ρ is the

element-wise soft thresholding operator, where for a single scalar element x

ψλ/ρ(x) =

⎧⎪⎨⎪⎩
x− λ/ρ x > λ/ρ

0 |x| ≤ λ/ρ

x+ λ/ρ x < −λ/ρ

To initialize the algorithm, we set β0 := ȳ, b := 0, and βj := 0, wj := 0, and
uj := 0, for j = 1, . . . , J.

2We use m to denote the iteration of the ADMM algorithm. This is unrelated to our use
of m in Section 2 to denote the order of the B-spline basis.
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As an alternative to the closed-form update (13) for the random effects, it
is also possible to update the random effects via a linear mixed effects (LME)
model that is embedded into the ADMM algorithm. In particular, an LME
model is fit to the residuals y − βm+1

0 1 −
∑

j Fjβ
m+1
j , and bm+1 are updated

as the best linear unbiased predictors (BLUPs). This update occurs at each
step of the ADMM algorithm and replaces the update given by (13). The LME
update has the additional benefit of simultaneously estimating the variance
of the random effects σ2

b . In simulations, we have found that using an LME
update leads to more accurate estimates of σ2

b , which is important for subsequent
estimates of degrees of freedom and confidence intervals.

For stopping criteria, we use the primal and dual residuals (rm and sm,
respectively):

rm =

⎡⎢⎣D1β
m
1 −wm

1
...

DJβ
m
J −wm

J

⎤⎥⎦ ∈ R
(p−k−J)×1

sm = −ρ

⎡⎢⎣D
T
1

(
wm

1 −wm−1
1

)
...

DT
J

(
wm

J −wm−1
J

)
⎤⎥⎦ ∈ R

p×1

where k =
∑J

j=1 kj , p =
∑J

j=1 pj − |E|, and |E| is the cardinality of E .
Following the guidance of [2], we stop when ‖rm‖2 ≤ εpri and ‖sm‖2 ≤ εdual,

where

εpri = εabs
√
p− k − J + εrel max

⎧⎪⎨⎪⎩
∥∥∥∥∥∥∥
D1β

m
1

...
DJβ

m
J

∥∥∥∥∥∥∥
2

,

∥∥∥∥∥∥∥
wm

1
...

wm
J

∥∥∥∥∥∥∥
2

⎫⎪⎬⎪⎭
εdual = εabs

√
p+ εrelρ

∥∥∥∥∥∥∥
DT

1 u
m
1

...
DT

J u
m
J

∥∥∥∥∥∥∥
2

.

By default, we set εrel = εabs = 10−4 and the maximum number of iterations at
1, 000.

5.2. Smoothing parameters

To estimate λ1, . . . , λJ we compute cross validation (CV) error for a path of
values one smoothing parameter at a time. In the CV, we split the sample at
the subject level, as opposed to individual observations, and ensure that there
are at least two subjects in each fold per unique combination of factor covariates.
First, we estimate a path for τ with λ1, . . . , λJ set to 0. Then we fix τ at the
value that minimizes CV error and compute a path for λ1, setting it to the value
that minimizes CV error, and so on.

We fit a path for each λj from λmax
j to 10−5λmax

j evenly spaced on the log
scale, where λmax

j is the smallest value at which Djβj = 0. As shown in Ap-
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pendix B, λmax
j = ‖(DjD

T
j )

−1Dj(F
T
j Fj)

−1FT
j rj‖∞, where rj = y − β01 −∑

��=j F�β� − Zb are the jth partial residuals and for a vector a, ‖a‖∞ =
maxj |aj |.

We also use warm starts, passing starting values separately for each fold,
though warm starts appear to be minimally beneficial with ADMM. We set
ρ = min(max(λ1, . . . , λJ), c) at each iteration for some constant c > 0 (e.g.
c = 5). When the number of smooths J is small (e.g. J ≤ 2) a grid search is
also feasible.

To estimate τ , we can either use CV and the close-form update given by (13),
or an LME update that is embedded in the ADMM algorithm, as described in
Section 5.1. In simulations, we have found that the overall computation time
to estimate the smoothing parameters is greater when using the LME update,
and that the estimates of λ1, . . . , λJ do not appear sensitive to updates for b.
However, the final estimates of σ2

b , and consequently the width of confidence
intervals can be improved by using the LME update. Consequently, we recom-
mend using cross validation to estimate τ for the purposes of then estimating
λ1, . . . , λJ , but using an LME update when estimating the final model.

With both the closed-form and LME update, we cannot use the training
sample to estimate the random effect parameters b for the test sample, because
these parameters are subject-specific and the test subjects are not included in
the training sample. Instead, we use the training sample to obtain estimates for
the fixed effect parameters β0, βj , j = 1, . . . , J and then use the test sample to
estimate the random effects.

To make our approach clear, we first fix notation. Let T r ⊆ {1, . . . , n} be
the row indices for the observations in the test sample for both the fixed and
random effect design matrices Fj , j = 1, . . . , J , and Z. Also, let T c ⊆ {1, . . . , q}
be the column indices of Z for observations in the test sample, and let T =
(T r, T c) be the tuple of row and column indices designating the test sample. Let
matrices Fj,T and Fj,−T be matrix Fj with only rows indexed by T r retained
and removed, respectively. Similarly, let matrices ZT and Z−T be matrix Z
with only rows and columns indexed by T r and T c, respectively, retained and
removed, respectively. Let matrices ST and S−T be matrix S with only rows and
columns indexed by T c retained and removed, respectively. Also, let yT and y−T
be vector y with elements indexed by T r retained and removed, respectively.

We obtain out-of-sample marginal estimates as μ̂T = β̂01 +
∑J

j=1 Fj,T β̂j ,

where β̂0 and β̂j , j = 1, . . . , J are estimated with y−T , Fj,−T , and Z−T . If
using the closed-form update (13), we estimate subject-specific random effects

as b̂T =
(
ZT
T Z

T
T + τST

)−1
ZT
T (yT −μ̂T ) and obtain the out-of-sample prediction

residuals as rT = yT − μ̂T − ZT b̂T . Letting Tk be the tuple of indices for test
sample (fold) k = 1, . . . ,K, we obtain the CV error as

∑K
k=1 ‖rTk

‖22.

6. Degrees of freedom

In this section, we obtain the degrees of freedom, with the primary goal of
estimating variance (see Section 7.1). However, we note that the degrees of
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freedom does not always align with a model’s complexity in terms of its tendency
to overfit the data [19].

In each of the approaches described in this section, the degrees of freedom (df)
is a function of the smoothing parameters λ1, . . . λJ and τ . We always obtain
the fixed effects smoothing parameters λ1, . . . , λJ from CV, but when using an
LME update for the random effects b as described in Sections 5.1 and 5.2, we
do not directly obtain τ . Consequently, we cannot directly apply the results in
this section to estimate df. However, from (9), we have that τ = σ2

b/σ
2
ε . Writing

df = df(τ), and letting r = y−
∑J

j=1 Fjβ̂j −Zb̂ be an n× 1 vector of residuals

and σ̂2
ε = ‖r‖22/(n− df(τ)) be an estimate of variance, we have that

τ̂ =
σ̂2
b

σ̂2
ε

=
σ̂2
b

‖r‖22
(n− df(τ̂)) .

Therefore, letting

ψ(τ) = τ − σ̂2
b

‖r‖22
(n− df(τ)) ,

we numerically solve for τ̂ such that ψ(τ̂) = 0 and set df = df(τ̂).

6.1. Stein’s method

Let g(y) = ŷ, where g : Rn → R
n is the model fitting procedure. For y ∼

N(μ, σ2I), the degrees of freedom is defined as [see 6, 16]

df =
1

σ2

n∑
i=1

Cov(gi(y), yi). (14)

As Tibshirani [39] notes, (14) is motivated by the fact that the risk Risk(g) =
E‖g(y)− μ‖22 can be decomposed as

Risk(g) = E‖g(y)− y‖22 − nσ2 + 2
n∑

i=1

Cov(gi(y), yi).

Therefore, the degrees of freedom (14) corresponds to the difference between
risk and expected training error. Furthermore, if g is continuous and weakly
differentiable, then df = E[∇ · g(y)] [35] where ∇ · g =

∑n
i=1 ∂gi/∂yi is the

divergence of g. Therefore, an unbiased estimate of df (also used in Stein’s
unbiased risk estimate [35]) is

d̂f =

n∑
i=1

∂gi/∂yi. (15)

To obtain an estimate of degrees of freedom, we transform the generalized
lasso component of our model to standard form, similar to the approach of Pe-
tersen, Witten and Simon [25]. To do so, we use the following matrices described
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by Tibshirani [40]. Let

D̃∗
j =

⎡⎢⎢⎢⎢⎣
D̃

(0)
j,1
...

D̃
(kj)
j,1

D̃
(kj+1)
j

⎤⎥⎥⎥⎥⎦ ∈ R
pj×pj

be an augmented finite difference matrix, where D̃
(i)
j,1 is the first row of the

finite difference matrix D̃
(i)
j , and D̃

(0)
j = Ipj is the identity matrix. As shown by

Tibshirani [40], the inverse of D̃∗
j is given by Mj = M

(0)
j M

(1)
j · · ·M (k)

j where3

M
(i)
j =

[
Ii

L(pj−i)×(pj−i)

]
∈ R

pj×pj ,

where L(pj−i)×(pj−i) is the (pj − i)× (pj − i) lower diagonal matrix of 1s.
Assuming our outcome y is centered, so that β0 = y(0) = 0, and letting

Vj = F̃jMj , D
∗
j = D̃∗

jQj for j ∈ E and D∗
j = D̃∗

j for j ∈ Ē , and αj = D∗
jβj , we

can write the penalized negative log likelihood (8) as

lpen =
1

2
‖y −

∑
j

Vjαj − Zb‖22 +
J∑

j=1

λj

pj∑
l=kj+2

|αjl|+
1

2
τbTSb. (16)

To avoid difficulties later differentiating with respect to the �1 norm, we
remove the non-active �1 penalized coefficients from (16). We also form the
concatenated design matrix V = [V1, . . . , VJ ] and will need to index the active
set of V . To these ends, let Aj = {l ∈ {kj + 2, . . . , p′j} : α̂j,l �= 0} be the active
set of the penalized coefficients for smooth j, and let A∗

j = {1, . . . , kj + 1} ∪Aj

be the active set for smooth j augmented with the unpenalized coefficients.
Also, for a set Aj and constant c ∈ R, let Aj + c = {i + c : i ∈ Aj} be the

set of elements in Aj shifted by c. Now let A∗ =
⋃J

j=1(A∗
j +
∑j−1

l=0 p′l) be the
augmented active set of V , where p′0 = 0 and p′j , j = 1, . . . , J are the number of
columns in Vj (equivalently Fj). Finally, let VA∗ be matrix V subset to retain
only those columns indexed by A∗. Similarly, let α̂ = (α̂T

1 , . . . , α̂
T
J )

T be the
concatenated vector of estimated coefficients, and let α̂A∗ be vector α̂ subset to
retain only elements indexed by A∗. Then we can write the estimated penalized
loss (16) as

l̂pen =
1

2

∥∥∥∥y − [VA∗ , Z]

(
α̂A∗

b̂

)∥∥∥∥2
2

+

J∑
j=1

λj

pj∑
l=kj+2

|α̂jl|+
1

2
τ b̂TSb̂ (17)

Taking the derivative of (17) and keeping in mind that the first kj+1 elements
of each α̂j are unpenalized and |α̂jl| > 0 for all l ∈ Aj , we have

0(|A∗|+q)×1 =
∂lpen

∂(α̂T
A∗ , b̂T )T

=

[
V T
A∗

ZT

](
[VA∗ , Z]

(
α̂A∗

b̂

)
− y

)
+

(
η

τSb̂

)
(18)

3We denote the inverse matrix as Mj . This is unrelated to our use of M in Section 2 to
denote the order of the B-spline basis.
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where

η =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0k1+1

λ1 sign(α̂A1)
0k2+1

λ2 sign(α̂A2+p1)
...

0kJ+1

λJ sign(α̂AJ+
∑J−1

j=1 pj
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

0kj+1 is a (kj+1)×1 vector of zeros, and the sign operator is taken element-wise.
From Tibshirani and Taylor [41, Lemmas 6 and 9], we know that within a

small neighborhood of y, the active set A and the sign of the fitted terms α̂A
are constant with respect to y except for y in a set of measure zero. Therefore,
∂η/∂y = 0|A∗|×n, where 0|A∗|×n is an |A∗| × n matrix of zeros and |A∗| is the
cardinality of A∗. Then taking the derivative of (18) with respect to y, we have

0(|A∗|+q)×n =
∂2lpen

∂(α̂T
A∗ , b̂T )T∂y

=

[
V T
A∗

ZT

]
[VA∗ , Z]

[
∂α̂A∗/∂y

∂b̂/∂y

]
−
[
V T
A∗

ZT

]
+

[
0|A∗|×n

τS(∂b̂/∂y)

]
.

Solving for the derivatives of the estimated coefficients, we have[
∂α̂A∗/∂y

∂b̂/∂y

]
=

([
V T
A∗

ZT

]
[VA∗ , Z] +

[
0|A∗|×|A∗| 0|A∗|×q

0q×|A∗| τS

])−1 [
V T
A∗

ZT

]
.

Now let A = [VA∗ , Z] and

Ω =

[
0|A∗|×|A∗| 0|A∗|×q

0q×|A∗| τS

]
.

Then since ŷ = A(α̂T
A∗ , b̂T )T we have

∂ŷ

∂y
=

∂ŷ

∂(α̂T
A∗ , b̂T )T

∂(α̂T
A∗ , b̂T )T

∂y

= A
(
ATA+Ω

)−1
AT .

From Tibshirani and Taylor [41, Lemmas 1 and 8], we know that g(y) = ŷ is
continuous and weakly differentiable. Also, ∇g = tr(∂ŷ/∂y). Therefore, we can
use Stein’s formula (15) to estimate the degrees of freedom as

d̂f = 1 + tr
(
A(ATA+Ω

)−1
AT ) = 1 + tr

(
(ATA+Ω)−1ATA

)
, (19)

where we add 1 for the intercept. We note that this result is similar to the
degrees of freedom for the elastic net [see the remark on page 18 of 41] as well
as for FLAM [25].
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To obtain degrees of freedom for individual smooths j = 1, . . . , J , let Ej be
an (|A∗| + q) × (|A∗| + q) matrix with 1s on the diagonal positions indexed

by A∗
j +
∑j−1

l=0 |A∗
l | and zero elsewhere, where |A∗

j | is the cardinality of A∗
j and

A∗
0 = ∅. Also, let f̂j = Vjα̂j be the estimate of the jth smooth. Then as Ruppert,

Wand and Carroll [30] note, f̂j = AEj(A
TA+Ω)−1ATy. Therefore,

d̂fj = tr
(
AEj(A

TA+Ω)−1AT
)
= tr

(
Ej(A

TA+Ω)−1ATA
)
. (20)

In other words, the degrees of freedom for smooth j is the sum of the diagonal
elements of (ATA+Ω)−1ATA indexed by A∗

j +
∑j−1

l=0 |A∗
l |.

We note that when using the ADMM algorithm, or most likely any proximal
algorithm, the fitted Djβ̂j , or equivalently α̂j , will typically have several very
small non-zero values, but will not typically be sparse. However, the vector ŵj

is sparse, where in the ADMM algorithm we constrain wj = Djβj . Therefore,
in practice we use wj to obtain the active set Aj .

6.2. Stable and fast approximations

In some cases, such as the application in Section 9, the estimates based on
Stein’s method (19) and (20) cannot be computed due to numerical instability.
In this section, we propose alternatives that are more numerically stable and
which are also more computationally efficient.

6.2.1. Based on restricted derivatives

In this approach, we take derivatives of the fitted values restricted to individual
smooths. In particular, from Section 6.1, we see that

∂ŷ

∂α̂A∗
j

∂α̂A∗
j

∂y
= VA∗

j
(V T

A∗
j
VA∗

j
)−1V T

A∗
j

∂ŷ

∂b̂

∂b̂

∂y
= Z(ZTZ + τS)−1ZT .

We can then approximate the degrees of freedom for each individual smooth
and the random effects by

d̃fj =

{
tr
(
(V T

A∗
j
VA∗

j
)−1V T

A∗
j
VA∗

j

)
j = 1, . . . , J

tr
(
(ZTZ + τS)−1ZTZ

)
j = J + 1

(21)

We estimate the overall degrees of freedom as

d̃f = 1 +

J+1∑
j=1

d̃fj (22)

where we add 1 for the intercept.
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This approach is similar to one described by Ruppert, Wand and Carroll [30,
p. 176], though in a different context and for a different purpose. In particular,
whereas we use this approach to approximate the degrees of freedom after fitting
the model, Ruppert, Wand and Carroll [30] use it to set the degrees of freedom
before fitting the model in the context of �2 penalized loss functions.

6.2.2. Based on ADMM constraint parameters

In this section, we propose estimates of degrees of freedom specific to the ADMM
algorithm. As in the previous section, this approach is based on estimates for
the individual smooths. Consider the model with J = 1 smooth, no random
effects, and centered y:

‖y − Fβ‖22 + λ‖Dβ‖1.
Suppose we make the centering constraints described Section 3, i.e. we set F =
F̃Q and D = D̃(k+1)Q for an n × p design matrix F̃ , a k + 1 order finite
difference matrix D(k+1), and an orthonormal p × (p − 1) matrix Q. Let A =
{l ∈ {1, . . . , p − k − 1} : (Dβ̂)l �= 0} be the active set, and let |A| be its
cardinality. In our context, we expect the design matrices F to be full rank, in
which case Theorem 3 of Tibshirani and Taylor [41] (see the first Remark) states
that the degrees of freedom is given by df = E[nullity(D−A)]. Here, nullity(D)
is the dimension of the null space of matrix D, and D−A is matrix D with rows
indexed by A removed. Now, D has dimensions (p−k−1)× (p−1), and we can
see by inspection that for all k < p−1 the columns ofD are linearly independent.
Therefore, the rank of D−A is equal to the number of rows p− k− 1− |A|, and
the nullity is equal to the number of columns p− 1 minus the number of rows.
This gives d̂f = nullity(D−A) = k+ |A| for centered smooths, i.e. the number of
non-zero elements of Dβ̂ plus one less than the order of the difference penalty.
This is similar to the result for �1 trend filtering, but we have lost one degree of
freedom due to the constraint that 1T F̃ β̃ = 0. For uncentered smooths, D has
dimensions (p− k − 1)× p, which gives d̂f = nullity(D−A)) = k + 1 + |A|.

As before, we note that in the ADMM algorithm, Dβ̂ will not generally
be sparse, as ADMM is a proximal algorithm. However, the corresponding w is
sparse, where in the optimization problem we constrain Dβ = w. Now consider-
ing a model with smooths j = 1, . . . , J , a numerically stable and fast alternative
to (20) is given by

d̃f
ADMM

j = 1[j ∈ Ē ] + kj +

p−k−1∑
l=1

1 [wjl �= 0] . (23)

where Ē indexes the un-centered smooths and 1 is an indicator variable. We then
combine (23) with the restricted derivative approximation for the degrees of free-
dom of the random effects given above to obtain the overall degrees of freedom

d̃f
ADMM

= 1 +

J∑
j=1

d̃f
ADMM

j + tr
(
(ZTZ + τS)−1ZTZ

)
, (24)

where we add 1 for the intercept.
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6.3. Ridge approximation

Let U = [F1, . . . , FJ , Z] be the concatenated design matrix of fixed and random
effects and

Ωridge =

⎡⎢⎢⎢⎣
λ1D

T
1 D1

. . .

λJD
T
J DJ

τS

⎤⎥⎥⎥⎦
be the penalty matrix. Then the hat matrix from the linear smoother approxi-
mation (see Section 7) is given by H = U(UTU+Ωridge)−1UT . Similar to before,
we can get the overall degrees of freedom as

d̂f
ridge

= 1 + tr
(
(UTU +Ωridge)−1UTU

)
, (25)

where we add 1 for the intercept. To obtain degrees of freedom for individual
smooths j = 1, . . . , J , let Ej be a (p+q)×(p+q) matrix with 1s on the diagonal

positions indexed by the columns of Fj and zero elsewhere. Also, let f̂j = Fjβ̂j

be the estimate of the jth smooth. Then the ridge approximation for smooth j
is given by f̂j ≈ UEj(U

TU +Ωridge)−1UTy. Therefore,

d̂f
ridge

j = tr
(
Ej(U

TU +Ωridge)−1UTU
)

(26)

Similar to before, we also propose stable and fast approximations to the ridge
estimate of degrees of freedom based on restricted derivatives. In particular, let

d̃f
ridge

j =

{
tr
(
(Fj

TFj + λjD
T
j Dj)

−1FT
j F
)

j = 1, . . . , J

tr
(
(ZTZ + τS)−1ZTZ

)
j = J + 1

(27)

Then we can estimate the overall degrees of freedom as

d̃f
ridge

= 1 +

J+1∑
j=1

d̃f
ridge

j (28)

where we add 1 for the intercept.
As noted above, this approach is similar to one described by Ruppert, Wand

and Carroll [30, p. 176], though for a different purpose. Whereas we use this
approach to obtain the degrees of freedom after fitting the model, Ruppert,
Wand and Carroll [30] use it to set the degrees of freedom before fitting the
model.

7. Approximate inference

In this section, we discuss approximate inferential methods based on ridge ap-
proximations to the �1 penalized fit and conditional on the smoothing param-
eters λj , j = 1, . . . , J and τ . We use the ADMM algorithm to analyze the ap-
proximation. In particular, we note that we can write the ADMM update for
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βj as

βm+1
j =

(
FT
j Fj + ρDT

j Dj

)−1
FT
j y(j,m) + δmj (29)

where δmj = ρ(FT
j Fj + ρDT

j Dj)
−1FT

j DT
j (w

m
j − um

j ) and y(j,m) = y − βm+1
0 −∑

l<j Flβ
m+1
l −

∑
l>j Flβ

m
l − Zbm. As we note in Observation 2, δj loosely

represents the difference in the estimate of βj obtained with the �1 and �2
penalties.

Observation 2. With the �1 penalty, i.e. ‖Djβj‖1, in general δmj �= 0. How-

ever, with the �2 penalty, i.e. ‖Djβj‖22, and λj = ρ, we have δmj = 0.

Proof of Observation 2. Similar to the ridge update for b, if we changed
λj‖Djβj‖1 to (λj/2)‖Djβj‖22 in (8) we could remove the wj term and the
constraint that Djβ

m
j = wj from (12) to obtain the ridge update βm+1

j =(
FT
j Fj + λjD

T
j Dj

)−1
FT
j y(j,m). Then since we assumed λj = ρ, we have βm+1

j =(
FT
j Fj + ρDT

j Dj

)−1
FT
j y(j,m). By comparison with (29), we see that δmj =

0.

Observation 2 motivates our approximate inferential strategy. Letting f̂j be

the jth fitted smooth, and letting y(j) = y − β̂0 −
∑

l �=j Flβ̂l − Zb̂, we have

f̂j = Fjβ̂j = Fj(F
T
j Fj + ρDT

j Dj)
−1FT

j y(j) + Fj δ̂j (30)

≈ Fj(F
T
j Fj + ρDT

j Dj)
−1FT

j y(j) (assuming Fj δ̂j ≈ 0)

≈ Fj(F
T
j Fj + λjD

T
j Dj)

−1FT
j y(j) (assuming λj ≈ ρ)

= Hjy
(j) (31)

where Hj = Fj(F
T
j Fj + λjD

T
j Dj)

−1FT
j . We obtain confidence intervals for the

linear smoother (31) centered around the estimated fit (30), ignore Fjδj when
estimating variance, and assume λj ≈ ρ. We also condition on the smoothing
parameters λ1, . . . , λJ and τ .

Figure 2 gives a visual demonstration of the approximation for the simula-
tion presented in Section 8 and the application shown in Section 9. As seen in
Figure 2, in these examples the �1 fit and ridge approximation are very similar.
If this holds in general, then this would suggest that 1) the approximate infer-
ential procedures we propose might have reliable coverage probabilities, and 2)
there may be minimal practical advantage to using an �1 penalty instead of the
standard �2 penalty. However, as shown in Section 8.3, the �1 penalty appears
to perform noticeably better in certain situations, including the detection of
change points.

Before presenting the confidence bands in greater detail, we discuss our ap-
proach for estimating variance in Section 7.1, which we then use to form confi-
dence bands in Section 7.2.
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Fig 2. Linear smoother approximation to the �1 penalized fit in the simulation (see Section
8) and application (see Section 9). The solid red line is the �1 penalized fit, the dotted green
line is the linear smoother approximation, and the dashed blue line is the difference between
the two.

7.1. Variance

Let r = y −
∑J

j=1 Fjβ̂j − Zb̂ be an n× 1 vector of residuals. We estimate the

overall variance as σ̂2
ε = ‖r‖22/d̂fresid, where d̂fresid is the residual degrees of

freedom. When possible, we use the estimate based on Stein’s method (19) and

set d̂fresid = n− d̂f. If Stein’s method is not numerically stable, then we use the
restricted derivatives approximation (22) and set d̂fresid = n − d̃f. As another

alternative, we could also use the ADMM approximation and set d̂fresid = n −
d̃f

ADMM
.

7.2. Confidence bands

In this section, we obtain confidence bands for typical subjects, i.e. for subjects
for whom bi = 0. Since we assume a normal outcome, this is equivalent to the
marginal population level response.

7.2.1. Frequentist confidence bands

Ignoring the distribution on Djβj and treating βl, l �= j as fixed, y(j) is normal
with variance Var(y(j)) = σ2

ε In + σ2
bZS+ZT , where S+ is the Moore-Penrose

generalized inverse of matrix S (as noted in Section 3, S may not be positive

definite). Therefore, V̂ar(f̂j) ≈ HjV̂ar(y
(j))HT

j where V̂ar(y(j)) is an n × n

estimate of Var(y(j)) with σ̂2
ε and σ̂2

b plugged in for σ2
ε and σ2

b respectively,

and f̂j
·∼ N(f̂j , HjV̂ar(y

(j))HT
j ). The estimated variance of the fit at a single

point x, which we denote as V̂ar(f̂j(x)), is the corresponding diagonal element

of HjV̂ar(y
(j))HT

j . Therefore, asymptotic pointwise 1−α confidence bands take
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the form f̂j(x) ± z1−α/2

√
V̂ar(f̂j(x)) where Φ(za) = a and Φ is the standard

normal CDF, e.g. z1−α/2 = 1.96 for α = 0.05.

For the purposes of interpretation, we include the intercept term in the con-
fidence band for the j = 1 smooth, but not for the remaining smooths.

7.2.2. Bayesian credible bands

Many authors, includingWood [47], recommend using Bayesian confidence bands
for nonparametric and semiparametric models, because the point estimates are
themselves biased. While Bayesian credible bands do not remedy the bias, they
are self consistent.

To this end, we replace the element-wise Laplace prior with the (generally
improper) joint normal prior that is equivalent to the standard �2 penalty: βj ∼
N
(
0, (λjD

T
j Dj)

−1
)
. This leads to the posterior

βj |y ·∼ N

⎛⎜⎝β̂j , (F
T
j V̂ar(y(j))−1Fj + λjD

T
j Dj︸ ︷︷ ︸

Wj

)−1

⎞⎟⎠ . (32)

We can then form simultaneous Bayesian credible bands for fj |y by simulating
from the posterior (32) and taking quantiles from Fjβ

b
j , b = 1, . . . , B. Alter-

natively, for a faster approximation we use frequentist confidence bands with
FjW

−1
j FT

j in place of HjV̂ar(y
(j))HT

j . In practice, we have found the simulta-
neous credible bands and the faster approximation to be nearly indistinguish-
able.4

As before, for the purposes of interpretation, we include the intercept term
in the credible band for the j = 1 smooth, but not for the remaining smooths.

8. Simulation

We simulated data from a piecewise linear mean curve as shown in Figure 3.
Each subject had a random intercept and is observed over only a portion of
the domain. There are 50 subjects, each with between 4 and 14 measurements
(450 total observations). The random intercepts were normally distributed with
variance σ2

b = 1, and the overall noise was normally distributed with variance
σ2
ε = 0.01.

In all models, we used order 2 (degree 1) B-splines with p = 21 basis functions.

4It appears that the latter (faster) method is the default in the mgcv package [47]. As in
mgcv, we only need to compute the diagonal elements of FjW

−1
j FT

j as rowSums((FjW
−1
j )◦Fj),

where ◦ is the Hadamard (element-wise) product.
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Fig 3. Simulated data: true marginal curve in black, observed (simulated) data in gray.

8.1. Frequentist estimation

We fit models with J = 1 smooth term and random intercepts. To obtain
estimates for the �1 penalized model, we used ADMM and 5-fold CV to minimize

minimize
β0∈R,β∈Rp−1,b∈RN

1

2
‖y − β01− Fβ − Zb‖22 + λ‖D(2)β‖1 + τbT b. (33)

where Zil = 1 if observation i belongs to subject l and zero otherwise. As noted
above, we used order 2 (degree 1) B-splines with p = 21 basis functions, i.e.
F ∈ R

n×(p−1) where n = 450 and p = 21. After estimating λ and τ via CV,
we used LME updates to estimate σ2

b and b in the final model. We also fit
an equivalent model with an �2 penalty using the mgcv package [47], i.e. with
(λ/2)‖D(2)β‖22 in place of λ‖D(2)β‖1 in (33). Figure 4 shows the marginal mean
with 95% credible intervals, and Figure 5 shows the subject-specific predicted
curves.

As seen in Figures 4 and 5, the results from the �1 and �2 penalized models are
very similar. However, the �1 penalized model does slightly better at identifying
the change points and the line segments. We explore this further in Section 8.3.

Table 1 compares the degrees of freedom and variance estimates from the
�1 penalized fit against those from the �2 penalized fit. From Table 1, we see

that the ridge degrees of freedom d̂f
ridge

appears reasonable, as it is near the
estimate for the �2 penalized model. The true degrees of freedom d̂f also seems
reasonable. Ideally, the degrees of freedom for the �1 penalized fit should equal
six, as there are four change points and we are using a second order difference
penalty (see Section 6.2).
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Fig 4. Marginal mean and 95% credible intervals from frequentist estimation: black is true
marginal mean, red is estimated marginal mean

Fig 5. Subject-specific predicted curves from frequentist estimation: black is true marginal
mean, red is estimated marginal mean, blue is subject-specific curves

Table 1

Estimated degrees of freedom for smooth F and variance in �1 and �2 penalized models

Penalty
Estimator �1 �2 Truth

d̂f
ridge

17.7 19.0 –

d̂f 10 – –
σ̂2
ε 0.0093 0.0106 0.01

σ̂2
b 1.06 1.05 1
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Table 2

Comparison of degrees of freedom estimates for the �1 penalized model

Smooth
Estimator Description Overall F Z

d̂f Stein (19) and (20) 14.3 10.0 3.29

d̃f Restricted (21) and (22) 14.6 10.0 3.63

d̃f
ADMM

ADMM (23) and (24) 13.6 9.0 3.63

d̂f
ridge

Ridge (25) and (26) 22.1 17.7 3.31

d̃f
ridge

Ridge restricted (27) and (28) 22.4 17.8 3.63

Table 2 compares the different estimates of degrees of freedom. In this simula-
tion, the degrees of freedom based on the ridge approximation is larger than that
from Stein’s formula, and the approximations based on restricted derivatives are
equal or near the estimate with Stein’s formula.

8.2. Bayesian estimation

We modeled the data as y|b = β01+ Fβ + b+ ε where

ε ∼ N(0, σ2
ε I)

b ∼ N(0, σ2
b I)

D(2)β ∼ Laplace(0, σ2
λI)

p(σε) ∝ 1

p(σb) ∝ 1

p(log(σλ)) ∝ 1.

We also fit models with normal and diffuse priors for D(2)β.

We fit all models with rstan [36], each with four chains of 2,000 iterations
with the first 1,000 iterations of each chain used as warmup. The MCMC chains,
not shown, appeared to be reasonably well mixing and stationary, and had R̂
values under 1.1 [see 12].5 Figure 6 shows the marginal mean with 95% credible
intervals, and Figure 7 shows point estimates.

As seen in Figures 6 and 7, all models performed well and gave similar fits as
above. Similar to before, the Laplace prior appears to better enforce a piece-wise
linear fit, particularly around x = 0.2.

5As described by Gelman et al. [12, pp. 284–285], for each scalar parameter, R̂ is the
square root of the ratio of the marginal posterior variance (a weighed average of between-
and within-chain variances) to the mean within-chain variance. As the number of iterations

in the MCMC chains goes to infinity, R̂ converges to 1 from above. Consequently, R̂ can be
interpreted as a scale reduction factor, and Gelman et al. [12] recommend ensuring that R̂ < 1
for all parameters.
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Fig 6. Credible bands for Bayesian models with order 2 (degree 1) B-splines. Black is true
marginal mean, red dashed is estimated marginal mean, gray area is 95% credible interval

Fig 7. Subject-specific predicted curves from Bayesian models fit with order 2 (degree 1) B-
splines. Gray is observed data, black is true marginal mean, red dashed is estimated marginal
mean, and blue dashed is subject-specific predictions

8.3. Change point detection

We simulated 1,000 datasets with the same generating mechanism used to pro-
duce the data shown in Figure 3 and measured the performance of the �1 and
�2 penalized models on two criteria: 1) the number of inflection points found,
and 2) the distance between the estimated inflection points and the closest true
inflection point. To that end, let T = {τ1, . . . , τ4} be the set of true inflection

points, and M = maxx∈X |f̂ ′′(x)| be the maximum absolute second derivative
of the estimated function, where X = {x1, x2, . . .} is the ordered set of unique

simulated x values. We approximate f̂ ′′ by

f̂ ′′(xi) ≈
(f̂(xi+1)− f̂(xi))/(xi+1 − xi)− (f̂(xi)− f̂(xi−1))/(xi − xi−1)

xi+1 − xi
.

Then let I = {x ∈ X : |f̂ ′′(x)| ≥ cM} be the set of estimated inflection points,
where c ∈ (0, 1) is a cutoff value defining how large the second derivative must



P-splines with an �1 penalty for repeated measures 3581

Fig 8. Results from 1,000 simulated datasets measuring ability of the models to detect inflec-
tion points

be to be counted as an inflection point. Also, let nI = |I| be the number of
estimated inflection points, and d̄ = n−1

I
∑

x∈I minτ∈T |x − τ | be the mean
absolute deviance of the estimated inflection points.

Figure 8 shows the results from 1,000 simulated datasets. The �1 penalized
model was better able to 1) find the correct number of inflection points, and 2)
determine the location of the inflection points.

8.4. Coverage probability

We simulated 1,000 datasets with the same generating mechanism used to pro-
duce the data shown in Figure 3 and measured the coverage probability of the
approximate Bayesian credible bands described in Section 7.2.2 for the �1 pe-
nalized model, and simultaneous Bayesian credible bands for the �2 penalized
model [47]. Figure 9 shows the coverage probabilities for both approaches. As
seen in Figure 9, the confidence bands perform similarly and are near the nomi-
nal rate over most of the x domain. Both approaches have difficulty maintaining
nominal coverage at the edges of the x domain.

9. Application

9.1. Data description and preparation

In this section, we analyze electrodermal activity (EDA) data collected as part
of a stress study. In brief, all subjects completed a written questionnaire prior to
the study, which categorized the subjects as having either low vigilance or high
vigilance personality types. During the study, all participants wore wristbands
that measured EDA while undergoing stress-inducing activities, including giving
a public speech and performing mental arithmetic in front of an audience. The
scientific questions were: 1) Is EDA higher among high vigilance subjects, and
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Fig 9. Coverage probability from 1,000 simulated datasets using approximate Bayesian cred-
ible bands for the �1 penalized model and simultaneous Bayesian credible bands for the �2
penalized model.

2) when did trends in stress levels change? In this section, we demonstrate how
P-splines with an �1 penalty can address both questions.

The raw EDA data are shown in Figure 10. After excluding subjects who had
EDA measurements of essentially zero throughout the entire study, we were left
with ten high vigilance subjects and seven low vigilance subjects.

Fig 10. Raw electrodermal activity (EDA) data by experimental group

To remove the extreme second-by-second fluctuations in EDA, which we be-
lieve are artifacts of the measurement device as opposed to real biological signals,
we smoothed each curve separately with a Nadaraya–Watson kernel estimator
using the ksmooth function in R. We then thinned the data to reduce com-
putational burden, taking 100 evenly spaced measurements from each subject.
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Fig 11. Raw, smoothed, and thinned electrodermal activity data for a single subject

Fig 12. Electrodermal activity (EDA) data used in the analysis (seven low vigilance and ten
high vigilance subjects). Note: subjects not aligned in time (x-axis).

Figure 11 shows the results of this process for a single subject, and Figure 12
shows the prepared data for all subjects. Because of the limited number of sub-
jects, as well as issues of misalignment in the time series across individuals, the
results presented here should be considered as illustrative rather than of full
scientific validity.

9.2. Models

In all models, we fit the structure

yi(x) = β0 + β1(x) + 1high[i]β2(x) + bi(x) + εi(x)
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where x represents time in minutes, 1high[i] = 1 if subject i has high vigilance
and 1high[i] = 0 if subject i has low vigilance, bi(x) are random subject-specific
curves, and εi(x) ∼ N(0, σ2

ε ). For β1(x), β2(x), and bi(x), we used a fourth order
B-spline basis with 31 basis functions each and a second order difference penalty
(k = 1).

Written in matrix notation, the �1 penalized model is

min
1

2
‖y − β01−

2∑
j=1

Fjβj − Zb‖22 +
2∑

j=1

λj‖D(2)βj‖1 + bTSb (34)

where y is a stacked vector for subjects i = 1, . . . , 17, F1 is an n × p design
matrix where n = 1, 700 and p = 31, and F2 = diag(1high[i])F1 where i is an
n × 1 vector of subject IDs. In other words, F2 is equal to F1, but with rows
corresponding to low vigilance subjects zeroed out. We set

Z =

⎡⎢⎣Z1

. . .

Z17

⎤⎥⎦
where each Zi is an ni × 31 random effects design matrix of order 4 B-splines
evaluated at the input points for subject i, and

S =

⎡⎢⎣S1

. . .

S17

⎤⎥⎦
where Si,jl =

∫
φ′′
ij(t)φ

′′
il(t)dt are smoothing spline penalty matrices. We also

mean-centered F1 as described in Section 3, with the corresponding changes in
dimensions.

To fit a comparable �2 penalized model, in which λj‖D(2)βj‖1 in (34) is re-
placed with (λj/2)‖D(2)βj‖22, we rotated the random effect design and penalty
matrices Z and S as described in Section 3. To facilitate the use of existing soft-
ware, we used a normal prior for the “unpenalized” random effect coefficients,
i.e. b̆f ∼ N(0, σ2

fI).

We also fit a Bayesian model using the same rotations and equivalent penal-
ties as above. In particular, we modeled the data as y|b = β01+

∑J
j=1 Fjβj +

Žrb̌r + Z̆f b̆f + ε where

b̌r ∼ N(0, σ2
rI)

b̆f ∼ N(0, σ2
fI)

(Djβj)l ∼ Laplace(0, aj) for aj = σ2
ε /(2λj), l = 1, . . . , pj − kj − 1, j = 1, . . . , J

(35)

ε ∼ N
(
0, σ2

ε In
)
.
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9.3. Results

9.3.1. Frequentist estimation

We tried to use CV to estimate the smoothing parameters for the �1 penalized
model. However, with only 17 subjects split between two groups, we only did 3-
fold CV. CV did not find a visually reasonable fit so we set the tuning parameters
by hand.

Figure 13 shows the estimated marginal mean and 95% credible bands for the
�1 penalized model, and Figure 14 shows the subject-specific predicted curves for
the �1 penalized model. As seen in Figure 13a, our model identified a few inflec-
tion points, particularly near minutes 40, 50, and 60. From Figure 13b it appears
that the difference in EDA between the low and high vigilance subjects was not
statistically significant. Also, as seen in Figure 14, the subject-specific predicted
curves are shrunk towards the mean, which is expected, because the predicted
curves are analogous to BLUPs, although they are not linear smoothers.

Fig 13. �1 penalized model: parameter estimates with 95% confidence bands

Figure 15 shows the estimated marginal mean and 95% credible bands for the
�2 penalized model, and Figure 16 shows the subject-specific predicted curves
for the �2 penalized model. The estimate shown in Figure 15a is similar to that
shown in Figure 13a, though the inflection points are slightly less pronounced
in Figure 15a. The results in Figure 15b are for the most part substantively the
same as those in Figure 13b; the �2 penalized model does not show a statis-
tically significant difference between the low and high vigilance subjects, with
the possible exception of minutes 45 to 66. As seen in Figure 16, the predicted
subject-specific curves from the �2 penalized model are also shrunk towards the
mean.
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Fig 14. �1 penalized model: subject-specific predicted curves

Fig 15. �2 penalized model: parameter estimates with 95% confidence bands

Table 3 shows the estimated degrees of freedom for the �1 penalized model.

Stein’s method d̂f ((19) and (20)) and the ridge approximation d̂f
ridge

((25) and
(26)) were numerically instable (ATA+Ω and UTU +Ωridge were computation-
ally singular). Therefore we used the restricted derivative approximation d̃f to
estimate the variance, as described in Section 7.1. In the �2 penalized model,
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Fig 16. �2 penalized model: subject-specific predicted curves

smooth F1 had 14.2 degrees of freedom, and smooth F2 had 6.96 degrees of
freedom.

Table 3

Comparison of degrees of freedom estimates for the �1 penalized model

Smooth
Estimator Description Overall F1 F2 Z

d̂f Stein (19) and (20) – – – –

d̃f Restricted (21) and (22) 194 10.0 2.00 181

d̃f
ADMM

ADMM (23) and (24) 193 9.00 2.00 181

d̂f
ridge

Ridge (25) and (26) – – – –

d̃f
ridge

Ridge restricted (27) and (28) 216 21.1 13.50 181

9.3.2. Bayesian estimation

We fit the model described in Section 9.2 with an element-wise Laplace prior on
Dβ given by (35). To fit the model, we used rstan [36] with four chains of 5,000
iterations each, with the first 2,500 iterations of each chain used as warmup. The
MCMC chains, not shown, appeared to be reasonably well mixing and stationary
with R̂ values under 1.1 [see 12]. Figure 17 shows the marginal means with 95%
credible bands, and Figure 18 shows the subject-specific curves. Similar to the
�2 penalized model, the Bayesian model found a slightly statistically significant
difference between low and high vigilance between minutes 42 and 65.
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Fig 17. Bayesian model: parameter estimates with 95% confidence bands

Fig 18. Bayesian model: subject-specific predicted curves

9.4. Alternative correlation structure

For comparison, we also fit �1 and �2 penalized models with alternative corre-
lation structures similar to that recommended by Ruppert, Wand and Carroll
[30, p. 192].

For the �1 penalized model, in place of the correlation structure implied by the
penalty matrix S described above, we set the penalty matrix to S := Iq. While
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this is a simplification of the correlation structure recommended by Ruppert,
Wand and Carroll [30, p. 192], we think it offers a similar amount of flexibility.

Figure 19 shows the estimated marginal mean and 95% credible bands, and
Figure 20 shows the subject-specific predicted curves. The point estimates shown
in Figure 19 are similar to that shown in Figure 13. However, the confidence
intervals in Figure 19 appear more reasonable. The subject-specific predicted
curves shown in 20 are not shrunk towards the mean as much as in Figure 14.

Fig 19. �1 penalized model with alternative correlation structure: parameter estimates with
95% confidence bands

For the �2 Penalized model, in place of the correlation structure implied by
the penalty matrix S described above, we augmented each Zi matrix on the left
with the columns [1,xi], where xi is an ni × 1 vector of measurement times
for subject i. We then replaced Zibi with [1,xi, Zi](u

T
i , b

T
i )

T , and assumed
(uT

i , b
T
i )

T ∼ N(0,Σi) where

Σi =

[
Σ′

σ2
b Iqi

]
and Σ′ is a common 2 × 2 unstructured positive definite matrix. To model
the within-subject correlations, we used a continuous autoregressive process of
order 1. In particular, Cor(yi(xij), yi(xij′)) = ζ |xij−xij′ | for a common parameter
ζ > 0.

Figure 21 shows the estimated marginal mean and 95% credible bands, and
Figure 16 shows the subject-specific predicted curves. The estimates shown in
Figure 21 are similar to that shown in Figure 15. While estimates of the differ-
ence between low and high vigilance subjects differs between this model and the
�2 penalized model in Section 9.3, the more notable difference is in the subject-
specific predicted curves. As seen in Figure 22, the predicted subject-specific
curves are not shrunk towards the mean as much as in Figure 16.
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Fig 20. �1 penalized model with alternative correlation structure: subject-specific predicted
curves

Fig 21. �2 penalized model with alternative correlation structure: parameter estimates with
95% confidence bands

Table 4 shows the mean squared error (MSE) and computing time for the
�1 penalized and �2 penalized models. In Table 4, computing time for the �1
penalized model does not include cross-validation, because the parameters were
hand-tuned (with only 17 subjects and a complex random effects structure,
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Fig 22. �2 penalized model with alternative correlation structure: subject-specific predicted
curves

cross-validation did not find reasonable parameter values). As can be seen in
Table 4, the alternative correlation structure led to smaller MSE for both the �1
and �2 penalized models, and less computing time for the �2 penalized model.

Table 4

MSE and computing time for different random curve correlation structures using the �1
penalized and �2 penalized models. “Smoothing” refers to smoothing splines used in Section

9.3 and “Alternative” refers to the correlation structures described in Section 9.4.

�1 penalty �2 penalty
Smoothing Alternative Smoothing Alternative

MSE 0.0195 0.00649 0.0348 0.00764
Computing time (seconds) 10.9∗ 11.2∗ 166 56.9
∗Does not include cross-validation (parameters hand-tuned)
Note: Models fit on a laptop with Intel i7 quad CPUs at 2.67 GHz and 8 GB memory

10. Discussion and potential extensions

As demonstrated in this article, P-splines with an �1 penalty can be useful for
analyzing repeated measures data. Compared to related work with �1 penalties,
our model is ambitious in that we allow for multiple smoothing parameters
and propose approximate inferential procedures that do not require Bayesian
estimation. However, these are also the two aspects of our proposed approach
that require additional future work.

Regarding estimation, our current approach of using ADMM and CV appears
to work reasonably well for random intercepts, but is not yet reliable for random
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curves. In the future, we plan to develop more robust estimation techniques, par-
ticularly for smoothing parameters. As one possibility, we have done preliminary
work to minimize quantities similar to GCV and AIC instead of the more com-
putationally intensive CV, though these approaches do not seem as promising as
their �2 counterparts. It may also be helpful to set the degrees of freedom prior to
fitting the model. When possible, Bayesian estimation may be the most reliable
way to currently fit these models. Bayesian estimation also opens the possibility
of using other sparsity inducing priors, such as spike and slab models [18].

Regarding inference, in future work it may be possible to use the δ quantity to
bound difference between �1 and �2 penalized fits under certain assumptions on
the data. It may also be helpful to investigate the use of post-selection inference
methods to develop confidence bands for linear combinations of the active set,
and to further investigate through simulations the performance of our proposed
approximations of degrees of freedom. However, we note that our primary use of
the degrees of freedom estimate d̂f is to obtain the residual degrees of freedom
d̂fresid = n− d̂f, which we then use to estimate the variances σ̂2

ε = ‖r‖22/d̂fresid.
Therefore, when n � d̂f, σ̂2

ε is not very sensitive to d̂f, in which case it is not
critical for our purposes to obtain an exact estimate of degrees of freedom.

As for P-splines with an �2 penalty, users must select both the order M of
the B-splines and the order k + 1 of the finite differences. These choices will
depend on the scientific problem and analytical goals. Using k = 1 (2nd order
differences) is likely an appropriate starting point for most applications, and
larger k could be used to increase the amount of smoothness.

For P-splines with an �2 penalty, in most cases the knot placement is not
critical so long as the number of knots is large enough [29, 9]. We believe this
also holds for P-splines with an �1 penalty, though further experimentation is
needed to support this assumption. In practice, we recommend fitting models
with a few different knot placements and widths to determine whether the model
is sensitive to those choices for the data at hand.

Regarding the rate of convergence, from Observation 1 and the work of Tib-
shirani [39], we know that for equally spaced data and F = In, P-splines with
an �1 penalty achieve the minimax rate of convergence for the class of weakly
differentiable functions of bounded variation. When there are less knots than
data points, we do not think it is possible to achieve the minimax rate of con-
vergence. However, if the knots are selected well, it may be possible to achieve
the same performance in practice.

It could also be useful to extend these results to generalized additive models
to allow for non-normal responses, and to extend the approach of Sadhanala and
Tibshirani [31] to include random effects and multiple smoothing parameters.
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Appendix A: Simulated demonstration with two smooths

In this appendix, we simulated data similar to that in Section 8, but with an
additional varying-coefficient smooth. In particular, we simulated data for two
groups with 50 subjects in each group and between 4 and 14 measurements per
subject (900 total observations). The data for subject i at time t was generated
as yit = β0+f1(xit)+f2(xit)1[subject i in Group 2]+bi+εit where bi ∼ N(0, σ2

b )
and εit ∼ N(0, σ2

ε ) for σ
2
b = 1 and σ2

ε = 0.01. The true group means f1(x) and
f2(x) are shown in Figure 23 and the simulated data are shown in Figure 24.

Fig 23. True means

Fig 24. Simulated data

We fit a varying-coefficient model with J = 2 smooths to the data. In par-
ticular, we used ADMM and 5-fold CV to minimize

minimize
β0∈R,β1∈Rp−1,β2∈Rp,b∈RN

1

2
‖y − β01− F1β1 − F2β2 − Zb‖22

+ λ1‖D(2)β1‖1 + λ2‖D(2)β2‖1 + τbT b. (36)

where F1, F2 ∈ R
n×p were formed with second order (first degree) B-splines and

p = 21 basis functions, F2 = diag(u)F1 where ui = 1[subject i in Group 2],
and Zil = 1 if observation i belongs to subject l and zero otherwise. We also fit
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an equivalent model with an �2 penalty using the mgcv package [47], i.e. with
(λj/2)‖D(2)βj‖22 in place of λj‖D(2)βj‖1 in (36), j = 1, 2.

The estimated curves are shown in Figure 25 for the �1 penalized model
and in Figure 26 for the �2 penalized model. We used 5-fold CV to estimate the
smoothing parameters λ1, λ2 and τ in the �1 penalized model, and LME updates
to estimate σ2

b and b in the final model. As seen in Figures 25 and 26, the fits
are similar, but the results with the �1 penalized model are slightly closer to the
truth.

Fig 25. Marginal mean and 95% credible intervals from �1 penalized model fit with ADMM
and CV: black is true marginal mean, red is estimated marginal mean

Table 5 shows the degrees of freedom and variance estimates with the �1
penalized and �2 penalized models. As seen in Table 5, variance estimates from
both the �1 and �2 penalized models are very near the true values.

Table 5

Degrees of freedom and variance in �1 and �2 penalized models

Penalty
�1 �2

j = 1 j = 2 j = 1 j = 2 Truth
df (ridge) 17.7 17.8 19.3 13.8 –
df (Stein) 12 9 – – –

σ̂2
ε 0.0090 0.010 0.01

σ̂2
b 1.04 1.02 1

Appendix B: Details for λmax
j

Letting rj = y − β01 −
∑

��=j F�β� − Zb be the jth partial residuals, we can

write the terms in (8) that involve βj as (1/2)‖rj −Fjβj‖22 +λj‖Djβj‖1. Then
taking the sub-differential of (8) with respect to βj , we have
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Fig 26. Marginal mean and 95% credible intervals from �2 penalized model fit with mgcv [47]:
black is true marginal mean, red is estimated marginal mean

0 = −FT
j (rj − Fjβ̂j) +DT

j λjsj (37)

for some sj = (sj,1, . . . , sj,pj−kj−1)
T where

sj,� ∈

⎧⎪⎨⎪⎩
{1} if (Dβ̂j)� > 1

{−1} if (Dβ̂j)� < 1

[−1, 1] if (Dβ̂j)� = 0.

Solving (37) for β̂j , we have β̂j = (FT
j Fj)

−1FT
j rj − DT

j λjsj . Multiplying

through by Dj and noting that DjD
T
j is full rank and thus invertible, we have

(DjD
T
j )

−1Djβ̂j = (DjD
T
j )

−1Dj(F
T
j Fj)

−1FT
j rj − λjsj . (38)

Setting Djβ̂j = 0 in (38), we get that (DjD
T
j )

−1Dj(F
T
j Fj)

−1FT
j rj =

λjsj where sj,� ∈ [−1, 1] for all �. This can only hold if λj =
‖(DjD

T
j )

−1Dj(F
T
j Fj)

−1FT
j rj‖∞, which gives us λmax

j .

Appendix C: Controlling total variation with the �1 penalty

Let f(x) =
∑p

j=1 βjφ
M
j (x). Suppose the knots are equally spaced, and let

hM−k−1 = (M − k − 1)/(tj+M−k−1 − tj) for all j and 0 ≤ k < M − 1. Then on
the interval [tM = xmin, tp+1 = xmax], from [4, p. 117] we have

dk+1

dxk+1
f(x) = hM−1 · · ·hM−k−1

p∑
j=k+2

∇k+1βjφ
M−k−1
j (x) (39)

where ∇k+1 is the (k + 1)th order backwards difference.
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Let aMk+1 = maxj∈{k+2,...p}
∫ xmax

xmin
φM−k−1
j (x)dx. We note that aMk+1 is finite

and positive for all 0 ≤ k < M − 1. Then from (39), we have

1

hM−1 · · ·hM−k−1

∫ xmax

xmin

∣∣∣∣ dk+1

dxk+1
f(x)

∣∣∣∣ dx
=

∫ xmax

xmin

∣∣∣∣∣∣
p∑

j=k+2

∇k+1βjφ
M−k−1
j (x)

∣∣∣∣∣∣ dx
=

∫ xmax

xmin

∣∣∣∣∣∣
p∑

j=k+2

(D(k+1)β)j−k−1φ
M−k−1
j (x)

∣∣∣∣∣∣ dx
≤
∫ xmax

xmin

p∑
j=k+2

∣∣∣(D(k+1)β)j−k−1φ
M−k−1
j (x)

∣∣∣ dx
=

p∑
j=k+2

∫ xmax

xmin

∣∣∣(D(k+1)β)j−k−1φ
M−k−1
j (x)

∣∣∣ dx
=

p∑
j=k+2

∣∣∣(D(k+1)β)j−k−1

∣∣∣ ∫ xmax

xmin

φM−k−1
j (x)dx (40)

≤ aMk+1

p∑
j=k+2

∣∣∣(D(k+1)β)j−k−1

∣∣∣
= aMk+1‖D(k+1)β‖1 (41)

where (40) follows because φM−k−1
j (x) ≥ 0 ∀x ∈ R.

Rewriting (41), for 0 ≤ k < M − 1 we have∫ xmax

xmin

∣∣∣∣ dk+1

dxk+1
f(x)

∣∣∣∣ dx ≤ CM,k+1‖D(k+1)β‖1

where CM,k+1 = aMk+1hM−1 · · ·hM−k−1 is a constant. This shows that control-

ling the �1 norm of the (k + 1)th order finite differences in coefficients also
controls the total variation of the kth derivative of the function.

Supplementary Material

Supplementary material for “P-splines with an �1 penalty for repeated
measures”
(doi: 10.1214/18-EJS1487SUPP; .zip). Code and R package for all simulations
and analyses. These materials are also available at https://github.com/

bdsegal/code-for-psplinesl1-paper (code) and https://github.com/

bdsegal/psplinesl1 (R package).

https://doi.org/10.1214/18-EJS1487SUPP
https://github.com/bdsegal/code-for-psplinesl1-paper
https://github.com/bdsegal/code-for-psplinesl1-paper
https://github.com/bdsegal/psplinesl1
https://github.com/bdsegal/psplinesl1
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