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IMPUTATION AND POST-SELECTION INFERENCE IN MODELS
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It is common to encounter missing data among the potential predictor
variables in the setting of model selection. For example, in a recent study we
attempted to improve the US guidelines for risk stratification after screen-
ing colonoscopy (Cancer Causes Control 27 (2016) 1175–1185), with the
aim to help reduce both overuse and underuse of follow-on surveillance
colonoscopy. The goal was to incorporate selected additional informative
variables into a neoplasia risk-prediction model, going beyond the three cur-
rently established risk factors, using a large dataset pooled from seven dif-
ferent prospective studies in North America. Unfortunately, not all candidate
variables were collected in all studies, so that one or more important poten-
tial predictors were missing on over half of the subjects. Thus, while vari-
able selection was a main focus of the study, it was necessary to address
the substantial amount of missing data. Multiple imputation can effectively
address missing data, and there are also good approaches to incorporate the
variable selection process into model-based confidence intervals. However,
there is not consensus on appropriate methods of inference which address
both issues simultaneously. Our goal here is to study the properties of model-
based confidence intervals in the setting of imputation for missing data fol-
lowed by variable selection. We use both simulation and theory to compare
three approaches to such post-imputation-selection inference: a multiple-
imputation approach based on Rubin’s Rules for variance estimation (Com-
put. Statist. Data Anal. 71 (2014) 758–770); a single imputation-selection
followed by bootstrap percentile confidence intervals; and a new bootstrap
model-averaging approach presented here, following Efron (J. Amer. Statist.
Assoc. 109 (2014) 991–1007). We investigate relative strengths and weak-
nesses of each method. The “Rubin’s Rules” multiple imputation estimator
can have severe undercoverage, and is not recommended. The imputation-
selection estimator with bootstrap percentile confidence intervals works well.
The bootstrap-model-averaged estimator, with the “Efron’s Rules” estimated
variance, may be preferred if the true effect sizes are moderate. We apply
these results to the colorectal neoplasia risk-prediction problem which moti-
vated the present work.
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1. Introduction and background. It is not uncommon that both model se-
lection and missing data are important aspects of the data analysis pipeline. Fre-
quentist approaches which properly incorporate the model selection process into
statistical inference include the bootstrap (Efron (2014)) and model averaging
(Claeskens (2016)). Multiple imputation is a practical and widely used approach
for inference with missing data (Little and Rubin (2002), Rubin (1987), Tanner
and Wong (1987), Tsiatis (2006)). However, when both issues are important to
the analysis, there is less guidance in the literature on practical and efficient ap-
proaches to inference.

In a recent study we attempted to improve the US colorectal cancer prevention
guidelines which specify the recommended surveillance interval for colonoscopy
following polypectomy (Liu et al. (2016)). As background, annual US incidence of
colorectal cancer is about 130,000 individuals, with about 50,000 deaths annually
(Siegel, Miller and Jemal (2015)). Colorectal cancer can be prevented by the iden-
tification and removal of colorectal polyps during colonoscopy (Lieberman et al.
(2012)). During screening colonoscopy, which is recommended every 10 years
for adults ages 50–75 years, 20% to 50% of patients are found to have colorectal
polyps. US guidelines for the frequency of subsequent surveillance colonoscopy
are based on the number, size and histology of these resected polyps. However,
these surveillance guidelines have only moderate sensitivity and specificity (Liu
et al. (2016)), leading to missed opportunity for cancer prevention on the one hand,
and unnecessary colonoscopy on the other. Incorporation of additional prognostic
factors might improve risk prediction, with potential large cost reductions and net
gain in public health (Martinez et al. (2012)). Our aim was to determine whether
a statistical model incorporating known additional clinical risk factors—age, sex,
history of prior polyps, and polyp location and grade—could improve estimated
sensitivity and specificity above the current US practice (Liu et al. (2016)). How-
ever, the cost of adding variables to the current widely used guidelines would be
increased complexity in the medical decision process and increased difficulty in as-
sembling the needed information for a given patient. Thus variable selection was a
primary goal of the original study—it was of primary interest to determine whether
inclusion of a few selected additional factors could meaningfully improve model-
based estimates of sensitivity and specificity, using a set of training data. This is
the focus of the current paper. In the original study, the predictive performance
of the final selected model was then assessed on an independent set of validation
data.

Data to estimate the model were aggregated from seven different prospective
studies of over 8000 individuals who underwent polypectomy and subsequent
surveillance colonoscopy (Liu et al. (2016)). However, not all studies collected
all variables. Thus, for three important variables the missing data rate was 24%,
20% and 11%, respectively, with 56% of subjects missing at least one predictor.
Hence, both variable selection and missing data were important considerations
during the model training phase. The model and associated risk cut-points were
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developed on a randomly drawn training sample of approximately 5500 subjects.
This model-based risk stratification was then applied to the remaining ≈2500 sub-
jects to provide estimates of the potential for improvement in US population-level
rates of colonoscopy overuse and underuse.

In the original study, we used an indicator variable method to handle the missing
data among predictors at the variable selection step (Jones (1996)), arguing that it
would likely be appropriate in this case. However, given the known limitations of
this approach, our goal here is to find a practical and general method to incorporate
both imputation and selection variation into confidence intervals for model-based
estimates, when there is a substantial amount of missing data among the predictor
variables. We use both theory and simulation to study the question, and then apply
our results to the colorectal cancer risk modeling problem described above.

1.1. Related literature. Bootstrap-based methods for consistent and efficient
model selection in the presence of imputation for missing data have been reviewed
in Long and Johnson (2015). In these papers, B bootstrap resamples are generated
from the observed data and the imputation mechanism is applied to each bootstrap
resample. Model selection is then applied to each bootstrap-imputed data set. The
resulting collection of B selected models is then combined to produce a single fi-
nal model, using various approaches. A common approach is majority voting, that
is, retaining variables which are included in at least πB of the selected models
for a given threshold π , and using these to construct the final model (Heymans
et al. (2007), Lachenbruch (2011)). Variance estimates are then constructed in the
usual way, conditional on the final selected model. Other approaches are based on
stability selection (Long and Johnson (2015), Meinshausen and Bühlmann (2010))
and a multiple imputation approach (Wood, White and Royston (2008)) in which
a candidate model is estimated in each of M imputed data sets, and Rubin’s Rules
(Rubin (1987)) are applied to obtain estimated model parameters and their vari-
ances, Wald tests are used for backwards model selection, and then Rubin’s Rules
applied again to the reduced model. Notably, these two latter approaches have a po-
tential efficiency advantage in that they each incorporate the imputation variability
into the model selection criteria. However, and importantly from our perspective,
in all of these proposals the final estimated parameter variances are conditional on
the final model, and thus ignore the model selection process.

Schomaker and Heumann (2014) address inference which incorporates both
imputation and model selection variability, in the context of proposing model-
averaged estimators. One approach presented (Section 2.1) is multiple imputation,
followed by model selection on each of the M imputed data sets. Rubin’s Rules
are then used to average the estimated coefficients and their variances across the M

models; a variable which is not selected into a given model has an assigned coef-
ficient and model-based variance of zero. This model-averaging procedure shrinks
the final estimated coefficients towards zero in proportion to their nonselection
probability, and produces coefficent and variance estimates which incorporate both
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imputation and, at least partially, selection variability. Normal theory confidence
intervals were computed using Rubin’s Rules, but exhibited under coverage. More
complex approaches using the bootstrap for multiply imputed model-averaged esti-
mators with exponential weights were also investigated, which did not show under
coverage in simulation studies.

1.2. Aims and organization of the paper. In this paper, we study three ap-
proaches to post imputation-selection inference, and then apply them to the
colonoscopy risk modeling problem. The first approach is a single imputation step
to fill in missing values, followed by model selection to produce a final model.
Confidence intervals and variance estimates are then computed by the bootstrap,
using the sequence resample, impute, select. The second approach is multiple im-
putation followed by model selection and Rubin’s Rules to compute variance es-
timates (Schomaker and Heumann (2014)). The third approach is novel, based
on bootstrap model-averaging as in Efron (2014): we again use the sequence re-
sample, impute, select; however, model parameters are estimated by the bootstrap
average. We then use a computationally efficient approach to computing the es-
timated variance using the same bootstrap distribution (Efron (2014)), and thus
avoid a second level of bootstrapping. This variance formula is derived from a Há-
jek projection, similar to the arguments used in the theory of U statistics. In our
context, this variance estimate can be construed as analogous to Rubin’s Rules for
multiple imputation, and hence we call it “Efron’s Rules” for bootstrap imputation.

The paper is organized as follows: we first define the estimators (Section 2).
Theoretical properties are discussed in Section 3, using the framework of Hjort and
Claeskens (2003) and Hjort (2014). In Section 4, we use simulation to study the
MSE of the estimators, their distributions and their associated confidence intervals.
In Section 5, we apply the estimators to the colorectal cancer surveillance data
from Liu et al. (2016). Section 6 is discussion and concluding remarks.

2. Algorithms for imputation, selection then estimation.

2.1. Notation. Let the data be n independent observations (yi,xi ), where the
outcome y is fully observed and the predictors xi = (xi,1, . . . , xi,p) may have miss-
ing values, with missing indicator δi,j = 1 if xi,j is missing. The outcome and
predictors are related by a statistical model f (y|xθ , φ), where θ is a p × 1 vec-
tor of coefficients, with θj set to 0 if predictor xj is not in the model. Let y =
(y1, . . . , yn)

T , and denote by X and � the matrices with entries xi,j and δi,j . Let
XI denote the imputed dataset under a given imputation model, xI ij = xij +δij γij ,
where γij represents the imputation error. Let Z = (y,X) denote the complete data,
Zobs denote the observed data and ZI = (y,XI ) denote the imputed dataset. We
assume the data are missing at random (MAR), that is, that f (�|Z) = f (�|Zobs),
and that this distribution does not depend on θ or φ.
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2.2. Efron’s Rules for bootstrap-averaged imputation-selection. The algo-
rithm is bootstrap imputation followed by model selection; parameter estimates are
averaged over the bootstrap distribution, with variance estimates following Efron
(2014).

1. Generate B bootstrap datasets {Z(b)
obs,�

(b), b = 1, . . . ,B} from the observed
data, including missing indicators, by resampling subjects.

2. On each bootstrap dataset, perform a single imputation, using an imputation
method of choice, to obtain the imputed dataset {Z(b)

I , b = 1, . . . ,B}.
3. On each imputed dataset, select the best model and compute the associated

parameter estimates {θ̂ (b)
, b = 1, . . . ,B}. If predictor xj is not selected in bootstrap

sample b, then θ̂
(b)
j is set to zero.

4. For each component θj of θ , compute the smoothed bootstrap estimator

θ̂jER. This is the average of the θ̂
(b)
j over the bootstrap samples:

(2.1) θ̂jER =
B∑

b=1

θ̂
(b)
j /B.

5. Use Efron’s Rules to compute V̂jER, a nonparametric bootstrap estimate of
the variance of θ̂jER, as follows:

Let C
(b)
i be the count of the number of times subject i appears in bootstrap

sample b, and let C̄i = ∑B
b=1 C

(b)
i /B be the average number of times subject i is

selected. Let

(2.2) ĉovi(j) = 1/B

B∑
b=1

(
C

(b)
i − C̄i

)(
θ̂

(b)
j − θ̂jER

)
and let

Z
(b)
i (j) = (

C
(b)
i − 1

)(
θ̂

(b)
j − θ̂jER

)
.

Then

(2.3) V̂jER = v̂ar(θ̂jER) =
n∑

i=1

ĉovi (j)2 − 1

B2

n∑
i=1

B∑
b=1

(
Z

(b)
i − ĉovi (j)

)2
.

Formula (2.3) follows from a Hájeck projection of the bootstrapped average esti-
mator, which is given in equations (3.6), (3.7) and (7.25) of Efron (2014): equa-
tions (3.6), (3.7) directly yield (2.2), which is the first right-hand term in (2.3), and
equation (7.25) is the second right-hand term in (2.3). The term (7.25) in Efron
(2014) is a second-order term in the Hájeck projection (van der Vaart (1998)),
and our simulations showed that this term is needed in order to reduce bias in our
context.

6. Compute the 95% confidence interval using a normal distribution centered
at θ̂ER with variance V̂ER.
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2.3. Rubin’s Rules for multiple imputation-selection. The algorithm is mul-
tiple imputation followed by model selection; parameter estimates are averaged
over the imputation distribution, with variance estimates following Rubin’s Rules
(Rubin (1987)).

1. From the observed data {Zobs,�} generate M imputed datasets using a
multiple imputation method of choice, to obtain the imputed dataset {Z(m)

I ,m =
1, . . . ,M}.

2. For each imputed dataset m, select the best model and compute the associ-

ated parameter estimates {θ̂ (m)
,m = 1, . . . ,M}, along with the associated variance

estimates (conditional on the selected model) v̂ar(θ̂ (m)
j ). If predictor xj is not se-

lected in imputed dataset m, then both θ̂
(m)
j and v̂ar(θ̂ (m)

j ) are set to zero.
3. For each component θj of θ , compute the multiple imputation estimator

θ̂jRR. This is the average of the θ̂
(m)
j over the multiple imputation samples:

(2.4) θ̂jRR =
M∑

m=1

θ̂
(m)
j /M.

4. Use Rubin’s Rules to compute V̂jRR, an estimate of the variance of θ̂jRR,
conditional on {Zobs,�}.

Let

Bj =
M∑

m=1

(
θ

(m)
j − θ̂jRR

)2
/(M − 1).

Then

(2.5) V̂jRR = 1/M

M∑
m=1

v̂ar
(
θ̂

(m)
j

) + (1 + 1/M)Bj .

5. Compute the 95% confidence interval using a normal distribution centered
at θ̂RR with variance V̂RR.

2.4. A single imputation-selection step, with bootstrap percentile confidence
intervals. Both bootstrap-averaged imputation-selection with Efron’s Rules and
multiple imputation-selection with Rubin’s Rules give rise to model-averaged es-
timators, averaged across conditional or unconditional imputation-selection distri-
butions. For comparison, we also study the single Impute-Select estimator given
by:

1. From the observed data {Zobs,�} generate a single imputed dataset using an
imputation method of choice, to obtain the imputed dataset ZI .

2. Use ZI to select the best model and compute the associated parameter esti-
mates θ̂ IS. If predictor xj is not selected, then θ̂j is set to zero.
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3. Generate B bootstrap datasets {Z(b)
obs,�

(b), b = 1, . . . ,B} from the observed
data, including missing indicators, by resampling subjects.

4. Perform a single imputation on each bootstrap dataset, using an imputation
method of choice, to obtain the imputed dataset {Z(b)

I , b = 1, . . . ,B}.
5. Compute the bootstrap distribution of θ̂ IS, and use it to compute V̂j IS, a non-

parametric bootstrap estimate of the variance of θ̂j IS.
6. Compute the percentile bootstrap confidence interval for θ̂j IS.

2.5. Other methods included for comparison. For comparison, in the simu-
lations below we include a naive estimator based on the complete case analysis,
which does not incorporate model selection variability and does not adjust for
missing data. This estimator, the “complete case” analysis, drops any case with
missing data and computes standard estimates of variance conditional on the se-
lected model. We also include an estimator which does imputation but not model
selection (i.e., it includes all variables), the “wide” estmator, to allow comparison
to Theorem 3.1 and its Corollary, and to investigate sources of bias in the Rubin’s
Rules estimate of variance.

3. Theoretical properties of the Efron’s Rules and Impute-Select estima-
tors. The asymptotic distribution of post-selection estimators has been eluci-
dated in the work of Claeskens and Hjort (Claeskens and Hjort (2003, 2008a),
Hjort (2014), Hjort and Claeskens (2003)). This allows comparison of the MSE of
model averaged estimators vs un-averaged estimators. Specializing the Claeskens–
Hjort framework to the case of the Efron’s Rules estimator, we state Theorem 3.1,
which is similar to less formally stated results in their prior work. In the proof,
we develop some explicit analytical expressions for the mean squared error of the
estimators for the complete data case. This allows us to incorporate the measure-
ment error due to imputation, in Corollary 3.1. These results provide insight into
the simulation results of Section 4.

3.1. Notation and assumptions. Consider an i.i.d. normal linear regression
model of sample size n with p covariates, where y = Xθ + ε, with X an n × p

design matrix of full rank and εi ∼ N(0, σ 2). Without loss of generality, assume
the columns of X are standardized to have mean 0 and variance 1. Let θ̂W be
the estimate of θ which includes all p variables (the “wide” model), and let θ̂ s

be the estimate of θ for the model which contains a subset s ⊂ {1, . . . , p} of se-
lected variables, of size |s|, with corresponding design matrix Xs . Because X is
of full rank, θ̂ s can be written as θ̂ s = Ms θ̂W , where θ̂W is N(θ ,VW), and where
Ms = (X′

sXs)
−1X′

sSX′X with S the selection matrix consisting of the rows of the
p × p identity matrix which correspond to the selected variables. The selection
criterion is Akaike’s information criterion (AIC), which depends on θ̂ s and |s|.
Thus we may write the selection indicator w(s, θ̂W) = I [s = argmin AIC(s, θ̂W)],
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which is 1 if s is the subset with minimum AIC(s, θ̂W) and 0 otherwise. Note that
w(s, θ̂W) induces a partition of Rp (up to a set of measure 0), with components
As ⊂ R

p the set where w(s,u) = 1.

3.2. Distribution of θ̂ER and θ̂IS in the complete data case. For the complete
data case, the model selection estimator θ̂ IS can be written in terms of θ̂W as

(3.1) θ̂ IS(θ̂W) = ∑
s∈S

w(s, θ̂W)Ms θ̂W,

where the sum is over all subsets S of {1, . . . , p}. Hence, the distribution of the
model selection estimator is a mixture of conditional normals (conditional on θW ∈
As ) and point mass at 0 (for those cases where variable i is not selected).

For the complete data case, the Efron’s Rules estimator is the bootstrap-
averaged version of the impute select estimator, averaged over the estimated sam-
pling distribution of θ̂W , and equals within Monte Carlo error to

θ̂ER(θ̂W) =
∫ (∑

s∈S

w(s,u)Msu
)
φW(u − θ̂W)du

= ∑
As

Ms

∫
As

uφW(u − θ̂W)du,

(3.2)

where φW(u) is the density of a N(0, V̂W) random variable.
The relation of θ̂ER(θ̂W) and θ̂ IS(θ̂W) to θ̂W is illustrated in Figure 1. The well-

known highly nonnormal nature of the sampling distributions of these estimators
is illustrated in the simulations, in Figure 3.

3.3. MSE of the model selection estimators in the complete data case. Theo-
rem 3.1 gives the rank ordering of the mean squared error (MSE) for the Impute-
Select estimator, the Efron’s Rules estimator, and the wide estimator, as a func-
tion of the magnitude of the true parameter value ‖θ∗‖, in the complete data case
and where any dependence between columns of X is not too strong. The MSE of
the wide estimator, which always includes all variables, does not depend on θ∗
and has the smallest minimax risk. For independent predictors the following three
statements hold: (1) For very small effect sizes, when it is appropriate to leave
the corresponding predictor out of the model, the model selection estimator has
the smallest risk. (2) For large effect sizes, where the corresponding variable will
be selected with high probability, the choice of estimator is unimportant. (3) For
moderate effect sizes where there is considerable uncertainty regarding the vari-
able selection, the model averaged estimator performs best and can have much
better minimax risk than the model selection estimator. Figure 2 illustrates these
results for the special case X′X = I, as has been presented by simulation in Hjort
(2014). An appeal to the dominated convergence theorem then shows that these
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FIG. 1. The model selection estimator θ̂IS(θ̂W ) (dotted red line) and the bootstrap averaged esti-
mator θ̂ER(θ̂W ) (solid black line) as functions of the wide estimator θ̂W which always includes the
predictor variable, with selection by AIC(θ̂W ). Shown is the univariate case where s =∅ or s = {x},
scaled so that σ/

√
n = 1. Here, θ̂IS is set to zero for |θ̂W | <

√
2σ/n, and otherwise is equal to θ̂W .

As shown by equation (3.2) θ̂ER(θ̂W ) is a smoothed version of θ̂IS(θ̂W ), smoothed by the gaussian
kernel which is the sampling distribution of θ̂W .

statements still hold for correlated predictors, as long as the correlation is small
enough. For more general correlation structures, the situation is more complicated
and the reader is referred to Claeskens and Hjort (2008b).

THEOREM 3.1 (MSE of θ̂ IS and θ̂ER). Let θ∗ be the true value of θ , and
consider an i.i.d. normal regression model as above. Let Xj be the j th column of
X, and let maxj 
=k X′j Xk < ν. Then, if ν is small enough:

1. For small values of ‖θ∗‖,

MSE(θ̂ IS) < MSE(θ̂ER) < MSE(θ̂W).

2. For intermediate values of θ∗,

MSE(θ̂ER) < MSE(θ̂ IS).

3. The minimax risk of θ̂ER is less than that of θ̂ IS. In particular,

max
θ∗ MSE(θ̂W) < max

θ∗ MSE(θ̂ER) < max
θ∗ MSE(θ̂ IS).

4. As ‖θ∗‖ → ∞, MSE(θ̂ER) → MSE(θ̂W) from above. The same holds for
MSE(θ̂ IS).

The proof is given in the Supplementary Material Section A (Liu et al. (2019)).
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FIG. 2. The difference MSE(θ̂IS,i ) − MSE(θ̂W,i ) (heavy red line) and MSE(θ̂ER,i ) − MSE(θ̂W,i )

(black line) as a function of the true value θ∗
i (x-axis). As in Theorem 3.1, the model is an i.i.d.

normal linear regression with variable selection by AIC, in the canonical case X′X = I with complete
data and known σ , scaled so that σ 2/n = 1. As seen, θ̂IS is best for very small effect sizes of θ∗,
θ̂ER is much better than θ̂IS for intermediate effect sizes, and it doesn’t matter which estimator is
used for large effect sizes. Plotted are equations (1.3), and equation (1.4) minus 1 from the proof of
Theorem 3.1 (found in the Supplementary Material); the graph is similar to the simulation results in
Hjort (2014).

3.4. Extension to predictors with missing values and imputation. As in Sec-
tion 2.1 suppose some elements of Xj are unobserved, that is δij = 1 with prob-

ability πj , and let Xj
I denote the imputed dataset under an imputation model.

We assume the imputation satisfies a classical measurement error model, xI ij =
xij + δij γij , where the imputation errors γij are Gaussian with mean zero and
variance σ 2

γj ,n, and where the true value xij , the missing indicator δj , and the im-

putation error γj are independent. Further, suppose σ 2
γj ,n → 0 as n → ∞, so that

xI ij is consistent for xij . Suppose we form the estimate ˆ̃θ from Y and XI , using
ordinary least squares as in the complete data case. Then in the simple case in

which Xj is the only variable with missing values, ˆ̃
θj is a consistent estimator of

θ̃∗
j = θ∗

j

σ 2
Xj |X−j

σ 2
Xj |X−j +πσ 2

γ

. A similar but more complicated formula for θ̃ holds in the

general case (Carroll et al. (2006)).

COROLLARY 3.1 (Extension to imputation under a classical error model). Un-
der the above assumptions, as n → ∞, and for ν small enough, Theorem 3.1 holds
with θ̃ substituted everywhere for θ , with probability approaching 1.
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In summary, we expect the bootstrap-averaged “Efron’s Rules” Impute-Select
estimator to have better MSE than the single-step Impute-Select estimator in the
case of moderate uncertainty regarding the inclusion of variables, and moderate
correlation between variables. In the case of very small or large effect sizes, we
would expect the Impute-Select estimator to have better performance. In the case
of strong correlation between predictors, or a different measurement error model,
the MSE relations may be more complex. The proof is given in the Supplementary
Material Section A (Liu et al. (2019)).

4. Simulation. In this section we use simulation to compare (a) the bootstrap-
averaged imputation-selection estimator, with variance estimates using Efron’s
Rules (θ̂ER, Section 2.2); (b) the multiple imputation-selection estimator with vari-
ance estimates using Rubin’s Rules (θ̂RR, Section 2.3); and (c) a single imputation-
selection step, with bootstrap percentile confidence intervals (θ̂ IS, Section 2.4).
Confidence intervals for θ̂ER and θ̂RR are based on the normal distribution. We
study both a normal linear model and a logistic regression model, using simula-
tion settings that have appeared in related literature. The R code for simulation is
available in the Supplementary Material Section B.

Imputation uses the R package mice with default methods; that is, chained equa-
tions with predictive mean matching, using a normal imputation model for continu-
ous variables and a logistic regression imputation model for dichotomous variables
(van Buuren and Groothuis-Oudshoorn (2011)). For each simulation scenario be-
low, all variables, including both predictors and response, are used in each impu-
tation step. This imputation algorithm is proper in the sense of Rubin (1987) and
Tsiatis (2006), in that the mth imputation is based on a new parameter β̂m, drawn
from a N(β̂, �̂) distribution, where β̂ and �̂ are the maximum likelihood estimates
for the imputation model (although the consistency arguments do not strictly apply
in the case of predictive mean matching). As a sensitivity analysis, for the single-
step Impute-Select estimator we also investigated improper imputation, using the
maximum likelihood estimate β̂ in each bootstrap imputation model.

Model selection uses the LASSO, and selects the tuning parameter with the
minimum Akaike Information Criterion (AIC), as implemented in the R pack-
age glmpath. Standard maximum likelihood estimates of θj are then computed
using the corresponding selected variables. Maximum likelihood estimators from
the complete data and complete cases are included as benchmarks. If a variable is
excluded from a model, both the parameter estimate and the associated variance
estimate are set to 0.

The simulation performance metrics include the mean squared error (MSE) of
θ̂j and the percent bias in the estimated standard deviation, V̂

1/2
j , of var(θ̂j ). Per-

formance of the (1 − α) confidence interval is assessed by comparing coverage
probability, median length and a metric combining interval coverage and length,
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namely the interval score of Gneiting and Raftery (2007), given by

(4.1) S(l̂, û, θ) = (û − l̂) + 2

α

(
(l̂ − θ)1{θ < l̂} + (θ − û)1{û < θ}),

where the interval limits are (l̂, û) and 1{} denotes the indicator function. We also
compare the distributions of the estimators graphically. The simulation-based es-
timate of MSE is given by MSE(θ̂j ) = ∑R

r=1(θ̂j,r − θj )
2/R and the variance of

the estimate by Vj = ∑R
r=1(θ̂j,r − θ̂j,·)2/(R − 1), with θ̂j,· = ∑R

r=1 θ̂j,r/R. The
mean of the estimated variance V̂j will be given by

∑R
r=1 V̂j,r/R. Percent bias of

the estimated standard deviation is given by 100 × (E[V̂ 1/2
j ] − V

1/2
j )/V

1/2
j . The

simulation size is R = 500.

4.1. Linear regression model. We consider an i.i.d. normal linear regression
model, y = Xθ + ε with εi ∼ N(0, exp(1.25)), and use simulation scenarios and
missing data mechanisms similar to Schomaker and Heumann (2014). There are
six potential covariates, each with variance 1, plus an intercept (θ0). The sample
size is n = 250. Coefficients are

θ = (2.5,−3,−0.25,0,−1.5,0,0.35).

Missing values are generated among the predictors so that about half of ob-
servations have at least one missing value. The data are MAR, but with strong
dependence of the missing mechanism on the values of observed predictors.
Approximately 27% of values for X1 are missing, with probability of obser-
vation depending on y, 15% of values for X4 are missing, depending on X2,
and 18% of values for X5 are missing, depending on X3, see Schomaker and
Heumann (2014). The covariates are simulated as random draws from X1 ∼
N(0.5,1), X2 ∼ Lognormal(0.5,0.5), X3 ∼ Weibull(1.75,1.9), X4 ∼ Exp(1),
X5 ∼ Gamma(0.25,2) and X6 ∼ N(0.25,1). Note that all but the first and last
are heavy-tailed compared to a normal distrubtion. Moderately strong dependence
between variables is generated using the R package copula; correlations ranged
from 0.21 to 0.50. Imputation increased these correlations somewhat, and the im-
putation error was correlated with the missing values, with correlations for X1, X4
and X5 equal to −0.47, −0.58, −0.61, respectively. The bootstrap size was taken
to be B = 200, and the imputation size was M = 5. As a sensitivity analysis, we
also report M = 200 and B = 400.

4.1.1. The distribution of the post-selection estimators. As expected from
equation (3.1), θ̂IS appears to be a mixture of quasi-normals (each conditional on
θW ∈ As ), each centered at the best estimate for a given selected best model. As
expected from equation (3.2), θ̂ER appears to be a model averaged version of θ̂IS,
smoothed against a normal distribution centered at θ̂W with variance ∼ 0.10. The
Rubin’s Rule estimator is intermediate between these two, smoothed somewhat by
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FIG. 3. Sampling distribution of θ̂j for j = 2,3,5,6 for the linear regression model of Section 4.1.

IS: Impute-Select estimator, θ̂IS. Rubin’s Rule: Rubin’s Rules estimator, θ̂RR. Efron’s Rule: Efron’s
Rules estimator, θ̂ER. As expected from equation (3.1), θ̂IS appears to be a mixture of conditional nor-
mals. As expected from equation (3.2), θ̂ER appears to be a model-averaged version of θ̂IS, smoothed
against a normal distribution centered at the wide model estimate. θ̂RR is intermediate between these
two, smoothed somewhat by averaging over the imputation distribution conditional on the observed
sample.

averaging over the imputation distribution rather than the bootstrap distribution.
The distribution of the Rubin’s Rules estimator does not appear to change appre-
ciably using M = 200 (not shown).

4.1.2. MSE of estimated coefficients. The MSE for each method relative to the
complete data analysis is given in Table 1. For comparison with Theorem 3.1 we
also include the wide model, which uses a single imputation step but no variable
selection; all of the other scenarios incorporate variable selection using AIC. The
complete case analysis excludes any case with missing data.
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TABLE 1
Comparison of post-imputation-selection estimators in a linear regression model: relative MSE of

θ̂j , % bias in V̂
1/2
j , and mean interval score for a 95% Confidence Interval (CI), from 500

simulation runs. For Rubin’s Rules, M = 5, and for the bootstrap, B = 200

θ1 θ2 θ3 θ4 θ5 θ6
Coefficient θj : −3.0 −0.25 0 −1.5 0 0.35
Missing data rate: 27% 0 0 15% 18% 0
Complete Data MSE: 0.09 0.07 0.06 0.07 0.04 0.11

Relative MSE of θ̂j

Complete Case Analysis∗ 7.9 2.5 1.4 3.7 2.0 1.4
Wide Model: Single imputation# 1.7 1.6 1.7 2.0 2.5 1.0
Rubin’s Rules: Multiple Impute-Select 1.5 1.2 1.2 1.6 1.4 1.0
Impute-Select 1.7 1.3 1.4 2.1 1.9 1.2
Efron’s Rules: Bootstrap-average Impute-Select 1.4 1.2 1.3 1.5 1.6 0.9

Percent bias in V̂
1/2
j

Complete Case Analysis∗ −10 −51 −57 −15 −62 −61
Wide Model: Multiple Impute## −4 <1 1 −3 4 3
Rubin’s Rules: Multiple Impute-Select −7 −18 −25 −4 −16 −31
Impute-Select: Bootstrap variance 2 8 10 −3 16 3
Efron’s Rules: Bootstrap-average Impute-Select −7 −5 −4 −9 0 1

Interval Score for 95% confidence interval+
Complete Case Analysis∗ 9.3 6.4 0.8 3.3 0.9 9.1
Rubin’s Rules: Multiple Impute-Select 1.7 2.7 1.0 1.7 1.0 5.0
Impute-Select: Bootstrap percentile CI 1.7 1.5 1.3 1.7 1.3 1.7
Efron’s Rules: Bootstrap-average Impute-Select 1.6 1.4 1.3 1.8 1.3 1.6

∗Naive estimate which does not incorporate selection variability. #Missing data is imputed and all
variables are included, without selection; compare Impute-Select, and see Theorem 3.1 and Figure 2.
##Variance estimates by Rubin’s Rules, M = 5, which is seen to work well if there is no variable
selection. +Mean interval score, given by equation (4.1). Lower is better.

As expected, using complete cases only gives a much higher MSE than using the
complete data, by a factor ranging from 1.4 to 7.9. All of the imputation-selection
based methods have smaller MSE than the complete case analysis. The two model-
averaged estimators, Efron’s Rules and Rubin’s Rules, have similar MSE to each
other. Single imputation (Impute-Select) has uniformly higher MSE than the two
model-averaged estimators, up to 39% higher than Efron’s Rules for θ4. Hence
both Efron’s Rules and Rubin’s Rules appear to benefit from their model averaging,
perhaps as might be expected from Theorem 3.1 for coefficients with moderate
true effect sizes. Consistent with Theorem 3.1 and Figure 2, the wide model (with
a single imputation and without variable selection) has MSE similar to the Impute-
Select method for large coefficients, and a larger MSE by up to 25% for the zero
coefficients, indicating that model selection is favorable in this scenario.
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Looking more closely, Theorem 3.1 and its Corollary also suggest that the
Impute-Select MSE should be a little lower than the MSE for the model-averaged
estimators for θ3 and θ5, where the true effect size is zero, and this was not the case.
This may be due to the small effect size for the difference at 0 (see Figure 2), or
to the moderately strong dependence structures we have incorporated in both the
data generating model and in the missing data mechanism. For example, the im-
puted version of X3 has correlation of over 0.40 with each of the strong predictors
X1 and X6, and the correlation between the unobserved values and the imputation
error is over 0.40. Thus, either the idealized case of the Theorem and its Corol-
lary does not appear to apply, or the MSE advantage of Impute-Select was too
small to be picked up by our simulation. It is also possible that Impute-Select has a
relative disadvantage because it does not average over the imputation distribution
(i.e., Impute-Select uses M = 1, contrasted with the Rubin’s Rules use of M = 5
or M = 200, or the Efron’s Rules average over 200 bootstrap draws). However, in
a sensitivity analysis, use of improper imputation in which the imputation model
uses the maximum likelihood estimates for each imputation draw, the relative MSE
rankings between Impute-Select and Efron’s rules did not change. Also, these re-
sults on relative MSE do not change appreciably using a larger bootstrap size of
B = 400. Further elucidating model-selection vs model-averaging MSE rankings
is left to future work.

4.1.3. Bias of estimated standard errors. As expected, the naive complete case
estimator, which ignores the model selection variability, has standard error esti-
mates which are biased downwards, by up to 62% in this example (Table 1). These
variance estimates are reasonable only for the two coefficients with large effect
sizes, θ1 and θ4, because these variables are nearly always selected into the model.
Both the Impute-Select estimator, with its bootstrap-based variance estimate, and
the Efron’s Rules estimator, with variance estimated from equation (2.3), give rea-
sonably unbiased estimates of standard error, within 16% of the true value. On
the other hand, the Rubin’s Rules variance estimator is biased downwards, by up
to 31% for the smaller effect sizes. This bias is somewhat reduced by increas-
ing the imputation size from M = 5 to M = 200, but remains above 25%. Note
that the Rubin’s Rules downward bias in the variance estimate occurs despite the
use of a proper or nearly proper imputation rule, and is entirely due to the failure
to fully incorporate the selection variability into the post-selection variance esti-
mate; performance of the Rubin’s Rules variance estimate for the wide estimator
(with no variable selection) is comparable to the Impute-Select and the Efron’s
Rules estimators. The greater accuracy of the two bootstrap based imputation-
selection methods is at the cost of greater CPU time (about 8 seconds) compared
to imputation-selection with Rubin’s Rules (0.03 seconds, M = 5; 1.25 seconds
M = 200). Results are not qualitatively changed by increasing the bootstrap size
to 400 or the imputation size to 200.
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FIG. 4. Coverage probability (left) and median width (right) of 95% confidence interval (CI), for
post-imputation-selection estimators in the linear regression model of Section 4.1. The x-axis indexes
the coefficient. CC: Naive complete case estimator. IS: Impute-Select, with bootstrap confidence in-
terval. RR: Multiple imputation followed by model selection and Rubin’s Rules. ER: Bootstrap impu-
tation followed by model selection and Efron’s Rules. Both the IS and ER estimators have coverage
above 90%; the CI width for the ER estimator is smaller because of model averaging.

4.1.4. Confidence interval coverage, precision and interval score. Coverage
probabilities of the nominal 95% confidence intervals are given in Figure 4(left).
The naive complete case method, which neglects to incorporate the model selec-
tion variability, has coverage probabilities well below 50% for some coefficients.
The Rubin’s Rules estimator has coverage close to 60% for some coefficients, and
this is not appreciably improved by using M = 200 (not shown). The bootstrap-
percentile confidence interval of the Impute-Select method has the best coverage
probability, at or above the nominal 95% level, and the normal distribution based
Efron’s Rules interval has coverage near 90% for all coefficients. Increasing the
bootstrap size to B = 400 increases coverage of both the Efron’s Rules and the
impute select estimator, for some but not all coefficients.

The median width of these intervals is given in Figure 4(right). On average, the
Efron’s Rules width is about 15% (range 10–21%) less than Impute-Select across
the coefficients, reflecting the benefit from model averaging.

The mean interval score is given in Table 1. Impute-Select and Efron’s Rules
score almost identically, for both B = 200 and B = 400, reflecting the trade off
between width of the confidence intervals and coverage probability. The Rubin’s
Rules post-selection estimator can score poorly and is not recommended.

4.1.5. Bootstrap, imputation and simulation sizes. The bootstrap size B

was checked using the jacknife-after-bootstrap, following Efron (2014) (equa-
tion 3.11), with J = 10 groups in the cross-validation. In Table 1, the estimated
standard error of the V̂j divided by the estimate mean value for V̂j , is under 10%
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for the wide model, but this increased to under 20% for the Efron’s Rules estima-
tor, indicating that increasing the bootstrap size from B = 200 to B = 400 might
further improve performance of the Efron’s Rules estimator. However, when we
tried B = 400, results remained largely similar. A similar jackknife calculation
with J = 20 showed the simulation size of R = 500 to be adequate, using the sim-
ulation estimate of the true MSE of the Efron’s Rules estimator, where the relative
standard error was under 10% for the six coefficients in this scenario. Also, note
that the standard error of our coverage probabilities is about 1 to 2 percentage
points, sufficient to identify the large differences in coverage observed between
methods, indicating that R is adequate.

4.1.6. Summary. In this linear regression example with imputation followed
by model selection, the Rubin’s Rules estimator gives confidence intervals with
very poor coverage and is not recommended. The two bootstrap-based estimators,
Impute-Select and Efron’s Rules, both provide confidence intervals with compara-
ble and reasonable performance. The first has confidence intervals that are slightly
too wide; the second has coverage that is slightly too small. Impute-Select and
Efron’s Rules perform almost identically when compared using the interval score,
reflecting the trade-off between width of the confidence intervals and coverage
probability, and so either one can be recommended.

The poor performance of the Rubin’s Rules estimator can be attributed to down-
wardly biased estimates of variance, by up to 30%. This bias occurs despite our
use of a proper or nearly imputation procedure, and it is not significantly improved
by increasing the imputation size M . The issue is that the model selection vari-
ability is assessed only against the imputation distribution, and not against the full
sampling distribution. To see this, consider that in steps 1 through 5 of the Rubin’s
Rules algorithm (Section 2.3), the entries of XI that are observed remain fixed in
the calculation of the variance estimate; only the entries that are imputed are var-
ied. Thus, Rubin’s Rules provides an estimate of the model selection variability
assessed against the imputation distribution, but conditional on the observed data.

The two bootstrap-based estimators both have reasonable coverage, although
neither appears to be optimal. The estimated variance of the Efron’s Rules estima-
tor is slightly biased downwards, by under 10%, and may also suffer somewhat
because the normal-theory confidence intervals used are applied to sampling dis-
tributions which are not normal; however it has relatively low MSE. Single im-
putation with bootstrap confidence intervals adapts to the nonnormal distribution
of the post-selection estimators, and appears to give valid inference, however at
the cost of higher MSE and wider confidence intervals. While neither estimator is
optimal, either estimator can be recommended.

4.2. Generalized linear regression model. We next simulate a logistic regres-
sion model based on the “Birthweight” data (Hosmer and Lemeshow (1989),
Hjort and Claeskens (2003)). We study the association between mother’s age (x1),
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mother’s weight in last menstrual period (x2), race (x3 = 1 for race “black”, x4 = 1
for race “other”, with reference category “white”) and the baby’s birth weight
(y = 1 if baby’s birth weight is less than 2.5 kg and 0 otherwise). The outcome y

for our simulation study is generated based on the fitted logistic regression model
from the original complete data. There are 4 predictors plus the intercept, with
θ = (1.307,−0.025,−0.014,1.004,0.44). The sample size is n = 189 and the
matrix of predictors X from the Hosmer and Lemeshow data is used.

As before, we use simulation to study the performance of the coefficient esti-
mates θ̂j and V̂j . We also study predicted probabilities of low birthweight for race
“white” and race “black”, at average age and weight for these subgroups, given by
p̂ = exp(Xθ̂)/(1 + exp(Xθ̂)).

Missing values were randomly generated with probability of missingness ∼28%
for weight in last menstrual period (LWT), 16% for race “black” and 10% for race
“other”, given by: p(x2) = (y + 0.007 ∗ x2

1)−1, p(x3) = 1 − (1 + 0.008 ∗ x1)
−1,

p(x4) = 1 − (1 + 0.005 ∗x1)
−1. The bootstrap size is B = 200, and the imputation

size is M = 5.

4.2.1. The distribution of the estimators. Figure 5 shows the sampling dis-
tribution of the estimators for the coefficient of race(black) and for the pre-
dicted probability of low birthweight outcome for race(black) and average age
and weight. Results are similar to the linear model case; the distribution of model
outputs (predicted probabilities) generally appear to be closer to normal than the
underlying coefficients.

FIG. 5. Sampling distribution of θ̂Black and of a predicted probability for the generalized linear
model of Section 4.2. IS: Impute-Select estimator, θ̂IS. Rubin’s Rule: Rubin’s Rules estimator, θ̂RR.
Efron’s Rule: Efron’s Rules estimator, θ̂ER. As before, θ̂IS appears to be a mixture of conditional
normals and θ̂ER appears to be a model averaged version of θ̂IS. θ̂RR is intermediate between these
two.
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TABLE 2
Comparison of post-imputation-selection estimators in a generalized linear model: relative MSE of

θ̂j , % bias in V̂
1/2
j , and mean interval score for a 95% confidence interval (CI), from 500

simulation runs

Race Race
Weight (black) (other) p(white) p(black)

Coefficient θ : −0.014 1.004 0.44 0.230 0.414
Missing data rate: 28% 16% 10% N/A N/A
Complete data MSE: 0.0001 0.398 0.163 0.002 0.013

Relative MSE of θ̂ , p̂

Complete Case Analysis∗ 2.23 1.99 1.76 2.43 1.89
Rubin’s Rules: Multiple-Impute-Select 1.37 1.05 1.07 1.10 0.98
Impute-Select: Bootstrap percentile CI 1.65 1.33 1.19 1.24 1.12
Efron’s Rules: Bootstrap-average Impute-Select 1.35 1.12 1.01 0.97 0.88

Percent bias in V̂
1/2
j

Complete Case Analysis∗ −38 −53 −54 −34 −46
Rubin’s Rules: Multiple-Impute-Select −8 −17 −25 −13 −30
Impute-Select: Bootstrap variance 8 19 4 6 4
Efron’s Rules: Bootstrap-average Impute-Select −6 −5 −2 −6 −7

Interval Score for 95% confidence interval+
Complete Case Analysis∗ 0.19 19.6 10.6 0.51 1.27
Rubin’s Rules: Multiple-Impute-Select 0.06 7.1 5.1 0.29 0.80
Impute-Select: Bootstrap percentile CI 0.04 3.1 2.0 0.23 0.54
Efron’s Rules: Bootstrap-average Impute-Select 0.04 3.2 1.9 0.26 0.63

∗Naive estimate which does not incorporate selection variability. +Mean interval score, given by
equation (4.1). Lower is better.

4.2.2. MSE of estimates. The MSE for each method relative to the complete
data analysis is given in Table 2 for selected coefficients. Results are similar to
those for linear regression for both estimated coefficients and estimated probabili-
ties. In this setting, results appear to be concordant with expectations from Theo-
rem 3.1, as these effect sizes may be considered moderate.

4.2.3. Bias of estimated standard deviations. As before, the naive complete
case analysis underestimates standard errors by 20% to 54%. Both Impute-Select
and Efron’s Rules give reasonably unbiased estimates. Rubin’s Rules is again sub-
stantially biased downwards for all estimated standard errors, up to 30% below the
true value. The CPU time takes about 16 seconds for Efron’s Rule compared to
0.06 seconds for Rubin’s Rules.

4.2.4. Confidence interval coverage, precision and interval score. Coverage
probabilities of the nominal 95% confidence intervals are given in Figure 6(left).
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FIG. 6. Coverage probability (left) and median width (right) of 95% confidence interval (CI), for
the generalized linear model of Section 4.2. CD: Naive complete data estimator. IS: Impute-Select es-
timator, with bootstrap percentile confidence interval. RR: Multiple imputation followed by model se-
lection and Rubin’s Rules. ER: Bootstrap imputation followed by model selection and Efron’s Rules.
Both the IS and ER estimators have coverage near 90%. The CI width for the ER estimator is a little
smaller because of model averaging.

The naive complete data estimator and the Rubin’s Rules estimator again have un-
acceptably low coverage. As before, the bootstrap-percentile confidence interval
of the Impute-Select method has coverage probability near the nominal 95%, and
Efron’s Rules has coverage above 90% for all coefficients. As before, the Impute-
Select estimator gives the widest CI, up to 23% wider than Efron’s Rules (Fig-
ure 6(right)). Comparing these estimators using the interval score, Impute-Select
and Efron’s Rules score almost identically, reflecting the trade-off between width
of the confidence intervals and coverage probability. The Rubin’s Rules estimator
again scores poorly and is not recommended.

5. Application to post-polypectomy risk modeling. Here we apply the three
approaches for post-imputation selection inference to the analysis of colorectal
cancer risk which motivated the present paper (Liu et al. (2016)). In the original
study, data from 8228 individuals were pooled from seven different prospective
studies with baseline polypectomy and repeat surveillance colonoscopy within 3 to
5 years. These subjects were randomly assigned to training and validation datasets.
We used the 5483 subjects in training dataset in the following analysis. The out-
come was presence of advanced neoplasia on followup. As in our original study,
we considered as potential predictors the three variables used by the US guide-
lines, namely number, size and histopathology of resected polyps, plus the five
additional known risk factors of age, sex, history of prior polyps (yes/no), polyp
grade (high grade or other) and polyp location (distal only, proximal only, both).
This set of eight predictors was selected by univariate screens at p < 0.15 in the
original study.
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Because one or more studies failed to collect several variables, three important
predictors had high rates of missing data (history of polyps: 21.4%, histopathol-
ogoy: 11.1% and grade: 24.3%). The majority of data are close to MCAR in this
example, and so a complete case analysis would be unbiased, but, given the high
rate of missing data, underpowered. Hence, in the original study, we used indica-
tor variables for the missing data, despite the known bias of that approach in the
case of correlated predictors, even if the data are missing completely at random
(Jones (1996)). Because correlation between predictors was low, we expected the
induced bias to be modest. For model selection, we used an ad hoc combination
of bootstrap-based LASSO regression using AIC, together with Bayesian model
averaging using the Bayesian Information Criterion, and used the set of variables
that was deemed most compatible with these two approaches. The final selected
model was then applied to independent validation data to make population level
estimates.

Here we apply an imputation model to fill in the missing values, and then ap-
ply the three post-imputation-selection methods for inference. We compare perfor-
mance of the three methods and consider the implications for our original study.
We focus here on the estimated coefficients of the model for the variables history
of prior polyps (hx: indicator of positive history), polyp grade (hiGd: indicator of
high grade) and polyp location (Prox: indicator for proximal location; ProxDist:
indicator for both proximal and distal polyps). These variables were chosen for
investigation because they are known to be clinically important and because they
have large univariate estimated effect sizes on risk of future advanced neoplasia.
In our published study, history and location were selected into the final model, and
grade was not. Age was also selected into the final model with strong estimated
effects by all methods considered, so we don’t report it here. We also investigate
predicted probabilities from three different risk scenarios, as specified in Table 3.
Here, for each combination of polyp location and grade, other variables were set to
their median values, as denoted in the footnote to the table. Imputation used the R
package mice with M = 5 for the multiple imputation approach. We used LASSO
for variable selection in a logistic regression model with criterion AIC, as in our
original study. The bootstrap sample size was B = 300.

TABLE 3
Colonoscopy cohort data: scenarios for estimated risks

Polyp location Polyp grade

Risk scenario
1 Proximal only High
2 Proximal and distal High
3 Proximal only Low

Scenarios 1, 2, 3, respectively: Male, age 70, 64, 68; size of largest
polyp 10,15,10; number of polyps 1, 3.5, 1.
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FIG. 7. Left: forest plot showing 95% confidence intervals for four selected parameters; Right: con-
fidence interval widths for estimated probabilities for three different risk scenarios. Methods are: CC,
complete case; IS, Impute-Select; RR, Rubin’s Rules; ER, Efron’s Rules. Variables are indicators for:
hiGd, high grade; hx, history of prior polyps; Prox, proximal location only, ProxDist, both proximal
and distal locations.

5.1. Results for the colonoscopy data. Estimated odds ratios were generally
close across the imputation methods (each within 3% to 7%; Figure 7, left panel).
These estimates were also within 3% to 7% of the published study estimates, con-
sistent with minimal bias from using the indicator method for missing values in
our original analysis. There were larger observed differences for the complete case
estimates, which also had the widest confidence intervals, confirming that the com-
plete case approach is not recommended.

The Rubin’s Rules method was seen to have the narrowest confidence intervals
for several coefficients, but is not recommended because of its demonstrated low
coverage in our simulation studies above. The Efron’s Rules method gave gener-
ally, but not always, narrower confidence intervals than Impute-Select with boot-
strap confidence intervals. We expect that this would be balanced by somewhat
lower coverage, as shown by the interval score from our simulation studies, so that
either of these two bootstrap-based methods can be recommended.

Estimated probabilities for the three risk scenarios in Table 3 were again similar
across methods (within 5%) and did not differ too much from the complete case
analysis (within 8%; data not shown). Comparing the two recommended estima-
tors, Efron’s Rules gave the narrowest intervals, up to 23% narrower than Impute-
Select for scenario 3. However, as shown by the interval score in our simulation
studies, we expect the increased precision of Efron’s Rules compared to Impute-
Select might be balanced by somewhat lower coverage, although in the smoother
setting of estimating model output Efron’s Rules might be expected to retain some
advantage.
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Had we used either recommended imputation-based method in our original
study, we would have arrived at the same final model, adding the subject’s age,
history of polyps and polyp location to the three risk factors currently incorpo-
rated into the US guidelines. Thus, fortunately, our ad hoc approach using indica-
tor variables for missing values worked adequately in this case. However, in other
cases with highly correlated predictors or data not MCAR, the indicator method
would be expected to fail, while Impute-Select or Efron’s Rules could still be rec-
ommended.

6. Discussion. In this paper we have studied the performance of three prac-
tical imputation-based methods to construct confidence intervals after model se-
lection when there is missing data: a bootstrap-based method which uses a single
imputation-selection step to produce the final model, followed by bootstrapped
imputation-selection for inference; a related bootstrap-based method which uses
the average of the imputed and selected models over the bootstrap distribution
as the final model, with computationally efficient confidence intervals following
results in Efron (2014); and a method based on multiple imputation-selection that
was originally studied in Schomaker and Heumann (2014) and which uses Rubin’s
Rules for inference. The Rubin’s Rules method showed severe under-coverage and
is not recommended, while the two bootstrap-based methods performed reason-
ably well with similar computational load, and either one can be recommended.

Both the Rubin’s Rules estimator and the Efron’s Rules estimator produce
model-averaged final estimates, in contrast to the single model produced by the
Impute-Select approach. The Rubin’s Rules estimator averages the selected mod-
els across the imputation-selection distribution. The Efron’s Rules estimator av-
erages the selected models across the bootstrap imputation-selection distribution.
Following the model averaging literature, we expected that both model-averaged
estimators might often have lower MSE than the single imputation estimator, and
this was confirmed by our simulations.

Despite its good MSE, the Rubin’s Rules post-selection estimator cannot be rec-
ommended, as it consistently underestimated the standard deviation by up to 25%
to 30%. Variance under-estimation was also seen in a prior publication (Schomaker
and Heumann (2014)), which our simulation studies confirmed. It is well known
that an “improper” imputation method will cause the Rubin’s Rules estimate of
variance to be biased downwards. To construct the imputations, we used chained
equations as implemented in the popular R package mice, with the robust pre-
dictive mean matching approach. This is a “proper” or nearly proper imputation
method, in that it explicitly incorporates the estimated sampling variability of the
parameters for the imputation model into the imputation mechanism. However, de-
spite our explicit use of a proper imputation rule, large downward bias remained.
Furthermore, while this downwards bias did not improve with increasing imputa-
tion size M, it disappeared in a comparable model with no model selection. Com-
parison with the two bootstrap-based methods below helps understand why.
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Both the Efron’s Rules and Impute-Select estimators produced reasonable es-
timates of variance and adequate confidence interval coverage in all our simula-
tion scenarios. Each of these estimators (1) resamples the data, (2) then estimates
the imputation model and uses it to impute missing data in the bootstrap sam-
ple, (3) then does model selection on the bootstrapped and imputed dataset. Steps
1 and 2 ensure via the bootstrap that the sampling variability of the imputation
model parameters is incorporated into the imputation mechanism, thus the imputa-
tion is “proper”. Step 3 then assures that this proper imputation variability and also
the underlying sampling variability are incorporated into the selection mechanism.
Consider that, for Rubin’s Rules, at each multiple imputation step only the missing
observations are replaced: thus, the Rubin’s Rules estimator assesses the variability
of model selection against the imputation distribution, conditional on the selected
sample. By contrast the two bootstrap-based methods use the full sampling dis-
tribution of the imputation-selection mechanism to assess variation, and produced
acceptable estimates of variance.

In our simulation examples, the Efron’s Rules model-averaged estimator al-
ways had better MSE than the single Impute-Select estimator. This was expected
from our Theorem in the case of moderately large true effect sizes, but it did not
agree with our Theorem in case a variable has zero or nearly zero effect (and thus
might be omitted from the model). In the no-effect case, single Impute-Selection
would be predicted to have slightly smaller MSE than model-averaged imputation-
selection. It is possible that our simulation was not sharp enough to pick up the
difference. Also, the Theorem was proved in an idealized setting of small depen-
dence and small imputation variability. However, our simulation scenarios were
deliberately chosen to be far from ideal, with strong dependence between predic-
tors and within the imputation error structure. While both the Impute-Select and
the Efron’s Rules estimators worked very well in these messy but realistic set-
tings, the results of our Theorem on MSE did not always apply. Reassuringly, the
Theorem did correctly predict that omitting the variable selection step (the “wide”
estimator) performed about as well as Impute-Select for larger effect sizes, but
worse for the zero effect sizes; indeed, the wide estimator performed the worst
among the methods studied, for our selected scenarios.

There are other methods that have been proposed in the literature, including
a bootstrapped version of a weighted model-averaged estimator, weighted over all
possible sub-models, which also incorporates multiple imputation (Schomaker and
Heumann (2014)). This approach, while computationally complex, produces good
coverage confidence intervals. Also, a recent paper (Schomaker and Heumann
(2018)) discusses various approaches to bootstrapping multiple imputation, with-
out addressing model selection. These approaches might combine the potential ef-
ficiency advantages of large M in Rubin’s Rules, with the correct coverage of boot-
strap confidence intervals, however at what we suspect may be the cost of some
computational redundancy; this might be the subject of future investigation. Also,
elucidating the kinds of dependence under which single imputation-selection will
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have better MSE than bootstrap-averaged imputation-selection remains the subject
of future work. Finally, we note that our model selection step is conditional on the
imputation, and so does not incorporate the imputation variability into the selection
criteria. Other methods have been proposed which do properly incorporate the im-
putation variability into the selection statistics (Claeskens and Consentino (2008),
Wood, White and Royston (2008)), and these approaches might be expected to
choose a better model in some circumstances. Post-imputation-selection inference
remains to be studied in this setting.

Efron (2014) introduced the model averaged bootstrap approach used here as a
“more dependable” way of setting confidence intervals for the “jumpy” estimates
produced by model selection—the model averaging smooths out the multi-modal
sampling distribution of post-selection estimators. Indeed we see this behavior in
for example, Figure 3 from our simulations. Interestingly, however, the confidence
intervals of the bootstrap-averaged approach have lower coverage than the raw
bootstrap percentile confidence intervals for the very jumpy single step Impute-
Select estimator. The Efron’s Rules estimator uses a symmetric normal confidence
interval for θ̂ER, which however still has a somewhat nonnormal post-selection
sampling distribution, while the bootstrap distribution for the impute select esti-
mator adapts appropriately to its highly nonnormal distribution. The advantage of
the Efron’s Rules estimator comes from its potential for improved MSE, but this
does not always translate into improved coverage probability.

It is well known that the bootstrap can be inconsistent for the sampling distribu-
tion of post-selection estimators (Chatterjee and Lahiri (2010)); however it is less
well appreciated that this can be a failure of convergence in probability, which does
not necessarily imply a failure of convergence in distribution. Indeed, in a different
simulation setting Chatterjee and Lahiri (2011) noted the good performance boot-
strap confidence intervals for post-selection inference. Thus, an important message
of the present paper is that the bootstrap remains a good choice for post-selection
inference.

In sum, both the bootstrapped Impute-Select estimator and the bootstrap-
averaged Efron’s Rules estimator appeared to work well in our theoretical inves-
tigations and in our simulations. In our simulations, Impute-Select had slightly
higher MSE than Efron’s Rules, but this was balanced by its better coverage, in-
herited from using bootstrap percentile confidence intervals. Balancing coverage
against confidence interval width, the interval scores for the Impute-Select estima-
tor and the Efron’s Rules estimator were similar, as is their computational burden.
Thus either the Efron’s Rules or the Impute-Select bootstrap-based estimators can
be recommended in practice as a good choice for post-selection inference after
imputation for missing data.
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SUPPLEMENTARY MATERIAL

Supplement to “Imputation and post-selection inference in models with
missing data: An application to colorectal cancer surveillance guidelines”
(DOI: 10.1214/19-AOAS1239SUPP; .zip). We provided the proofs of Theorem 3.1
and Corollary 3.1. Also we provided the R code for simulation results in Table 1
and Table 2.
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