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Abstract: Robust methods are little applied (although much studied by
statisticians). We monitor very robust regression by looking at the be-
haviour of residuals and test statistics as we smoothly change the robustness
of parameter estimation from a breakdown point of 50% to non-robust least
squares. The resulting procedure provides insight into the structure of the
data including outliers and the presence of more than one population. Moni-
toring overcomes the hindrances to the routine adoption of robust methods,
being informative about the choice between the various robust procedures.
Methods tuned to give nominal high efficiency fail with our most compli-
cated example. We find that the most informative analyses come from S
estimates combined with Tukey’s biweight or with the optimal ρ functions.

For our major example with 1,949 observations and 13 explanatory vari-
ables, we combine robust S estimation with regression using the forward
search, so obtaining an understanding of the importance of individual obser-
vations, which is missing from standard robust procedures. We discover that
the data come from two different populations. They also contain six outliers.

Our analyses are accompanied by numerous graphs. Algebraic results
are contained in two appendices, the second of which provides useful new
results on the absolute odd moments of elliptically truncated multivariate
normal random variables.
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1. Introduction

Data rarely follow the simple models of mathematical statistics. Often, there
will be distinct subsets of observations so that more than one model may be
appropriate. Further, parameters may gradually change over time. In addition,
there are often dispersed or grouped outliers. This distance between mathemat-
ical theory and data reality has led, over the last sixty years, to the development
of a large body of work on robust statistics. By the time of Andrews et al. (1972)
(the Princeton Robustness Study), according to Stigler (2010), it was expected
that in the near future “any author of an applied article who did not use the
robust alterative would be asked by the referee for an explanation”. Now, a fur-
ther forty years on, there does not seem to have been the foreseen breakthrough
into the wider scientific universe. The purpose of our paper is to sketch what
we see as some of the reasons for this failure and to suggest a system of inter-
rogating robust analyses, which we call “monitoring”, whereby we consider fits
from very robust to highly efficient and follow what happens to aspects of the
fitted model.

It has long been advocated that a very robust fit, asymptotically resistant to
50% of aberrant observations, be compared with a non-robust fit. For example,
Rousseeuw and Leroy (1987), p. 111, present comparative index plots of least
squares (LS) and least median of squares (LMS) residuals. Such comparisons
are for two extreme forms of regression; the most and least robust. Hawkins
and Olive (2002), Point 3, recommend using several estimators, both classical
and robust. In our monitoring of robust regression we extend this suggestion
by also including the intervening fits of intermediate robustness, monitoring
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such quantities as residuals, parameter estimates and test statistics; we obtain
information on the important changes in conclusions that come from differing
assumptions about the degree of contamination in the data.

The procedure makes enthusiastic use of graphics. If the initial very robust
fit and the final fit are thought of as providing two snapshots of the data, our
monitoring can be thought of as providing a film of which the two snapshots
are stills from the beginning and end of the film. The inclusion of outliers is
usually signalled by a sudden change in residuals and a more gradual change in
parameter estimates. Typically we require 50 robust regression fits per analysis;
a computational burden only made possible by the efficiency of the FSDA robust
library (Riani et al., 2012) and by the recent technical advances of Riani et al.
(2014b) described in §2.2, together with results in Appendix B.

Our monitoring of robust procedures has at least two consequences. One is
that we produce insightful data analyses. The second is methodological. By con-
sidering a variety of procedures for robust regression, we are able to determine
which are the critical parameters in determining the properties of the robust fit,
distinguishing them from those that are only of secondary importance. We are
thus able to provide comparatively simple prescriptions for robust regression.

Our paper is structured as follows. Section 2 introduces three classes of robust
regression estimators and presents properties including the breakdown point and
efficiency of estimation. The important family of soft trimming estimators, lead-
ing to downweighting of observations by a function ρ, derives from M estimation
described in §2.2. The derived methods, S, MM and τ estimators, which differ in
the way in which the error variance is estimated are the subject of the remainder
of §2. In §3 we discuss choice of an appropriate form of robust regression, difficul-
ties in numerical procedures and the interpretation of estimated parameters; we
focus on standard errors of estimated regression coefficients. A second problem
of interpretation is that of the effect of individual observations on inferences,
which can be provided by the forward search (Riani et al., 2014c).

Examples of the application of monitoring are in §4. For each set of data we
explore monitoring for a total of 20 combinations of ρ function and estimation
procedure. For each combination we look at the fitted regression for 50 values
of breakdown point or efficiency, depending on which is more easily specified
for the specific method. We also monitor the behaviour of hard trimming meth-
ods including least trimmed squares and the forward search. The first example,
‘Stars data’ has a simple structure with one explanatory variable and four out-
liers, well separated from the main body of the data. Even with this simple
problem, we detect some differences in the performance of the methods. These
become more pronounced as we move to more complicated examples. For the
bank data, analysed in §4.4, there are 1,949 observations and 13 explanatory
variables. Through the use of monitoring, this example very nicely illustrates
the similarities and distinctions between the various forms of robust regression.

The conclusions from our exploration of monitoring are in §5. We recommend
S estimation with either Tukey’s bisquare or the optimal ρ function. Insight
into the relationship between individual observations and inferences is best pro-
vided by the forward search. The first of three appendices describes the four ρ
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functions that we use: Tukey’s bisquare, optimal, hyperbolic and Hampel. The
second provides algebra for application of the Hampel ρ function that avoids
the necessity for the customary numerical integration. These new results render
straightforward the routine application of this ρ function in data analysis.

2. Robust regression

We work with the customary regression model in which the n response vari-
ables yi are related to the values of a set of p explanatory variables x by the
relationship

yi = βTxi + ǫi i = 1, . . . , n, (2.1)

including an intercept term. The independent errors ǫi have constant vari-
ance σ2.

2.1. Three classes of robust estimator and some properties

It is helpful to divide methods of robust regression into three classes.

1. Hard (0,1) Trimming. In Least Trimmed Squares (LTS: Hampel, 1975,
Rousseeuw, 1984) the amount of trimming is determined by the choice of
the trimming parameter h, [n/2] + [(p+ 1)/2] ≤ h ≤ n, which is specified
in advance. The LTS estimate is intended to minimize the sum of squares
of the residuals of h observations. For LS, h = n. In the generalization
of Least Median of Squares (LMS, Rousseeuw, 1984) that we monitor,
the estimate minimizes the median of h squared residuals. Comments on
numerical matters associated with these optimizations are in §3.

2. Adaptive Hard Trimming. In the Forward Search (FS), the observations
are again hard trimmed, but the value of h is determined by the data, being
found adaptively by the search. Data analysis starts from a very robust
fit to a few, carefully selected, observations found by LMS or LTS with
the minimum value of h. The number of observations used in fitting then
increases until all are included. (See Atkinson and Riani, 2000 and Riani
et al., 2014c for regression, Atkinson et al., 2010 for a general survey of the
FS, with discussion, and Cerioli et al., 2014 for results on consistency).

3. Soft trimming (downweighting). M estimation and derived methods. The
intention is that observations near the centre of the distribution retain
their value, but the ρ function ensures that increasingly remote observa-
tions have a weight that decreases with distance from the centre.

We shall consider all three classes of estimator. The FS by its nature provides
a series of decreasingly robust fits which we monitor for outliers in order to
determine how to increment the subset of observations used in fitting. In this
paper we place particular emphasis on monitoring the soft trimming estimators
for four ρ functions, for which special numerical techniques are necessary (§2.2).
Four properties of the estimators are of importance. Here we give the values for
hard trimming. The extension to S estimation is in §2.2.
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1. Breakdown point, bdp; the asymptotic proportion of observations that
can go to ∞ without affecting the parameter estimates; bdp= 1 − h/n.
We stress that this definition requires both that n → ∞ and that the
contaminating observations also become increasingly remote.
As a result of monitoring we observe an empirical breakdown point, the
point at which the fit switches from being robust to non-robust least
squares. This important property depends both on the nominal properties
of the estimator and on the particular data set being analysed.

2. The consistency factor Kσ required to rescale the estimate of σ2. Let the
estimator of σ2 from the residual sum of squares of the central h ob-
servations be σ̂2

h. Since the sum of squares contains only the central h
observations from a normal sample, the estimate needs scaling. Let Kσ be
the ratio of the variance of the truncated normal distribution containing
the central h/n portion of the full distribution to the variance of the un-
truncated distribution (see Croux and Rousseeuw (1992), equation (6.5),
or the results of Tallis (1963) on elliptical truncation). To estimate σ2 we
accordingly take

σ̃2 = σ̂2
h/Kσ. (2.2)

As h→ n,Kσ → 1.
3. The efficiency of estimation. For normally distributed responses with ex-

planatory variables x that follow some multivariate distribution, let the
robust estimator of the parameter βj of the linear model be β̃j , with β̂j the

full-sample least squares estimator. If the observations for β̃j are selected
at random (and so have the same distribution for x), the asymptotic ef-
ficiency of estimation of least squares relative to full-sample least squares
is Eff = varβ̂j/varβ̃j = h/n. For the trimmed observations used in robust
estimation, the efficiency can be much less than this.

4. The asymptotic variance of any element of β̃ relative to least squares is
the reciprocal of the efficiency Eff.

For hard trimming, once one of the values, for example the breakdown point
bdp, has been selected, the other three follow. In the next section we present
related results for S estimators.

2.2. M and S estimation

In least squares estimation, the value of β̂ does not depend on the estimate of
σ2. The same is not true in M estimation and derived procedures.

Suppose σ is known and let the residuals for some estimate b of β be ri =
yi − bTxi. Then the regression M-estimate of β is the value that minimizes the
objective function

n
∑

i=1

ρ{ri(β)/σ}, (2.3)

where ρ is a function with properties given below that reduces the importance
of observations with large residuals.
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For robust M estimation, σ should also be estimated robustly. The M-estimator
of scale σ̃M is found by solution of the equation

1

n

n
∑

i=1

ρ
(ri
σ

)

=
1

n

n
∑

i=1

ρ

(

yi − βTxi
σ

)

= K, (2.4)

in theory solved among all (β, σ) ∈ ℜp × (0,∞), where 0 < K < sup ρ (but
see §3). If we take the minimum value of σ̃M which satisfies equation (2.4), we
obtain the S-estimate of scale (σ̃S) and the associated estimate of the vector
of regression coefficients (Rousseeuw and Yohai, 1984). The estimator of β is
called an S-estimator because it is derived from a scale statistic, although in an
implicit way.

We now consider the properties of the class of functions ρ that we use.
Rousseeuw and Leroy (1987), p. 139 show that if ρ satisfies the following condi-
tions:

1. It is symmetric and continuously differentiable, and ρ(0) = 0;
2. There exists a c > 0 such that ρ is strictly increasing on [0, c] and constant

on [c,∞);
3. It is such that K/ρ(c) = bdp,with 0 < bdp ≤ 0.5,

(2.5)

the asymptotic breakdown point of the S-estimator tends to bdp when n→ ∞.
As c increases, fewer observations are downweighted, so that the estimate of σ2

approaches that for least squares and bdp → 0. For consistency when the errors
are normally distributed, we require

K = EΦ0,1

[

ρ
(ri
s

)]

(2.6)

where Φ0,1 is the cdf of the standard normal distribution.
It is however customary to rescale ρ (for example, Maronna et al., 2006, p. 31).

If ρ(x) is normalized in such a way that ρ(c) = 1, the constant K becomes the
breakdown point of the S-estimator. If we fix bdp it follows from (2.5) and
(2.6) that c and K are determined. The exact relationship will depend upon the
function ρ. The four ρ functions that we use are described in Appendix A.

We monitor S estimators by looking over a grid of values of bdp. Riani et al.
(2014b), §3.1, give computationally efficient calculations for finding the value of
c for Tukey’s bisquare once the value of bdp is specified. The calculations depend
on the polynomial nature of the ρ function and require moments of truncated
chi-squared random variables. For MM estimators we instead monitor efficiency.
The calculations to find c again rely on expectations of truncated chi-squared
variable and are given in their §3.2. The extension to the optimal loss function
is given in their §7 – the calculations are similar to those for Tukey’s bisquare
since the ρ function is again of a polynomial form. We use numerical integration
for the hyperbolic ρ function. New results on the absolute odd moments of
the multivariate normal distribution under elliptical truncation, presented in
Appendix B, allow us to avoid numerical integration for any ρ function that
is a polynomial in absolute values of its argument. We apply the results to
calculation of Hampel’s ρ function.
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An important final point is that the ρ functions for the mean in (2.3) and
(2.5) may be different. However, in our numerical calculations for all estimators
where such a choice exists, we use the same ρ for both the mean and the scale
estimators.

2.3. MM and Tau estimation

The results of §2.2 establish an asymptotic relationship between the breakdown
point and efficiency of S estimators; as one increases, the other decreases. In an
attempt to break out of this relationship, Yohai (1987) introduced MM estima-
tion, which extends S estimation. In the first stage the breakdown point of the
scale estimate is set at 0.5, thus providing a high breakdown point. This fixed
estimate is then used in the estimation of β for whichK can be chosen to provide
an estimator of β with a high efficiency. Maronna et al. (2006), p. 126, recom-
mend a value of 0.85 for this efficiency, but, when we monitor MM estimates,
we of course look over a range of values.

The final estimators we consider are an extension of S and MM introduced
by Yohai and Zamar (1988). In τ estimation, unlike MM estimation, there is no
global precalculated estimate of scale. Both β and σ are iteratively and alter-
natively estimated. In the general procedure the function ρ0 used to estimate
scale is chosen to give the maximum breakdown point for regression estimates.
On the other hand the function ρ1 used for estimation of β is chosen to give
high efficiency. Sometimes a value as high as 0.95 is suggested. It is important
to stress that these are asymptotic values for extremely well separated data; less
fortunate forms of data can give rise, for example, to biased estimates. Although
we use the same functional form for ρ0 and ρ1, the constants are chosen to give
a range of breakdown points, over which we monitor the estimates for three
values of efficiency.

3. Problems of formulation, of calculation and of interpretation

3.1. Formulation and calculation

A major disincentive to the routine use of standard robust methods is the num-
ber of decisions that have to be made before the analysis of the data begins. We
now describe some of these.

The most difficult problem is often specification of the desired efficiency or,
equivalently, breakdown point. Less formally, this is asking what proportion of
outliers are expected in the particular set of data being analysed. The second is
the nature of robust estimator that is required – in the regression case the choice
between the four forms of estimator described in the previous section, together
with the hard trimming methods. The third choice is that of the ρ function. We
show how the monitoring proposed in our paper makes many of these decisions
redundant and illuminates which remaining ones are important. However two
further groups of problems remain.
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The second group are those of calculation. The functions to be maximized
when using any of these robust estimators are complicated, with many local
maxima. In consequence, approximate methods are used. These are typically
based on randomly sampled subsets of p observations (elemental sets) to which
the model is fitted exactly. The fitted values are then used to evaluate the
function to be maximized, perhaps after some refining iterations (concentration
steps). In these the ρ function is used to evaluate weights for the n residuals
at each iteration which are used to provide a new parameter estimate and so
a new set of weights. There are several details which need to be decided. The
conceptually simplest is the number of subsamples to extract and the number
of concentration steps in each subsample. Our implementation for this paper
follows the recommendations of the FSDA toolbox.

The final group of problems are statistical in nature. One is loss of the simplic-
ity of distribution theory associated with least squares estimation and related
tests. We illustrate this point in §3.2 for the t-tests for the parameters in the
fitted linear model.

The other point is of extreme statistical importance, namely that the re-
searcher loses information on the effect that each unit, outlier or not, has on the
final proposed estimate. Although this is not a problem in the numerical appli-
cation of robust methods, it can be seen as a scientific limitation. We endeavor
to overcome this in our Example 3 by incorporating some information on the
effect of individual units from the FS.

3.2. Robust standard errors

This section summarises results on the robust analogues of normal-theory t-sta-
tistics for the parameters in a linear model which we need for our numerical
results in §§4.3 and 4.4. Under suitable regularity conditions (see, for example,
Maronna et al., 2006, §10.3), M estimates are asymptotically normal, thereby
allowing for Wald-type tests and confidence intervals. The asymptotic covariance
matrix of β̂M , the M estimator of the regression vector β, can be written as a
product of three terms

cov(β̂M ) = σ2γV −1
X ,

where σ is the scale parameter, VX is a square symmetric matrix and γ is a
correction factor which depends on the particular function ψ(x) = ρ′(x).

The correction factor γ (Maronna et al., 2006, p. 100) is given by E(ψ2)/
(E(ψ′))2, estimated by

γ̂ =
1

n− p

n
∑

i=1

ψ
(ri
σ̂

)2
/[

1

n

n
∑

i=1

ψ′
(ri
σ̂

)

]2

.

The factor 1/(n−p) is used instead of n in order to obtain the classical formula
when ψ(x) = x and VX = XTX , corresponding to LS.
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Huber and Ronchetti (2009), §7.6, suggest three expressions to estimate VX .
The one which is most used in the literature is

V̂X =
1

1
n

∑n
i=1 ŵi

XT ŴX, (3.1)

where wi = w(ri/σ̂) = σ̂ψ(ri/σ̂)/ri and W = diag(ŵ1, . . . , ŵn). Under the
assumptions of a symmetric error distribution, a symmetric ρ function and a
matrix X with all leverages equal to p/n, Huber (1973) showed that γ̂(XTX)−1

contains a bias of order O(p/n) and derived a correction K̂2 that makes
γ̂(XTX)−1 unbiased up to terms of order O(p2/n2). This correction is

K̂2 =



1 + p

n
∑

i=1

{

ψ′
(ri
σ̂

)

− ψ′
(ri
σ̂

)}2
/{

n
∑

i=1

ψ′
(ri
σ̂

)

}2




2

,

where

ψ′
(ri
σ̂

)

=

n
∑

i=1

ψ′
(ri
σ̂

)

/n.

Although this correction is only valid when VX = XTX , it is standard in the
robust literature (see for example Koller and Stahel, 2011), to use it in combi-
nation with V̂X defined as in (3.1).

Of course, all leverages will only be equal to p/n for some particular designed
experiments satisfying D-optimality. Even if we have such data, we will be look-
ing at subsets of observations and the condition will not hold. Given that, as
Huber and Ronchetti (2009), p. 161 admit, there is no general agreement on the
“desirability of safeguarding against leverage points in an automatic fashion”.
We use both

σ̂2γ̂(XTX)−1 (3.2)

and

σ̂2γ̂K̂2 1
1
n

∑n
i=1 ŵi

(XT ŴX)−1 (3.3)

in the calculation of robust t-statistics.
We are here concerned with robustness against outlying observations. Croux

et al. (2004) extend the discussion to t-statistics which are also robust against
correlation and heteroskedasticity of the errors in (2.1).

4. Examples

We illustrate the use of monitoring with three examples of increasing complexity.
For effective monitoring we require a method that moves from a very robust fit
to least squares. Although all methods have such properties asymptotically, the
comparisons of Riani et al. (2014c) show that the finite sample properties of
the various methods vary depending on the distance between the main body of
the data and the contamination. In particular, our results suggest we need to
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avoid methods which are tuned to have a very high efficiency for the parameters
of the linear model but which are liable to failure unless the contamination is
extremely remote.

4.1. Correlation

In monitoring S estimators we vary the bdp from 0.5 to 0.01, as we do for τ
estimates, but now for three values of efficiency. For MM estimates it is more
convenient to monitor changes as the efficiency goes from 0.5 to 0.99. In all
cases we look at plots of residuals. For simple structures, like our first example,
there is a clear division of the solutions into a robust fit and a non-robust one,
with a sharp break between them. For more complicated examples the point of
transition is not so clearly visible. But in all cases we find that the structure
of the plot is well summarized by the correlation of the ranks between the
residuals at adjacent monitoring values. We consider three standard measures
of correlation:

1. Spearman. The correlations between the ranks of the two sets of observa-
tions.

2. Kendall. Concordance of the pairs of ranks.
3. Pearson. Product-moment correlation coefficient (see Stigler (1989) for an

account of Galton’s contribution).

4.2. Example 1: Stars data

We start with an easy to understand data example that, nevertheless, presents
some of the main points of our argument. The data are taken from Rousseeuw
and Leroy (1987), p. 27 and form part of a Hertzsprung-Russell diagram of
stars. This log-log plot has the effective surface temperature of the star as the
explanatory variable and (logged) light intensity as the response. A typical plot
has around 30,000 stars which fall into groups including “the main sequence”,
“white dwarves” and “giants” of several kinds. However, in our example, there
are only 47 observations. Since there is only one explanatory variable, the struc-
ture is obvious on inspection.

These data have the canonical structure against which the methods of very
robust regression were developed. Fig. 1 is a plot of the data. Note that we
have plotted temperature values from low to high, which is the reverse of the
standard diagram in astronomy. There are 41 observations which plausibly lie
on the same regression line, two relatively close outliers, observations 7 and 9
and a cluster of four outliers, observations 11, 20, 30 and 34. This structure
of the main sequence and giants is well established. Included in the figure are
five linear fits: least squares, which is attracted towards the cluster of outliers,
and four robust fits that fit predominantly to the main group. The steepest
line is LTS, followed by S and then MM with efficiencies of 0.85 and 0.95. The
higher the desired efficiency, the closer is the fit to least squares. There are thus
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Fig 1. Stars data: scatterplot and fitted regression lines: LS, least squares, which is attracted
towards the cluster of outliers and four robust fits. The steepest line is LTS, followed by S
and then MM with efficiencies of 0.85 and 0.95. The higher the desired efficiency, the closer
is the fit to least squares.

two very different groups of fitted lines, those from high breakdown estimators
and that from a procedure with zero breakdown. Our monitoring plots each
consider a single estimator as the coefficients are changed. Virtually all show a
robust and a non-robust fit as the two extremes. The interesting comparison is
at what empirical breakdown point this transition occurs. For hard trimming
with six outliers out of 47 observations, we would hope to achieve the minimum
breakdown point, for these data, of 12.8%, with correspondingly high efficiency.
Methods that monitoring shows have a higher breakdown point require a more
robust fit to reveal the data structure. We can expect that, for data with greater
contamination, they may fail to reveal any contamination whatsoever.

Figure 2 shows a typical monitoring plot, in this case for S estimation. This
is generated by a series of robust fits, starting from a breakdown point of 0.5
and decrementing the value by 0.01 up to 0.01. There are therefore 50 robust
fits leading to the plot of scaled residuals in the figure, for which, in this case,
we used Tukey’s bisquare. The plot of scaled residuals for high breakdown fits
clearly shows three sets of residuals: four very large (units 11, 20, 30 and 34),
two intermediate (units 7 and 9) and the cluster of the remainder. There is
some slight decrease in the values around a breakdown point of 0.2 and then an
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Fig 2. Stars Data: S estimation, Tukey’s bisquare ρ function. Left-hand panel, plot of scaled
residuals. Three sets of residuals (the cluster of outliers, the two intermediate outliers and
the main cluster of the data) are clearly seen for bdp values down to around 0.2. Right-hand
panel, three measures of the correlations of adjacent residuals. The abrupt switch to LS at
0.16 is evident.

abrupt change at 0.16 when the fit switches to least squares. The exact point of
this change shows clearly in the right hand panel, the plot of correlation values.

For MM estimation we first find σ2, with a breakdown point of 0.5, and then
increase the efficiency of estimation of β from 0.5 to 0.99 with an increment
of 0.01, the estimate of σ2 remaining fixed. The results in Figure 3 show that
the very robust fit predominates, the change to least squares occuring at an
efficiency of 0.99. However, from Table 2 of Riani et al. (2014b), an efficiency
of 0.99 corresponds to, for Tukey’s bisquare, a breakdown point of 0.0570. The
minimum value of the plot of correlations is in the last step when we compute
the correlation between the residuals with eff = 0.98 and those for eff = 0.99.

We explored the τ residuals for three somewhat high values of efficiency of
estimation of β: 0.85, 0.9 and 0.95. The plots are similar to those already given,
except that the breakdown point associated to the step immediately before the
change from very robust to least squares fits occurs increases from 0.14 to 0.17
and then 0.26. As the required efficiency of estimation of β is increased, the bdp
of the procedure is reduced.
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Fig 3. Stars Data: MM estimation, Tukey’s bisquare ρ function. Left-hand panel, plot of
scaled residuals. The three sets of residuals are clearly seen for virtually all efficiency values.
Right-hand panel, three measures of the correlations of adjacent residuals. The abrupt switch
to LS is at eff = 0.99, corresponding to a bdp of 0.057.

All of these robust procedures were also used with the other three ρ functions:
hyperbolic, optimal and Hampel. For this example the choice is mostly not crit-
ical, apart from τ estimation. For S estimation with all three ρ functions the
change in the plots is at a breakdown point of 0.17. For MM estimation with the
Hampel function the first step associated to non-robust estimation is at an effi-
ciency of 0.97 and at 0.98 for the hyperbolic. Although, for the optimal function
there is a change at 0.93 causing a rescaling of the residuals, the three groups
found by robust estimation remain over the whole range up to an efficiency of
0.99. Only τ estimation is somewhat sensitive to the form of the function.

For the hyperbolic and optimal ρ functions, the behaviour of the τ estimate is
similar to that for the bisquare, as it is with the Hampel function and τ = 0.85
or 0.9. However, with Hampel’s ρ function, the method completely breaks down
when the efficiency is set at 0.95, producing a uniform plot of least squares
residuals. These results are summarised in Table 1.

It is also interesting to look at the plots of residuals that arise from LTS, LMS
and the FS, but we leave this until we consider the more complicated structure
of Example 2.
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Table 1

Stars data. Empirical breakdown point (bdp) or efficiency (eff) for MM: five estimators and
four ρ functions. The values are for the step before the switch to a non-robust fit

Estimator Bisquare Optimal Hyperbolic Hampel
S bdp 0.17 0.17 0.17 0.17
τ = 0.85 bdp 0.14 0.14 0.14 0.16
τ = 0.90 bdp 0.17 0.16 0.16 0.20
τ = 0.95 bdp 0.26 0.21 0.24 —a

MM eff 0.98 0.99 0.97 0.96
a For this combination of τ and ρ function, only non-robust solutions
were obtained during monitoring.

4.3. Example 2: AR 2000 data

In these data, introduced by Atkinson and Riani (2000), §1.2.2, there are three
explanatory variables and 60 observations, with a structure of six masked out-
liers. There is no evidence of this structure in the scatterplot of the data in
their Figure 1.5 and this is an example where LS shows little, apart from the
slightly anomalous observation 43, which is not one of the six. The minimum
breakdown we can expect from hard trimming is 6/60, i.e. 0.1. We again look
at the structure of residuals during monitoring, but augment this with plots of
the t-statistics for the three explanatory variables.

We start with Figure 4. This time we show the plot of S residuals for the
optimal ρ function. Again there is a clear division of the plot into an initial,
very robust, region which, at a breakdown point of 0.27 becomes close to the
least squares fit. In the initial part of the plot the six remote outliers are clearly
visible. However, there is also interesting fine detail in the plot.

For high values of the breakdown point, greater than 0.34, there are four
groups of observations, with observations 7 and 39 having the most negative
residuals. At a bdp of 0.34 the two central groups coalesce and observation
43 becomes as outlying as observations 7 and 39. At the next transition, the
outliers with the largest positive and negative residuals form a single group, with
observation 43 outlying. This structure remains stable for lower values of bdp.

So far we have not reported results for the hyperbolic and Hampel’s ρ func-
tions in any detail. Figure 5 shows monitoring plots of S residuals from these
functions. The two plots are similar, if not identical. Compared with the plot for
the optimal ρ function in Figure 4, they only show one abrupt transition, that is
from four groups of observations to one plus a mild outlier, although observation
43 does become increasingly remote before this transition. However, either plot
would serve to signal the difference between the very robust and non-robust fits.

Plots for the MM estimator and all ρ functions are also of this kind, with
the optimal ρ function again showing two transitions. As with Figure 3, for
MM estimation in the stars data, the transition to a non-robust fit occurs at
a high efficiency, although not so high as in that figure. In the case of many τ
estimators, the plots only show the least squares fit. We accordingly summarise
these results in Table 2. The main conclusions are that the form of ρ function is
unimportant for the S estimator. But the choice of ρ in this example, does seem
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Fig 4. AR Data: S estimation, optimal ρ function. Left-hand panel, plot of scaled residuals.
Four groups of observations are evident for a bdp greater than 0.34 and three until the bdp
is 0.27. Thereafter the plot shows the LS fit with one outlier. Right-hand panel, three mea-
sures of the correlation. Kendall’s measure, in particular, shows the two transitions during
monitoring.

to have some effect on the performance of the MM estimator. However, if the
purpose of the analysis is to establish different possible structures for the data,
which are then to be further examined, the choice of ρ function is not crucial for
these data when MM estimation is used. It is the results for the τ estimator that
cause concern. For an efficiency of 0.85, the breakdown point is around 0.4. For
higher values of efficiency it is either closer to 0.5, or so high that we only see a
non-robust fit to the data. Use of the value of 0.95 for τ would lead to monitoring
which gave no indication of any departure from the least squares model.

We now turn to hard trimming procedures. The residuals for LTS are in Fig-
ure 6. As h/n increases from just above 0.5 to 0.99 and the bdp correspondingly
reduces, the residuals gradually decrease in magnitude as the number of obser-
vations used in fitting increases. This contrasts with the plots for the robust
analysis of the stars data, when the plots are sensibly constant within sector.
For the AR data, Figures 4 and 5, the plots are also constant in the last region
of monitoring, although, particularly with the optimal ρ function, there is a
decrease of the residuals for high bdp. The plot of residuals in Figure 6 shows
all the detail of groups and their coalescence evident in Figure 4, together with
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Fig 5. AR Data: S estimation, plots of scaled residuals. Left-hand panel, Hampel’s ρ function.
Right-hand panel, hyperbolic ρ function. To be compared with Figure 4.

Table 2

Atkinson and Riani (2000) Data. Empirical breakdown point (bdp), or efficiency (eff) for
MM, during monitoring for the transition between very robust and least squares regression:

five estimators and four ρ functions. The values are for the step before the switch to a
non-robust fit

Estimator Bisquare Optimal Hyperbolic Hampel
S bdp 0.27 0.27 0.26 0.27
τ = 0.85 bdp 0.38 0.40 0.41 0.41
τ = 0.90 bdp 0.45 0.48 —a 0.50
τ = 0.95 bdp —a —a —a —a

MM eff 0.91 0.97 0.90 0.87
a For these values of τ and ρ function, only non-robust solutions
were obtained during monitoring.

a division of the main group for a bdp greater than 0.41. The six large residuals
are clearly visible throughout, becoming included in the fit from a breakdown
point of 0.09. This feature is clearly shown in the plots of correlation functions.
(Recall that there are six major outliers in the 60 observations).

In LMS the median of asymptotically half the squared residuals is used as
an estimate, rather than the sum of squares of the residuals as in LTS. To
provide a generalization of LMS suitable for monitoring we vary the efficiency
of estimation by minimizing the 100h/n percentage point of the distribution of
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Fig 6. AR Data: LTS estimation. Left-hand panel, plot of scaled residuals. The four groups of
observations are evident for a bdp greater than 0.23, with the main group further split above
0.41. The groups then gradually move closer together, with the change to one group plus one
outlier for a bdp of 0.09. Right-hand panel, three measures of the correlation. All show the
final transition during monitoring.

the squared residuals. The general structure of the plot in Figure 7 is similar
to that of Figure 6 from a bdp of 0.41, showing the four groups but with much
greater variation, reflecting an extension of the slow n−1/3 rate of convergence
of LMS (Rousseeuw and Leroy, 1987, p. 178). The transition to a non-robust
fit is not clear in the plot of residuals, although it is indicated by the plots of
correlation.

Finally we consider FS, a forward plot of the residuals for which is given in
Figure 8. Now the abscissa is the number of observations m in the subset used
for fitting. The scaled residuals in this plot tell a similar story to those from
monitoring LTS for a bdp below 0.42 – chiefly that there are four groups, that
observations 7, 39 and 43 behave differently and that there are six appreciable
outliers from robust fits. In both LTS and FS the six outliers remain evident
until near the end of monitoring, giving estimates with higher efficiency than
those for the bdp of 0.27 with S estimation in Figure 4.

These three plots are different from those for the S estimates and variations
shown in the earlier plots. One difference is that they are less stable, reflecting
the effect of individual observations that are smoothed by mostly having zero
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Fig 7. AR Data: LMS estimation. Left-hand panel, plot of scaled residuals. The four groups
of observations are evident for the highest values of bdp but gradually converge. The curves
are much rougher than in the other plots. Right-hand panel, three measures of the correlation.
All show some transition around a bdp of 0.12.

or one weights in the other robust procedures. The second is that these three
plots decline as efficiency increases. This effect is less marked in the case of FS.
Since the residuals are scaled by the square root of the final estimate of σ2 the
differences in the plots reflect the changes in the estimates of β as monitoring
evolves. These remain constant over long periods for the estimators with flexible
trimming as the weights from the ρ function remain constant. However for LMS,
LTS and the FS the estimates change for each new observation included in the
fit.

Although the plots of the residuals for the groups of methods can be very
different, the plots of t-statistics from monitoring and the FS are similar. Fig-
ure 9 shows that the very robust fit, in this case S estimation with the optimal
ρ function, finds significant effects, in size order, for x2, x3 and x1. However,
the fits with low bdp show that x1 is hardly, or not at all, significant, the values
lying around −1.96, the lower limit of the 95% asymptotic confidence interval.
Now x3 is more significant that x2. The two panels of the plot give the two ver-
sions of the robust t-statistics form the end of §3.2. In the ‘traditional’ form the
errors are calculated from the covariance matrix in (3.2), whereas the modified
form (3.3) includes a correction for the effect of robust estimation on XTX .
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Fig 8. AR Data: FS. Left-hand panel, plot of scaled residuals. The four groups of observations
are initially evident, and particularly so around m = 40. The six outliers remain distinct until
m = 55. Observation 43 becomes increasingly outlying from m = 43 and observations 7 and
39 are distinct until m = 58. Right-hand panel, three measures of the correlation. Kendall’s
measure, in particular, shows the gradual change in the outlyingness of the various units.

In Figure 10 we present the related plot of t-statistics from the forward search
(Atkinson and Riani, 2002). Although these statistics are less smoothed than
those from S estimation and have a different horizontal scale, they lead to very
similar conclusions about the significance of the variables in the robust and
non-robust analyses. In fact, following the procedure of Huber and Ronchetti
(2009) leads to values of the t-statistics in the lower panel of Figure 9 virtually
identical to those in Figure 10. As with the plots of the residuals, the horizontal
scales for the FS is relatively shrunk as m approaches n.

For these data, the results of this section show that the use of robust pro-
cedures with soft trimming leads to residuals which are sensibly constant over
regions of the monitoring plot, although these regions depend on the exact de-
tails of the estimation method and ρ function that we employ. These residuals
change sharply when outliers are included in the fit, changes which are readily
detected by the correlation plots. However, this plot appears to be of lesser value
for LTS, LMS and, especially, the FS. But, as we show in the final example, for
the FS we monitor plots of outlier tests to indicate where interesting changes
occur in the structure of the models fitted to the data.
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Fig 9. AR data; S estimation with the optimal ρ function. Monitoring plots of two versions
of t-statistics for the three parameters of the linear model. Upper panel, ‘traditional’ version
from §3.2; lower panel, modified.

4.4. Example 3: Bank data

We conclude with a more complicated example, in which there is no simple
model for all the data. Furthermore, the aberrant observations do not form a
simple cluster.

There are 1,949 observations, taken from a larger data set, on the amount
of money made from personal banking customers over a year. There are 13
potential explanatory variables, listed in Appendix C, describing the services
used by the customers, all of which are discrete, one being binary. The prime
interest in the analysis is to discover which activities are particularly profitable.
Since the response may be positive or negative, without a sharp lower bound,
a power transformation (Box and Cox, 1964) is not an option for improving the
agreement of the data with the regression model.

As a consequence of the results in §4.3, we only describe the results of S
and MM estimation for these data, although we did also analyse them using τ
estimation. We found that, for all four ρ functions, the MM estimates produced
virtually constant plots of residuals, with change, if any at the last one or two
monitoring points. Monitoring plots of S residuals, however, indicated a non-
homogeneous structure in the data; Figure 11 plots the S residuals when the
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Fig 10. AR data; FS estimation. Forward plots of t-statistics for the three parameters of the
linear model.

optimal ρ function is used. The residuals are clearly highly skewed, with a few
large outliers, the pattern changing as the bdp decreases. The plot of correlation
coefficients shows a clear dip at a bdp of 0.14.

These results are in agreement with those from the FS. Figure 12 shows a
forward plot of the minimum deletion residuals that form a series of tests for the
presence of outliers, together with the distributional bounds used in the rule for
constructing a test of the required size over the whole sample. Here the simul-
taneous bound has a level of 1% (Riani et al., 2014a). The resuperimposition of
envelopes used to establish the number of outliers indicated that there are 255,
agreeing with the bdp of 0.13.

We now consider the behaviour of the t-statistics from the two analyses and
then use the FS to explore the fine structure of the data.

The t-statistics from S estimation based on the optimal ρ function are in
Figure 13. If the data are not homogenous we would expect any changes in
the plots to occur around a bdp of 0.13. The most dramatic changes seems to
be for x4, which becomes appreciably more significant, x5 and x12 which lose
significance, x10, the significance of which decreases and x9, which goes from
having a slightly significant positive coefficient to one that is strongly negative.
Such changes will be important when trying to decide on a model for the data
with non-zero weights in the fits with higher bdp.
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Fig 11. Bank data: S estimation, optimal ρ function. Left-hand panel, plot of scaled residuals.
These are highly skewed, with a few large outliers. Right-hand panel, three measures of the
correlation. All show a clear transition at a bdp of 0.14.

The plot of t-statistics from the FS in Figure 14, starting from m = 1000, is
similar in general shape to that for S estimation. Although the vertical scales
of the panels are not identical, the changes in importance of x4, x5, x9, x10 and
x12 are the same. As with the residual plots for analysis of the AR data, the
plots for the S estimator are again smoother than those for the FS. Like the
plots of t-statistics in Figures 9 and 10, the horizontal scale for FS is relatively
shrunken as m→ n.

From a computational and numerical standpoint, these are not easy data to
analyse. Particularly since all methods proceed by fitting subsets of the data,
near collinearities and leverage points do occur. In more severe examples, a
simple way to produce numerically stable solutions is to jitter the data, when
the important inferential features will hopefully remain unchanged.

To close we briefly explore the two subsets into which we have so far broken
the data; there is a larger set of 1,694 observations, which seem to be homoge-
neous and a remaining 255 which are merely “different” from the majority.

The left-hand panel of Figure 15 shows the scatterplots of y against each
x for the larger portion into which the FS has divided the data. The right-
hand panel shows the same plot for the remaining 255 observations. The two
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Fig 12. Bank data. Forward plot of minimum deletion residuals, leading to identification of
multiple outliers. The given levels of the envelopes are for pointwise tests of outlyingness.

sets are clearly different. It is not just that the values of y in the right-hand
panel are, in general, higher than those in the left-hand panel; they also have a
different structure. For example, as the plots in Figure 14 of the t-statistics for
x1 (personal loans) and x2 (financing and hire purchase) show, there is positive
regression on these variables for the data in the left-hand panel. However, as the
customers from the right-hand panel are included towards the end of the search,
the regression decreases, as it does for x10 (credit cards). On the other hand,
the plot suggests that the second group has a higher uptake of life insurance
(x4). A striking feature of the scatterplots in the right-hand panel of Figure 15
are the six large outliers, which are indeed visible in Figure 11.

Further analysis of these data might build a regression model for the set of
1,694 observations and do the same for the remaining 255 observations, having
first checked whether they are homogeneous after exclusion of the six outliers.
An important practical aspect would be to determine, if there are just two
groups, whether they can be readily separated, either on the basis of the 13
explanatory variables used in the current analysis or by use of additional factors
we have not included. The implication of our discussion of the values of the t-
statistics is that the second group may be more affluent than the first. However,
the bank is unlikely to have accurate information on the actual income of its
clients.
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Fig 13. Bank data, S estimation with the optimal ρ function. Monitoring plots of modified
t-statistics (3.3) for the 13 parameters of the linear model.

5. Comments and conclusions

As a result of monitoring robust regression for three data sets of increasingly
complex nature, we have arrived at some simple conclusions. For monitoring we
require robust methods that are robust to the choice of ρ function and estimation
method, including the parameters that determine the efficiency, or breakdown
point, of the method. A similar point on the necessity of robust estimators being
themselves robust to differing circumstances is made by Croux et al. (2004).

Our results are helpfully informative about the choice between the various
methods of robust regression. Methods, such as MM and τ estimation, that are
tuned to give nominal high efficiency and a high breakdown point, fail with our
most complicated example. We find that the most informative analyses come
from S estimates combined with Tukey’s biweight or the optimal ρ functions.
The indication of the monitoring residual plot for the AR data with S estimation
and the optimal ρ function in Figure 4 is that this ρ function can sometimes
provide more information about the structure of the data than does Tukey’s
biweight

Finally, we commented in §3.1 that a major drawback to interpretation of the
results of robust analyses was the loss of information on the effect of individual
observations on inferences drawn from the data. Our analysis of the bank data
shows how the forward search, in combination with the insights gained from
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Fig 14. Bank data; FS estimation. Forward plots of t-statistics for the 13 parameters of the
linear model.

robust regression, can be used to provide information on the data structures
lying behind the need for robust procedures.
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Appendix A: Rho functions

Perhaps the most popular ρ function for redescending M and S-estimates is
Tukey’s Bisquare (or Biweight) function

ρ(u) =

{

u2

2 − u4

2c2 + u6

6c4 if |u| ≤ c

c2

6 if |u| > c,
(A.1)
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Fig 15. Bank data. Scatterplots of y against individual explanatory variables for the two parts
of the data. Left-hand panel, the main body of the data. Right-hand panel, the remaining,
somewhat different, 255 observations.

the first derivative of which vanishes outside the interval [−c,+c]. Therefore,
for this function c is the crucial tuning constant, determining the efficiency or,
equivalently, the breakdown point.

A similar, but less smooth, shape is shared by Hampel’s ρ function

ρ(u) =



























1
2u

2 if |u| ≤ c1

c1|u| − 1
2 c

2
1 if c1 < |u| ≤ c2

c1
c3|u|−

1
2
u2

c3−c2
if c2 < |u| ≤ c3

c1(c2 + c3 − c1) if |u| > c3.

(A.2)

The first derivative is piecewise linear and vanishes outside the interval [−c3,+c3].
Again c3 is the crucial tuning constant, although Huber and Ronchetti (2009),
p. 101 suggest that the slope between c2 and c3 should not be too steep.

Yohai and Zamar (1997) introduced a ρ function which minimizes the asymp-
totic variance of the regression M-estimate, subject to a bound on a robustness
measure called contamination sensitivity. Therefore, this function is called the
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optimal ρ function. It is given by

ρ(u) =



























1.3846
(

u
c

)2
if |u| ≤ 2

3c

0.5514− 2.6917
(

u
c

)2
+ 10.7668

(

u
c

)4 −
−11.6640

(

u
c

)6
+ 4.0375

(

u
c

)8
if 2

3c < |u| ≤ c

1 if |u| > c.

(A.3)

Now the first derivative vanishes outside the interval [−c,+c]. The resulting
M-estimate minimizes the maximum bias under contamination distributions
(locally for a small fraction of contamination), subject to achieving a desired
nominal asymptotic efficiency when the data are normally distributed.

Hampel et al. (1981) considered a different optimization problem, by mini-
mizing the asymptotic variance of the regression M-estimate, subject to a bound
on the supremum of the Change of Variance Curve of the estimate. This led to
the Hyperbolic Tangent ρ function, which, for suitable constants c, c1, c2,
c3 and c4, is defined as

ρ(u) =































1
2u

2 if |u| ≤ c1

−2 c2
c3

ln cosh[ 12

√

(c4−1)c2
3

c2
(c− |u|)]+

+ ξ2

2 + 2 c2
c3

ln cosh[ 12

√

(c4−1)c2
3

c2
(c− ξ)] if ξ ≤ |u| ≤ c

ξ2

2 + 2 c2
c3

ln cosh[ 12

√

(c4−1)c2
3

c2
(c− ξ)] if |u| > c,

(A.4)

where 0 < ξ < c is such that

ξ =
√

[c2(k − 1)] tanh





1

2

√

(k − 1)c23
c2

(c− ξ)



 ,

c2 and c3 satisfy suitable conditions, and c4 is related to the bound in the Change
of Variance Curve. These constants must be computed iteratively, by applying
Newton-Raphson steps and numerical integration.

Appendix B: Absolute odd moments of the multivariate normal
distribution under elliptical truncation

Unlike Tukey’s bisquare and the optimal ρ functions, Hampel’s function (A.2)
includes absolute moments of random variables. This appendix concentrates on
the relationship between untruncated and elliptically truncated absolute central
odd moments in the multivariate normal distribution. The results extend those
of Tallis (1963) who derived the moment generating function of the multivariate
normal distribution under elliptical truncation.

As is well known, the central absolute moments coincide with plain moments
for all even orders, but are nonzero for odd orders.
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Definition 1. The central moment of order k of the v dimensional random
vector U is defined as (see, e.g., Kotz et al., 2000, pp. 107–111)

µk1,k2,...,kv
(U) = µ1,2,...,v(U) = E





v
∏

j=1

(Uj − µj)
kj



 ,

where k1 + k2 + · · ·+ kv = k, kj ≥ 0 and µj = E(Uj).

Definition 2. If U ∼ Nv(µ,Σ), we define as elliptical truncation in the interval
[b; c] the set of points u ∈ Rv belonging to

E =
{

u|b ≤ (u − µ)′Σ−1(u − µ) ≤ c
}

, 0 ≤ b < c.

We are interested in finding and discussing the expression of the central
absolute moment of order k, when k is odd, under elliptical truncation

µk1,k2,...,kv
(|U |) = E

[

|(U1 − µ1)
k1 (U2 − µ2)

k2 . . . (Uv − µv)
kv |

]

.

Starting from the Definition 1, when U ∼ N(0, Iv) with the constraint that
the region of integration is b2 < u′u < c2, we can write:

µk1,k2,...,kv
(|U |) =

∫ ∫

. . .

∫

b2<u′u<c2
|uk1

1 . . . ukv

v |dΦ(U1) . . . dΦ(Uv).

This v-dimensional integral can be rewritten in the transformed space as a
univariate integral as follows:

∫ c2/2

b2/2

yk/2fχ2
v
(y)dy =

∫ c2

b2

y
v+k

2
−1e−y/2

2v/2Γ(v/2)
dy

=

∫ c2/2

b2/2

(2t)
v+k
2

−1e−tdt

2v/2Γ(v/2)
dy

= 2k/2
Γ(v+k

2 )

Γ(v/2)

∫ c2/2

0

t
v+k
2

−1e−t

Γ(v+k
2 )

dt

= 2k/2
Γ(v+k

2 )

Γ(v/2)

[

P

(

c2

2
,
v + k

2

)

− P

(

b2

2
,
v + k

2

)]

.

where P and Γ are the gamma and the incomplete gamma functions respectively.
Now, if k is odd it is easy to verify that

2k/2Γ

(

v + k

2

)

=
√
2(v + 1)(v + 3) · · · (v + k − 2),

because

Γ

(

v + k

2

)

=

(

v + k

2
− 1

)

×
(

v + k

2
− 2

)

× · · · ×
(

v + k

2
− k − 1

2

)

Γ

(

v + 1

2

)
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=
v + k − 2

2
× v + k − 4

2
× · · · × v + 1

2
× Γ

(

v + 1

2

)

= (v + 1)(v + 3) · · · (v + k − 2)× 2−(k−1)/2 × Γ

(

v + 1

2

)

.

Similarly, it is easy to verify that

P

(

c2

2
,
v + k

2

)

= Fχ2
v+k

(c2),

because

Fχ2
v+k

(c2) =

∫ c2

0

t
v+k

2
−1e−t/2

2(v+k)/2Γ((v + k)/2)
dt

=
2

2
v+k

2 Γ((v + k)/2)

∫ c2

0

(2y)
v+k
2

−1e−ydy

=

∫ c2/2

0 y
v+k

2
−1e−y

Γ((v + k)/2)
dy

= P

(

c2

2
,
v + k

2

)

.

It follows that the expression of the central absolute moment of order k, when
k is odd, under elliptical truncation is given by

µk1,k2,...,kv
(U) =

√
2
(v + k − 2)!!

(v − 1)!!

Γ
(

v+1
2

)

Γ
(

v
2

)

(

Fχ2
v+k

(c2)− Fχ2
v+k

(b2)
)

. (A.5)

This result shows that the odd absolute moments of the multivariate standard
normal distribution under elliptical truncation are equal to the original moments
multiplied by (Fχ2

v+k
(c2)− Fχ2

v+k
(b2)), thus generalizing that of Tallis (1963).

It is interesting to notice that, if U is univariate (v = 1), equation (A.5)
becomes

µk(U) =

∫

b<|u|<c

|u|kdΦ(u) =
√

2

π
(k − 1)!!

(

Fχ2
r+1

(c2)− Fχ2
r+1

(b2)
)

.

If b→ ∞ and a = 0 we simply recover the usual formula for the central absolute
odd moment. Finally, when k = 1 we easily find that

E(|U |) =
∫

b<|u|<c

|u|dΦ(u) = 2 (φ(b)− φ(c))

where φ(c) is the density function of the standard normal evaluated at c. If b = 0
and c = ∞ we get E(|U |) =

√

2/π, the usual formula for the expectation of the
half normal distribution.
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Table 3

Bank data: the thirteen explanatory variables

Variable Number of
number Description zeroes
1 Personal loans 1666
2 Financing and hire-purchase 1529
3 Mortgages 1734
4 Life insurance 1503
5 Share account 435
6 Bond account 987
7 Current account 27
8 Salary deposits 742
9 Debit cards 1030
10 Credit cards 1003
11 Telephone banking 1459
12 Domestic direct debits 426
13 Money transfers 1596

Appendix C: The bank data

There are 1,949 univariate observations on the amount of money made from
individual personal banking customers over a year for an Italian bank. Because
of the linking of products, it is not straightforward for the bank to attribute
the profit to individual sources. The bank made a preliminary classification
of its 700 products into 48 macrocategories (macroservices). Among these 48
macrocategories, the 13 most important ones according to the bank are listed
in the second column of Table 3 and form our set of explanatory variables.
All explanatory variables are discrete, taking values 0, 1, 2, . . . , the number
of services (inside each macroservice) that each customer has signed up for –
number of credit cards, number of domestic direct debits, number of current
accounts and so forth. Only x11, telephone banking, is binary, because the bank
has just one internet service. Since many customers have not signed up for
all services, we also give in Table 3 the number of zeroes for each variable.
Translation of the names of the variables is made difficult since Italian banks,
or at least the bank in question, charge for many services which come free
with a current account at a British bank and so are sometimes not identified,
or, even, necessary. (We have no experience of American banks). In the case
of joint accounts, the data for the account are entered once for each account
holder. Although the individuals may have signed up for different levels of other
services, such duplication produces near replicates in x (and, of course, exact
replicates of the response).

The revenue of a macroservice sold by the bank is determined not by the
products sold inside it, but by the behavior of customers using its products.
The data were accordingly selected by the bank using predefined thresholds
(for example, customers who had movements of current accounts greater than a
certain amount or debts within a certain range) the intention being to identify
relatively homogeneous groups of customers with similar behaviour. Our analy-
sis shows that the cluster under study is not as homogenous as the bank hoped,
containing as it does six outliers and two subgroups.
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The data are available as an Excel file in the supplement to this paper (Riani
et al., 2014d). They, together with the routines for monitoring, are included
in the FSDA toolbox downloadable from http://fsda.jrc.ec.europa.eu/ or
http://www.riani.it/MATLAB.

Supplementary Material

Bank Data
(doi: 10.1214/14-EJS897SUPP; .zip). The supplement provides an Excel file of
the Bank Data described in Appendix C and Table 3 of our paper.
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