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THE GIBBS-PLAID BICLUSTERING MODEL
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We propose and develop a Bayesian plaid model for biclustering that ac-
counts for the prior dependency between genes (and/or conditions) through a
stochastic relational graph. This work is motivated by the need for improved
understanding of the molecular mechanisms of human diseases for which
effective drugs are lacking, and based on the extensive raw data available
through gene expression profiling. We model the prior dependency informa-
tion from biological knowledge gathered from gene ontologies. Our model,
the Gibbs-plaid model, assumes that the relational graph is governed by a
Gibbs random field. To estimate the posterior distribution of the bicluster
membership labels, we develop a stochastic algorithm that is partly based on
the Wang–Landau flat-histogram algorithm. We apply our method to a gene
expression database created from the study of retinal detachment, with the
aim of confirming known or finding novel subnetworks of proteins associ-
ated with this disorder.

1. Introduction. DNA microarray and sequencing technologies allow inves-
tigators to measure the transcription3 levels of a large numbers of genes within
several diverse experimental conditions (or experimental samples) [Madeira and
Oliveira (2004), Tanay, Sharan and Shamir (2005)]. The experimental conditions
may correspond to either different time points, different environmental samples,
or different individuals or tissues. The data resulting from these technologies are
usually referred to as gene expression data.

A gene expression data set may be seen as a data matrix, with rows and columns
respectively corresponding to genes and experimental conditions. Each cell of
this matrix represents the expression level of a gene under a biological condition.
The analysis of gene expression data usually implies the search for groups of co-
regulated genes, that is, groups of genes that exhibit similar expression patterns.
Inversely, the analysis may seek samples or conditions (e.g., patients) with simi-
lar expression profiles. These may indicate the same attribute, such as a common
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type or state of a particular disease. Vast amounts of gene expression data from
numerous experiments are available for detailed analysis through public reposito-
ries such as the Gene Expression Omnibus (GEO) [Edgar, Domrachev and Lash
(2002)] at the National Center for Biotechnology Information.

In general, unveiling the hidden structure in gene expression data requires the
use of exploratory analytical methods such as clustering. Cluster analysis has been
used successfully to analyze a wide variety of transcriptomes4 [e.g., see the re-
view by Kerr et al. (2008)]. As all major biological functions are built on the syn-
ergistic interplay of multiple proteins (the role of genes is to produce proteins),
clustering similar gene expression patterns into distinct groups corresponds with
the belief that different genes that are regulated and co-expressed at the same time
and in similar locations are likely to contribute to the same biological functions.
Classical clustering analysis (e.g., the popular K-means algorithm [Ward (1963)])
associates a given gene with only one cluster. Moreover, all genes in a given clus-
ter must show similar co-regulation patterns across all experimental conditions.
These are very stringent conditions for gene expression, as a given protein (the
product of a gene) may have the capacity to regulate several different biochemi-
cal reactions. In fact, many proteins intervene in a number of different biological
processes or biochemical functions, as documented in the Gene Ontology (GO)
project [Ashburner et al. (2000)], a major bioinformatic initiative to unify the rep-
resentation of gene and gene product attributes across all species. The GO project
provides an ontology of controlled vocabularies that describes gene products in
terms of their associated biological processes, cellular components and molecu-
lar functions in a species-independent manner. Classical clustering of genes (or
conditions) cannot assign a gene (or a condition) to several different clusters. The
approach of biclustering better accommodates the multi-functional character of
genes across subsets of experimental conditions. Biclustering is the simultaneous
clustering of genes (rows) and conditions (columns). In biclustering, a given gene
may be associated simultaneously with several different clusters, which may de-
scribe distinct biological processes that are run by a cell at a given time and which
use a given set of proteins. Hartigan (1972) seems to be the first to have applied a
clustering method to simultaneously cluster rows and columns. He introduced the
so-called direct clustering algorithm, a partition-based algorithm that allows for
the division of data into submatrices (biclusters).

We apply our methods to the analysis of gene expression data associated with
retinal detachment (RD), a disorder of the eye that typically leads to permanent
vision loss. RD occurs when the sensory layer of the retina (a thin tissue lining the
back of the eye) pulls away from the pigmented layer of the retina. This results
from atrophy or tearing of the retina secondary to a systemic disease such as dia-
betes or from injury or other disturbances of the eye that allow fluids to enter the

4A transcriptome is the collection within a cell of all the messenger RNA, which transcribes the
genetic information for protein synthesis.
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space between the sensory and pigmented retinal layers [Franklin, Yu and Maturi
(2002)]. Surgical intervention to remove the detached parts of the retina is the cur-
rent standard of care to prevent further progression of the disorder. If not treated
properly, the entire retina will progressively detach, leading to complete blindness.
Better knowledge of the molecular mechanisms involved in the progression of RD
is of great interest in order to develop novel drugs to stop or slow the detachment
process, either as a substitute for surgical intervention or to use in combination
with surgical intervention.

Molecular events that occur during the progression of RD were studied via tran-
scription profiling [Delyfer et al. (2011)]. Briefly, 19 retinal biopsies from patients
with RD were compared to 19 normal retinal samples using Affymetrix microar-
rays. These arrays covered the human genome, with 54,000 probe-sets.5 The mi-
croarray data are publicly available at the National Center for Biotechnology In-
formation GEO website [Edgar, Domrachev and Lash (2002)] as GSE28133.

Transcriptional changes in photoreceptor cells in the retina are the primary tar-
get for drug development. In an initial analysis of the retinal transcriptome, Delyfer
et al. (2011) used t-tests (as is normally done by bioinformatic labs) to compare
normal versus RD samples. In that analysis, the RD inflammatory response domi-
nated any other transcriptional changes [Delyfer et al. (2011)]. Inflammation typi-
cally represents a secondary event that follows the initial stimulus that caused the
first tissue detachment. Unfortunately, the more subtle transcriptional changes in
the photoreceptor cells related to the RD disorder were not well detected.

In the study by Delyfer et al. (2011), mutual information techniques indicated
that changes existed in the RD transcription profile other than those associated
with inflammation, and that they may be a starting point for studying transcrip-
tomic changes associated with the photoreceptor cells in RD. However, the mutual
information procedure applied in that study involves iterative optimization of the
results and appears to be rather difficult to automate. In this work, we analyze the
RD data with biclustering techniques. We choose biclustering techniques because
traditional clustering approaches are not well suited for the analysis of proteins.
Some proteins assume multiple functions and/or work as hubs that mediate, link
or simultaneously synchronize multiple biological processes (such as the protein
TP53 or STAT1 [Jolliffe and Derry (2013), Stark and Darnell (2012)]). Such char-
acteristics of proteins make it very challenging to use traditional approaches for
clustering the protein interaction networks. Biclustering is well adapted to this
aim. In RD, anti-inflammatory reactions try to stop or slow the further advance-
ment of the detachment, while apoptotic (i.e., cell death) mechanisms degrade the
parts of the retina that have been detached too long and where the fragile photore-
ceptor cells have already started to die. As the retina is composed of three layers

5A probe is a general term for a “piece of DNA or RNA” corresponding to a gene or genetic
sequence of interest. Groups of probes are combined into probe-sets, and multiple probe-sets may
exist for a single gene. Here, we use the terms probe-set and gene interchangeably.
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with more than eight different cell types [Wässle (2004)], studying the behavior
of photoreceptor cells is complex, and biclustering represents a major advantage
when needing to account for the multiple overlapping functional responses that
occur during RD.

Good surveys of existing biclustering algorithms are available [Madeira and
Oliveira (2004), Prelić et al. (2006), Tanay, Sharan and Shamir (2005)]. Cheng and
Church’s algorithm [Cheng and Church (2000)] and the plaid model [Lazzeroni
and Owen (2002)] are two of the most popular biclustering methods. It appears that
Cheng and Church (2000) were the first authors to propose the term biclustering
for the analysis of microarray data. Their algorithm consists of a greedy iterative
search that aims to minimize the mean squared residual error. Lazzeroni and Owen
(2002) proposed the popular plaid model. They assumed that the expectation of
each cell in the data matrix is formed with the contribution (sum) of different
biclusters. Others have generalized the plaid model into a Bayesian framework
[Caldas and Kaski (2008), Chekouo and Murua (2015), Gu and Liu (2008), Zhang
(2010)].

From our review of the literature, it is apparent that most models used for biclus-
tering do not take into account application-specific prior information about genes
or conditions and pairwise interactions between genes or conditions. In this work,
we propose a model that accounts for this information. We adopt a Gaussian plaid
model as the model that describes the biclustering structure of the data matrix. In
addition, we incorporate prior information on the dependency between genes and
between conditions through dedicated relational graphs, one for the genes and an-
other for the conditions. These graphs are conveniently described by auto-logistic
models [Besag (1974, 2001), Winkler (2003)] for genes and conditions. The dis-
tributions are pairwise-interaction Gibbs random fields for dependent binary data.
They can be interpreted as generalizations of the finite-lattice Ising model [Ising
(1925)], which is a popular two-state discrete mathematical model for assessing
ferromagnetism in statistical mechanics. We will refer to our overall model as the
Gibbs-plaid biclustering model.

Our prior is elicited from similarities obtained from the GO annotations.6 An
r-nearest-neighbor graph over the genes is built from these similarities. A key
parameter of the auto-logistic prior is the so-called temperature parameter T (due
to its analogy with the physical process of tempering). The normalizing constant

6GO typically has two components: (A) the ontologies themselves, which are the defined terms
and the structured relationships between them (GO ontology); and (B) the associations between
gene products and the terms (GO annotations). A gene product is a biochemical material (RNA or
protein) that results from the expression of a gene. Both the GO ontologies and GO annotations are
provided by the GO project in three domains: (i) a cellular component, which refers to the place in the
cell where a gene product is active; (ii) a biological process, which refers to a biological objective
to which the gene or gene product contributes; and (iii) a molecular function, which refers to the
elemental activities of a gene product at the molecular level.
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of this prior is, in general, unknown and intractable. However, for computational
purposes, this constant is needed to implement a stochastic algorithm that aims
to estimate the posterior distribution of the genes’ bicluster memberships when
T is unknown. This means that the usual MCMC Metropolis–Hastings procedure
is not applicable to our model. Instead, we adopt a hybrid procedure that mixes
the Metropolis–Hastings sampler with a variant of the Wang–Landau algorithm
[Atchadé and Liu (2010), Murua and Wicker (2014), Wang and Landau (2001)].
The convergence of the proposed algorithm to the posterior distribution of the
bicluster membership is guaranteed by the work of Atchadé and Liu (2010).

We note that some earlier attempts to incorporate gene dependency informa-
tion are available in the literature, but they were carried out within the context of
clustering (as opposed to biclustering) and variable selection. Vannucci and Stingo
(2010) provide a nice review. Stingo et al. (2011) proposed a Bayesian model that
incorporates information on pathways and gene networks in the analysis of DNA
microarray data. They assumed a Markov random field prior to capture the gene–
gene interaction network. The neighborhood between the genes uses the pathway
structure from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database
[Kanehisa and Goto (2000)]. Hang, You and Chun (2009) and Vignes and Forbes
(2009) have also used biological information to perform a clustering analysis of
gene expression data. Park, Hastie and Tibshirani (2007) incorporated GO anno-
tations to predict survival time and time to metastasis for breast cancer patients
using gene expression data as predictor variables. The Potts model has also been
used for clustering analysis of gene expression data [Getz et al. (2000), Murua,
Stanberry and Stuetzle (2008)]. However, in these approaches, the Potts model
[Sokal (1997)] was used directly as a nonparametric model for clustering [Blatt,
Wiseman and Domany (1996)], and not as a prior that accounts for the gene–gene
interaction on another clustering model.

This paper is organized as follows. Section 2 introduces the proposed Gibbs-
plaid model for biclustering. Section 3 describes the stochastic algorithm used to
estimate the posterior distribution of the model parameters. This includes the com-
bination of the Wang–Landau algorithm with the Metropolis–Hastings sampler.
Section 4 shows the results of a simulation carried out to study the performance
of the Gibbs-plaid model and of the model selection criteria used to determine the
number of biclusters present in a data set. Section 5 deals with the application of
our methodology to the RD data. The supplementary material [Chekouo, Murua
and Raffelsberger (2015)] provides more complete results of our application to the
RD data and a high-resolution image of Figure 6.

2. The model. Let p be the number of genes, and q be the number of exper-
imental conditions. Let Yij denote the logarithm of the expression level of gene
i under condition j (i = 1, . . . , p, j = 1, . . . , q). Even though we actually work
with the logarithm of the expression level, we refer to Yij as the expression level.
Let K be the number of biclusters. For all i in the set of genes, j in the set of
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conditions, and k = 1, . . . ,K , we define the binary variables ρik and κjk as taking
values in {0,1}, so that ρik = 1 if and only if gene i belongs to bicluster k, and
κjk = 1 if and only if condition j belongs to bicluster k. The symbols ρi and ρ de-
note the K-dimensional vector of components {ρik}Kk=1 and the pK-dimensional
vector comprising all the vectors ρi , i = 1, . . . , p, respectively. The symbols κj

and κ are similarly defined for the conditions.

2.1. The plaid model. Let � denote the set of parameters of the model, which
are made explicit hereafter. In the plaid model, Yij = μij (ρ, κ,�)+ εij , where εij

is a zero-mean error term and μij (ρ, κ,�) = μ0 + ∑K
k=1(μk + αik + βjk)ρikκjk ,

where μ0 denotes the overall data mean, and αk = {αik, i = 1, . . . , p} and βk =
{βjk, j = 1, . . . , q} are the gene and condition effects associated with bicluster k,
measured as deviations from the bicluster mean μ0 +μk , k = 1, . . . ,K . Hereafter,
we denote by μ the vector of means (μ1,μ2, . . . ,μK). The model parameters are
given by � = (μ0,μ,α,β). The most common distribution for the error term is a
Normal(0, σ 2) distribution [Caldas and Kaski (2008), Gu and Liu (2008), Zhang
(2010)]. This is the model we adopt here. In the context of gene expression data,
the plaid model is a model for the logarithm of the gene expression levels. In
the presence of extreme observations, a more robust model may be more appro-
priate, such as one with Student-t distributed errors. Although some researchers
have modeled the log-expression with more complex distributions such as Gamma
or double exponential distributions [Newton et al. (2001), Purdom and Holmes
(2005)], the associated achievement of any gains within the context of biclustering
is arguable. In fact, the simulation study in Chekouo and Murua (2015) showed
that the Gaussian error term in the plaid model is fairly robust to heavily tailed
errors.

We assume that the variables Yij ’s given the labels (ρ, κ) and (σ 2,�) are inde-
pendent, that is,

P
(
y|ρ, κ, σ 2,�

) = ∏
i,j

1

σ
φ

(
yij − μij (ρ, κ,�)

σ

)
,(1)

where φ stands for the standard normal density. Given the bicluster labels (ρ, κ),
we define Ik = {i : ρik = 1} as the set of rows in the kth bicluster, and Jk =
{j : κjk = 1} as the set of columns in the kth bicluster, k = 1, . . . ,K . The kth
bicluster is given by Bk = Ik × Jk . Let nk be the number of elements in the
kth bicluster. The number of rows and columns in this bicluster will be denoted
by rk and ck , respectively. Note that nk = rk × ck . Let 1m denote the vector of
all 1’s in R

m, and Im stand for the identity matrix of dimension m. We further
assume that, given the bicluster labels, the prior of the gene effects {αik} is a
multivariate normal distribution with mean zero and variance–covariance matrix
given by σ 2

αVk = σ 2
α (Irk − 1

rk
1rk 1′

rk
). As shown in Chekouo and Murua (2015),

we may change the parametrization of the model to a proper multivariate normal
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vector ak ∼ N(0, σ 2
αIrk ) so that αk = Vkak . Similarly, we suppose that the prior

for {βjk}|(ρ, κ) follows a multivariate normal distribution with mean zero and
variance–covariance matrix given by σ 2

βUk = σ 2
β (Ick

− 1
ck

1ck
1′
ck

). Note that these
prior distributions satisfy the conditions of identifiability in the model, that is, they
ensure that the gene and condition effects add up to zero for each bicluster. We set
zero-mean independent normal priors with variances σ 2

μ0
, and σ 2

μ for the means μ0

and μ, respectively; and set a scaled inverse chi-squared prior with scale s2 and
degrees-of-freedom ν for the variance σ 2. These hyperparameters are to be chosen
adequately. For example, in our analysis in Section 4, we set σ 2

μ0
= σ 2

μ = 0.5, and
ν = 1, s2 = 0.05.

2.2. A prior for the bicluster membership. The gene labels ρik as well as the
condition labels κjk are usually assumed to be independent [Gu and Liu (2008),
Zhang (2010)]. More realistically, in this work, we incorporate prior knowledge
on the relation between genes and between conditions (if applicable) by means of
relational graphs. For example, the gene relational graph is an r-nearest-neighbor
graph for which the nodes correspond to the set of genes and the edges correspond
to the set of “most similar” or ”closer” genes. It is this notion of similarity that con-
tains the relational information between genes. We define these similarities based
on the GO annotations, which define the association between gene products and
terms. GO terms are organized in a directed acyclic graph (DAG) in which the
parent-child relationships are edges. In this graph, a GO term can have multiple
parents. All the GO annotations associated with a term inherit all the properties
of the ancestors of those terms. Thus, child annotations inherit annotations from
multiple parent terms. We adopt Lin’s pairwise similarity [Lin (1998)], which is
based on the minimum subsumer of Resnik (1999), as a means to build a notion
of semantic similarity between any two GO annotations. This idea was first intro-
duced by Lord et al. (2003). Further details can be found in the supplementary ma-
terial accompanying this paper [Chekouo, Murua and Raffelsberger (2015)]. Let
dρ(i, i′) = 1 − sim(i, i′) denote the distance between genes i and i ′ induced by
Lin’s similarity between the genes sim(i, i′). The gene relational graph is defined
as having edge weights equal to

Bii′
(
T ρ,σρ

) = 1

T ρ
exp

(
− 1

2σ 2
ρ

dρ(
i, i′

)2
)
.

Here, T ρ and σρ are the temperature and kernel bandwidth parameters of the
graph, respectively. We assume that Bii′(T ρ, σρ) = 0 for pairs of genes not con-
nected by an edge in the r-nearest-neighbor data graph. The larger the weights,
the more similar the genes. We will use the notation i ∼ i′ for nodes that are con-
nected by an edge in the data graph. For example, for the RD data, we fix r = 15
to define the r-nearest-neighbor graph for genes, as this is often recommended for
high-dimensional data [Blatt, Wiseman and Domany (1996), Stanberry, Murua and
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Cordes (2008)]. With a set of 4645 probe-sets of the RD data, we obtain a sparse
graph, with a total of 135,498 edges, which is a total of 0.63% connectivity in the
graph. This corresponds to an average graph degree (number of edges spawned
from each node) of 29.

The distribution of the gene labels in this graph is given by the binary Gibbs
random field

p
(
ρk|a,T ρ, σ 2

ρ

) ∝ hρ,k

(
ρk, T

ρ)
(2)

.= exp

{ p∑
i=1

aiρik + ∑
i∼i′

Bii′
(
T ρ,σρ

)
1{ρik=ρi′k}

}
,

where a = {ai}pi=1 are hyperparameters that control the amount of membership
(ρik = 1) in the bicluster, and, for every relation A, 1A denotes the indicator func-
tion that takes the value 1 if and only if the relation A is satisfied. This Gibbs field
is actually a binary auto-logistic distribution on the labels [Besag (1974, 2001),
Winkler (2003)]. This Gibbs prior favors biclusters formed by similar genes in the
sense of the distances or similarities chosen to build the relational graph.

The conditions prior. A similar prior relational graph may be built for the con-
ditions if a notion of similarity between the conditions can be defined. This is the
case, for example, when the conditions correspond to similar measurements taken
over a period of time, such as in gene expression evolution (i.e., time-course) pro-
files. In this case, the distance between conditions may incorporate a measure of
smoothness of the time-course profile during consecutive measurements. Alterna-
tively, a measure of correlation may be incorporated in the similarities if a moving
average or specific ARMA process is assumed on the time-course profiles. These
aspects of the modeling processes are better explained within the context of spe-
cific applications, such as the ones described in Section 4. For the moment, assume
that such a distance between conditions may be defined. We denote the distance
between two conditions j and j ′ by dκ(j, j ′). The condition relational graph is
defined to have edge weights equal to

Djj ′
(
T κ, σκ

) = 1

T κ
exp

(
− 1

2σ 2
κ

dκ(
j, j ′)2

)
.

As before, T κ and σκ are the temperature and kernel bandwidth parameters of the
graph, respectively. And we assume that Djj ′(T κ, σκ) = 0 for pairs of conditions
not connected by an edge. The distribution of the condition labels in this graph is
then given by the binary auto-logistic distribution

p
(
κk|c, T κ, σ 2

κ

) ∝ hκ,k

(
κk, T

κ)
(3)

.= exp

{ q∑
j=1

cjκjk + ∑
j∼j ′

Djj ′
(
T κ, σκ

)
1{κjk=κj ′k}

}
,
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where c = {cj }qj=1 are hyperparameters that control the amount of condition mem-
bership (κjk = 1) in the bicluster. Note that in the absence of any prior information
on the dependency between conditions, we may assume that all pairs of conditions
(j, j ′) are far apart and, consequently, that Djj ′(T κ, σκ) = 0 for all pairs (j, j ′).
This leads to a prior where all the condition labels κjk are a priori independent.

3. Posterior estimation. To estimate the posterior of the parameters, espe-
cially the one associated with the labels (ρ, κ), we use a hybrid stochastic algo-
rithm. First, an augmented model is considered in order to efficiently sample the
labels through a block Gibbs sampling. This is the Swendsen–Wang algorithm
[Swendsen and Wang (1987)], which is well known in the physics and imaging
literature. We briefly describe it hereafter. The effect and variance parameters are
readily sampled using the usual Gibbs sampler. However, the temperature hyperpa-
rameters associated with the label priors need extra consideration. In order to sam-
ple from their posterior, one needs to know the normalizing constant of the priors,
which are unfortunately intractable. To solve this impasse, we adopt the Wang–
Landau algorithm [Atchadé and Liu (2010), Wang and Landau (2001)], which is a
technique that efficiently samples from a grid of finite temperature values by clev-
erly estimating the normalizing constant at each iteration. The algorithm travels
efficiently over all the temperatures by penalizing each visit. The resulting algo-
rithm is also referred to as a flat-histogram algorithm. Next, we further explain
how the technique is applied to our model.

3.1. Sampling the labels with known temperatures. Let the number of biclus-
ters k be fixed. We denote the partial residuals by zijk = yij − μ0 − ∑K

k′ �=k(μk′ +
αik′ + βjk′)ρik′κjk′ . The likelihood is given by

P
(
y|ρ, κ, σ 2,�

) ∝ 1

σnp
exp

{
− 1

2σ 2

∑
i,j

(
zijk − ρikκjk(μk + αik + βjk)

)2
}

= 1

σnp
exp

{
− 1

2σ 2

∑
i,j

ρikκjk(zijk − μk − αik − βjk)
2

− 1

2σ 2

∑
i,j

(1 − ρikκjk)z
2
ijk

}
.

Consequently, the full conditional probability of the genes’ labels is given by

P
(
ρk|y,ρ−k, κk, σ

2,�,T ρ) ∝ exp
{∑

i

Aikρik + ∑
i∼i′

Bii′
(
T ρ,σρ

)
1{ρik=ρi′k}

}
,

where ρ−k = ρ \ ρk and

Aik = ai − 0.5σ−2
q∑

j=1

{
κjk(zijk − μk − αik − βjk)

2 − κjk(zijk)
2}

.
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To sample from this full conditional, we use the Swendsen–Wang algorithm
[Swendsen and Wang (1987)]. This algorithm samples the labels in blocks by tak-
ing into account the neighborhood system of the data graph. It defines a set of the
independent auxiliary 0–1 binary variables R = {Rii′ : i, i′ = 1, . . . , p}, called the
bonds. The bonds are set to 1 with label-dependent probabilities given by

pii′
.= P(Rii′ = 1|ρk) = (

1 − exp
{−Bii′

(
T ρ,σρ

)})
1{ρik=ρi′k}1{i∼i′}.(4)

The bond Rii′ is said to be frozen if Rii′ = 1. Note that necessarily a frozen bond
can occur only between neighboring points that share the same label. A set of
data graph nodes is said to be connected if, for every pair of nodes (i, i′) in the set,
there is a path of frozen nodes in the set connecting i with i′. The Swendsen–Wang
algorithm is used to sample the labels as follows:

1. Given the labels ρk , each bond Rii′ is frozen independently of the others with
probability pii′ if i ∼ i′ and ρik = ρi′k . Otherwise, the bond is set to zero.

2. Given the bond variables R, the graph is partitioned into its connected com-
ponents. Each connected component C is randomly assigned a label. The assign-
ment is done independently, with 1-to-0 log-odds equal to

∑
i∈C Aik . In the special

case of the Ising model and, more generally, when Aik = 0 for all i, the labels are
chosen uniformly at random.

Given the gene labels, the condition labels are sampled in a similar way.

3.2. Sampling the labels with unknown temperatures. We assume that the tem-
peratures T ρ and T κ take a finite number of values. Let Tρ and Tκ be the sets of
m and n possible values for T ρ and T κ , respectively. We assume that the prior
distribution of (T ρ, T κ) is a uniform distribution on the grid of values Tρ × Tκ .
Note that p(σ 2,�,ρ, κ, T ρ, T κ |y) is directly proportional to

p
(
y|σ 2,�,ρ, κ

)
π

(
σ 2,�

) K∏
k=1

(
hρ,k(ρk, T

ρ)

Zρ(T ρ)

hκ,k(κk, T
κ)

Zκ(T κ)

)
,

where Zρ(T ) and Zκ(T ) denote the normalizing constants for hρ,k(ρk, T ) and
hκ,k(κk, T

ρ), respectively [see equations (2) and (3)]. In general, these constants
cannot be easily evaluated and are intractable, except for the very simplest cases.
MCMC techniques, such as Metropolis–Hastings, are of no use here because the
constants change with the value of T . Instead, in order to obtain samples from the
posterior of the labels, we use a stochastic algorithm based on the Wang–Landau
algorithm [Atchadé and Liu (2010), Wang and Landau (2001)]. The sampling from
this algorithm simultaneously provides approximate samples from the posterior of
the labels and the parameters (σ 2,�) and estimates of the posterior probability
mass function of (T ρ, T κ). Atchadé and Liu (2010) provided a nice exposition of
the algorithm and showed its convergence. Murua and Wicker (2014) successfully
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used a variant of the Wang–Landau algorithm to estimate the posterior of the tem-
perature of the Potts model. The Wang–Landau algorithm considers the target joint
distribution

π
(
σ 2,�,ρ, κ, T ρ, T κ)

(5)

∝ p
(
y|σ 2,�,ρ, κ

)
π

(
σ 2,�

) K∏
k=1

hρ,k

(
ρk, T

ρ)
hκ,k

(
κk, T

κ)
/ψ

(
T ρ,T κ)

,

where ψ(T ρ,T κ) is given by

Z−1
∑
ρ,κ

∫
p

(
y|σ 2,�,ρ, κ

)
π

(
σ 2,�

)
dσ 2 d�

K∏
k=1

hρ,k

(
ρk, T

ρ)
hκ,k

(
κk, T

κ)
,(6)

where Z is the constant such that
∑

T ρ∈Tρ,T κ∈Tκ
ψ(T ρ, T κ) = 1. The algorithm

samples from iterative stochastic approximations of this distribution (see the al-
gorithm steps below), so that the marginal of the parameters and labels con-
verges to the target marginal π(σ 2,�,ρ, κ) = p(σ 2,�,ρ, κ|y) and the marginal
of (T ρ, T κ) converges to π(T ρ,T κ), which turns out to be a uniform distribution
on the grid of temperatures Tρ ×Tκ . The main idea of the stochastic approximation
is to replace ψ(T ρ,T κ) by an iterative estimate, say ψ̂(T ρ, T κ). Consider equa-
tion (5) with ψ(T ρ,T κ) replaced by its estimate ψ̂(T ρ, T κ). Since π(T ρ,T κ) is
uniform, then integrating this equation so as to obtain the estimate π̂(T ρ, T κ), and
using equation (6), we have that at convergence

ψ̂(T ρ, T κ)∑
tρ∈Tρ,tκ∈Tκ

ψ̂(tρ, tκ)
≈ ψ

(
T ρ,T κ)

.(7)

Therefore, the quantities given in the left-hand side of equation (7) give an estimate
of the posterior probability mass function of the temperatures (T ρ, T κ).

Let Tρ = {t1 < t2 < · · · < tm} be the set of temperatures considered. The Wang–
Landau algorithm we have implemented depends on an updating proposal of
the form q(T ρ, T κ |T ρ,(t), T κ,(t)) = qρ(T ρ |T ρ,(t))qκ(T κ |T κ,(t)), with qρ(t1, t2) =
qρ(tm, tm−1) = 1 and qρ(ti, ti−1) = qρ(ti, ti+1) = 0.5 if 1 < i < m. The pro-
posal qκ is similarly defined. This proposal corresponds to the proposal of Geyer
and Thompson (1995) that was used within the context of simulated tempering.
Atchadé and Liu (2010) suggested a different proposal based on a multinomial
distribution. However, their proposal involves considerably more computation.

The algorithm proceeds as follows: Given (σ 2,(t),�(t), ρ(t), κ(t), T ρ,(t), T κ,(t))

and ψ̂(t) = {ψ̂(tρ, tκ) : (tρ, tκ) ∈ Tρ × Tκ} at iteration t :

(i) Sample T from the proposal distribution qρ(·|T ρ,(t)). Set T ρ,(t+1) = T

with probability

min

(
1,Rρ(T ) exp

{
K∑

k=1

∑
i∼i′

(
Bii′

(
T ,σ 2

ρ

) − Bii′
(
T ρ,(t), σ 2

ρ

))
1{ρ(t)

ik =ρ
(t)

i′k}

})
,
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otherwise set T ρ,(t+1) = T ρ,(t), where Rρ(T ) = qρ(T |T ρ,(t))

qρ(T ρ,(t)|T )

ψ̂(T ρ,(t),T κ,(t))

ψ̂(T ,T κ,(t))
.

(ii) Sample T from the proposal distribution qκ(·|T κ,(t)). Set T κ,(t+1) = T

with probability

min

(
1,Rκ(T ) exp

{
K∑

k=1

∑
j∼j ′

(
Djj ′

(
T ,σ 2

κ

) − Djj ′
(
T κ,(t), σ 2

κ

))
1{κ(t)

jk =κ
(t)

j ′k}

})
,

otherwise set T κ,(t+1) = T κ,(t), where Rκ(T ) = qκ (T |T κ,(t))

qκ (T κ,(t)|T )

ψ̂(T ρ,(t),T κ,(t))

ψ̂(T ρ,(t),T )
.

(iii) Update ψ̂(t+1): for (tρ, tκ) ∈ Tρ × Tκ , set

log ψ̂(t+1)(tρ, tκ
)

(8)

= log ψ̂(t)(tρ, tκ
) + γ (t)

(
1{(T ρ,(t+1),T κ,(t+1))=(tρ,tκ )} − 1

mn

)
.

(iv) Sample ρ(t+1) and κ(t+1) with the Swendsen–Wang algorithm.
(v) Sample (σ 2,(t+1),�(t+1)) using the usual Gibbs sampler.

In step (iii), γ (t) is a random sequence of real numbers decreasing slowly to 0.
We chose γ (t) according to the Wang–Landau schedule suggested by Atchadé and
Liu (2010). The sequence γ (t) is kept constant until the histogram of the tempera-
tures is flat, that is, until (T ρ,(t), T κ,(t)) has equiprobably visited all the values of
the grid Tρ × Tκ . At the kth recurrent time nk such that (T ρ,(t), T κ,(t)) is approxi-
mately uniformly distributed, we set γ (nk+1) = γ (0)/2k where γ (0) = 1. When γ (t)

becomes too small, γ (t) is set to 0.0001/t0.7. In practice, a very large number of
iterations is needed to reach convergence of the quantities given in equation (7) [or
equation (8)]. We carried out a small simulation (not shown here) to get a better
idea of the number of simulations needed for a problem like ours. The answer lies
at about one-half million iterations. A theoretical proof of the convergence of this
algorithm is given in the supplementary material [Chekouo, Murua and Raffels-
berger (2015)].

In step (v), the parameters (σ 2,�) are sampled with a Gibbs sampler. The full
conditional posterior of the parameters (σ 2,�) is straightforward to derive; hence,
it is not spelled out here. The temperatures Tρ (and also the set Tκ , if appropriate)
are obtained by using the procedure of Murua and Wicker (2014) to elicit their
prior critical temperatures from the random cluster models associated with the
Potts model. The kernel bandwidth parameters σρ and σκ are kept constant and
set to the corresponding average nearest-neighbor distance [Blatt, Wiseman and
Domany (1996)].

4. Experiments with simulated data. To build our simulated data sets, we
used two different pools of genes: one from the yeast cycle data [Cho et al. (1998),
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de Lichtenberg et al. (2005), Rustici et al. (2004)] and the second from the retinal
detachment (RD) data [Edgar, Domrachev and Lash (2002)].

The yeast cycle data set shows the time-course fluctuation of the log-gene-
expression-levels of 6000 genes over 17 time points. The data have been analyzed
by several researchers [Cho et al. (1998, 2004), Mewes et al. (1999), Tavazoie et al.
(1999)] and are a classical example for testing clustering algorithms [Yeung et al.
(2001)]. We use the five-phase subset of this data, which consists of 384 genes
with expression levels that peak at different time points, corresponding to the five
phases of the cell cycle. Of the 384 genes, only 355 are annotated with GO terms.

The RD data set is described in greater detail in Section 5. We used this data set
so as to have simulations that resemble the RD data more closely. We randomly
chose 2000 probe-sets (i.e., genes) out of the 4645 probe-sets present in these data
in order to study many scenarios for the simulated data.

Based on Lin’s pairwise similarities, discussed in Section 2.2, we built corre-
sponding relational graphs comprising the annotated genes. As with the real data,
we simulated 38 conditions for the genes taken from the RD data set. Recall that
the RD data set consists of a group of 19 biopsies from patients with RD and a
control group of 19 non-RD biopsies. As described in Delyfer et al. (2011), the
patients can be further organized into three classes of RD: early stage (RD ≤ 1
month, 5 patients), mid-term stage (1 month > RD ≤ 3 months, 7 patients) and
late stage (RD > 3 months, 7 patients). The relational condition graph associated
with the genes from the RD data set was built so that patients in the same group
were related in the graph. The distances between patients in the same group were
assumed to be the same.

For the genes taken from the yeast cycle data set, we simulated 17 conditions,
the same number of conditions found in the real data. The modeling of the re-
lational condition graph associated with these genes was inspired by the time
dependency in the data. This allowed us to consider biclusters formed by con-
secutive conditions, which are easier to visualize. Thus, for these simulated data,
the similarity between conditions was induced by the correlation ξ between time-
consecutive conditions. The correlation distance between conditions was set to

dκ(
j, j ′) =

{
2
(
1 − ξ |j−j ′|), ∣∣j − j ′∣∣ ≤ 3,

0 otherwise.
The value of the correlation parameter does not affect the relational structure given
by the r-nearest-neighbor graph. In our simulations, we set ξ = 0.8. Setting ξ as an
unknown parameter of the model would unnecessarily complicate the model be-
cause conducting inference on ξ would involve knowledge of the normalizing con-
stant, which in turns depends on ξ and the temperature. A high value of ξ should
guide the model to consider clustering time-consecutive conditions together.

As our label prior favors common labels for genes or conditions that are strongly
related in the graph, we used a hierarchical clustering (e.g., Ward’s minimum vari-
ance method [Ward (1963)]) with different tree cutoffs to generate labels for dif-
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ferent numbers of biclusters. Clusters that split at higher cutoffs in the tree were
used as candidates for overlapping biclusters.

The expression levels of the bicluster cells associated with the data for genes
taken from the yeast cycle data were generated as follows: μ0 was generated from
a Normal(0,0.05) distribution; μk was generated from a Normal(2(k + 1),0.05),
k = 1,2, . . . ,K distribution; the gene effects αik were generated as normal distri-
butions, with the means equal to μαik

= 2
1+exp(−i)

− 1
rk

∑
i

2
1+exp(−i)

, and the vari-

ances equal to their prior variances, while keeping the constraint
∑p

i=1 αikρik = 0,
k = 1, . . . ,K (see the last paragraph of Section 2.1 on page 1649); the condition
effects βjk were generated similarly; and the variance σ 2 was generated from an
inverse-χ2(3,0.03). In this fashion, we created data sets with the following num-
bers of biclusters: K = 2,3,4,5,6,7,8. Each of these cases was replicated 15
times. Figure 1 shows some examples of the simulated data for different values
of K .

The expression levels of the bicluster cells associated with the data for genes
taken from the RD data set were generated in the same manner, except for
the parameters μk that were generated from a Normal distribution, with mean
2(10(k + 1)/K + 1) and variance 0.05. In this case, we created data sets with the
following numbers of biclusters: K = 4,8,16,24,30,40,50. Each of these cases
was replicated 15 times.

4.1. The F1-measure of performance. A measure of similarity between two
sets of biclusters M1 = {A1, . . . ,Ak} and M2 = {B1, . . . ,B�} is given by the so-
called F1-measure [Santamaria, Quintales and Theron (2007), Turner, Bailey and
Krzanowski (2005)]. The F1-measure is an average between recall and precision,
two measures of retrieval quality introduced in the text-mining literature [Allan
et al. (1998)]. Let A,B be two biclusters, rA and rB be the number of genes in
A and B , cA and cB be the number of conditions in A and B , and nA = rAcA

and nB = rBcB be the number of elements in A and B , respectively. Precision and
recall are given by

recall = (rA∩B)(cA∩B)

nB

, precision = (rA∩B)(cA∩B)

nA

.

Recall is the proportion of elements in B that are in A. Precision is the proportion
of elements in A that are also found in B . The F1-measure between A and B is
given by F1(A,B) = 2(rA∩B)× (cA∩B)/(nA +nB). When several target biclusters
(or estimated biclusters) M1 are to be compared with known biclusters M2, we use

the F1-measure average: F1(M1,M2) = 1
k

∑k
i=1 maxj F1(Ai,Bj ). The estimated

biclusters M1 are obtained by using a threshold of 0.5 on the marginal posterior
probabilities of the labels from our stochastic algorithm.
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FIG. 1. Examples of simulated data.

4.2. Comparison results. We show the results of a performance compari-
son between the Gibbs-plaid model and the Bayesian penalized plaid model of
Chekouo and Murua (2015) for each number of biclusters considered. The pe-
nalized plaid model uses a parameter λ, which controls the amount of overlap of
the biclusters. It extends the original plaid model of Lazzeroni and Owen (2002)
and the nonoverlapping model of Cheng and Church (2000), which arise as spe-
cial cases of the penalized model when λ is set to zero and infinity, respectively.
The case of λ = 0 is also equivalent to our Gibbs-plaid model when the tempera-
tures tend toward infinity (i.e., a model without prior interaction between the genes
or between the conditions). Chekouo and Murua (2015) fit their model with a
Gibbs sampler, and showed that its performance is much better than the perfor-
mance of five other competitive biclustering methods: the SAMBA algorithm of
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FIG. 2. F1-measure means. The darkest bars correspond to our Gibbs-plaid model and the other
bars to other biclustering algorithms. The segments on top of the bars represent plus or minus two
standard deviations estimated from 15 replicates. CC stands for the Cheng and Church algorithm.

Tanay, Sharan and Shamir (2002), the improved plaid model of Turner, Bailey and
Krzanowski (2005), the algorithm of Cheng and Church (2000), the spectral algo-
rithm of Kluger et al. (2003), and the FABIA procedure of Hochreiter et al. (2010).
In this section, we extend this performance comparison by (a) including our Gibbs-
plaid model, (b) considering a larger and much more diverse pool of genes in the
generation of data sets, and by (c) considering a larger number of biclusters in the
simulations.

The Gibbs-plaid model was run with the stopping criterion suggested by
Atchadé and Liu (2010), but with the maximum number of iterations fixed at
500,000. The penalized plaid model was run for 20,000 iterations. For both mod-
els, we used the last 10,000 samples after the burn-in period to perform the anal-
ysis and comparisons. We set the hyperparameters of the variables � and σ 2 as
follows: σ 2

μ0
= σ 2

μ = σ 2
α = σ 2

β = 0.5, ν = 1 and s2 = 0.05. Figure 2 shows the
results. Overall, the Gibbs-plaid model performed better than the penalized plaid
model and the other five biclustering algorithms. The difference in performance
was much larger when the number of biclusters was large (K ≥ 30 for the RD data
and K ≥ 6 for the yeast data). We stress that these results apply to a large simula-
tion involving very different pools of genes and types of conditions. Note that with
the RD data, the FABIA algorithm did not work for cases with a large number of
biclusters (K ≥ 40), and that the spectral algorithm did not find any biclusters for
all cases (data set replicates) with K = 4 and K = 30. Moreover, for K = 4,8 and
30, FABIA found biclusters in only a single case out of 15 replicates. Similarly,
for K = 40 and 50, the spectral algorithm found biclusters in only a single case.

4.3. Choosing the number of biclusters. As in the work of Chekouo and Mu-
rua (2015), we used two model selection criteria to decide on the appropriate num-
ber of biclusters for each data set. We used the AIC [Akaike (1974)] and the con-
ditional DIC (DICc), which was considered in Chekouo and Murua (2015) and is
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given by

DICc = −2Eσ 2,�,ρ,κ

[
logp

(
y|σ 2,�,ρ, κ

)|y] + pc

(
σ̃ 2, �̃, ρ̃, κ̃

)
,

where (σ̃ 2, �̃, ρ̃, κ̃) is the maximum a posteriori estimator of (σ 2,�,ρ, κ) and

pc

(
σ̃ 2, �̃, ρ̃, κ̃

)
= −2Eσ 2,�,ρ,κ

[
logp

(
y|σ 2,�,ρ, κ

)|y] + 2 logp
(
y|σ̃ 2, �̃, ρ̃, κ̃

)
,

is the corresponding effective dimension. We computed the DICc and AIC criteria
for all the simulated data for different values of K . For the data generated from
the yeast cycle data, we computed these criteria for k ≤ 12 biclusters. For the data
generated with the RD data, we computed these criteria for k ≤ 30 biclusters when
K ≤ 24, for k ≤ 36 when K = 30, for k ≤ 46 when K = 40, and for k ≤ 56 when
K = 50. Figure 3 shows the model selection results for some of the simulated data
sets. We note that, in general, AIC and DICc chose the same models for the small
data sets generated with the pool of genes of the yeast cycle data. However, for the
larger data sets generated with the pool of genes of the RD data, AIC tended to
reach a minimum before DICc did, largely underestimating the true number of bi-
clusters. This suggests an over-penalization of complex models by AIC due to the
large number of parameters induced by the large number of genes in the data sets.
This behavior of AIC has been noticed before [Chekouo and Murua (2015)]. On
the other hand, the elbow of the DICc’s curve (that is, the start of the flattening of
the DICc’s trajectories) tended to occur at or after the minimum of the correspond-
ing AIC curves. In some cases, the DICc criterion reached a minimum at a number
of biclusters that was larger than the true number of biclusters. A closer look at
the extra biclusters revealed that they were, in general, very small, containing only
a couple of conditions or a handful of genes. In addition, at the flattening of the
DICc curve, the DICc’s values were not (statistically) significantly different when
we considered the errors in the DICc’s estimates (the vertical segments crossing
the curve correspond to plus or minus two standard deviations; the standard de-
viations were estimated from 15 replicates). Therefore, a possible rule of thumb
is to select the biclustering model associated with a point in the flat part of the
DICc curve that falls near the elbow of the curve. This is the rule we applied in the
simulations and in the application to a real data set, described hereafter.

5. Application to the retinal detachment disorder data. In this section we
show the application of our biclustering approach to the data gathered from a study
in which 19 biopsy samples of RD were compared to 19 normal retinal samples
[Delyfer et al. (2011)]. The data are available at NCBI/GEO as GSE28133 [Edgar,
Domrachev and Lash (2002)]. The first step in microarray analysis consists in fil-
tering for potentially relevant alterations in expression levels and removing any
changes presumably due to the inherent noise of the system [Calza et al. (2007),
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FIG. 3. Simulated data. Average AIC and DICc for the Gibbs-plaid model. The top row shows the
results associated with the data sets generated for genes from the yeast cycle data (p = 355, q = 17).
The middle and bottom rows show the results associated with the data sets generated for genes from
the RD data (p = 2000, q = 38). The bars correspond to plus or minus two standard deviations.

Gentleman et al. (2005), Hackstadt and Hess (2009)]. Such filtering aims at elim-
inating all genes whose expression measurements are very low, and to whom the
resulting measures can be associated with random noise at detection-limit. In our
case, Delyfer et al. (2011) points out that the data is well described as a bimodal
distribution where the first peak is associated with nonexpressed genes (i.e., where
random noise at detection-limit was captured). In order to separate the random
noise peak from the second peak of the bimodal distribution, we followed the exact
same preprocessing procedure of Delyfer et al. (2011) and applied a threshold of
31.5 expression units to the expression data. Only 32% of all probe-set expression
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values in the data were retained after the application of the threshold. Fundamen-
tally, this filtering step follows the belief that a gene which is not expressed in any
of the samples studied cannot present changes in expression rates in some samples
and, therefore, all changes in the measures are due to random noise. Therefore,
we filtered out the genes/probe-sets with very low or constant expression values
along all samples, which allowed us to concentrate on the highly reliable changes
in the transcriptome, reduce the overall noise, and accelerate the subsequent cal-
culations. A further gene filtering step was done based on the intuitive belief that
if a gene expression standard deviation is too small, then the gene may have little
discriminating strength (e.g., to discriminate between RD patients from healthy
control ones) and will be less likely to be selected. We studied the effects of per-
forming this preprocessing step in a simulation study (not shown here). We noticed
that noisy genes not only increased the computational burden, but could also de-
crease the biclustering performance. After this filtering step, we obtained a data
set of 4645 probe-sets with information for 3182 different genes (multiple probe-
sets may correspond to a single gene). We fit the Gibbs-plaid biclustering model
to these data. The DIC criterion chose 47 biclusters, a value close to the elbow,
whereas the AIC criterion chose 11 biclusters, the value of the minimum AIC. The
size of the biclusters are shown in a series of histograms in Figure 4.

The DIC biclustering yielded a total of 20 biclusters that contained more than
80% of the RD samples, and 6 biclusters that contained more than 80% of the
non-RD samples. In contrast, the AIC biclustering yielded only 5 biclusters that
contained more than 80% of the RD samples, and 3 biclusters that contained more
than 80% of the non-RD samples. Of the 20 DIC-yielded biclusters with at least
80% of the RD samples, 18 contained 90% of the RD samples, and 15 contained
only RD samples (i.e., they were purely RD sample biclusters). We are particularly
interested in the “significant” biclusters because genes involved in these biclusters
can be viewed as biomarkers that discriminate between the patients with RD and
those without RD. In what follows, we refer to the biclusters that contain at least
80% of the RD samples or at least 80% of the non-RD samples as significant

FIG. 4. The retinal detachment data. The two leftmost histograms show the number of genes per
bicluster (far left) and the number of experimental conditions per bicluster (second from the left)
associated with the solution preferred by AIC. The rightmost histograms show the same type of
information associated with the solution preferred by DIC.
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FIG. 5. Relative redundancy from the retinal detachment data. The two leftmost histograms show
the relative redundancy of genes between biclusters (far left) and the relative redundancy of samples
between biclusters (second from the left) associated with the solution preferred by AIC. The two
rightmost histograms show the same type of information associated with the solution preferred by
DIC. Only significant biclusters were involved in the calculations.

biclusters. Of particular interest are DIC biclusters 4, 41 and 6, which respectively
consist of 95%, 91% and 84% of the RD samples.

The degree of biclustering overlap and association among the significant bi-
clusters may be better studied by computing the amount of shared elements (either
probe-sets or samples) between each pair of biclusters. We computed the relative
redundancy between each pair of biclusters as the average of the two ratios given
by the number of shared elements and the corresponding bicluster sizes. As the
DIC produced a larger number of smaller biclusters, the corresponding results of
biclustering showed less overlap (i.e., lower relative redundancy) than the AIC
results (see Figure 5).

A more detailed inspection of the biclustering results (see the supplementary
material [Chekouo, Murua and Raffelsberger (2015)] for complete biclustering
results) revealed that those produced using DIC contained the most interesting
enrichment of GO ontologies related to photoreceptor cells (i.e., GO ontologies
“GO:0009416 response to light stimulus” or further specialized branches of the
previous GO term, such as “GO:007603 phototransduction, visible light”), which
were found in DIC bicluster 4 and somehow weaker in bicluster 6 (DIC biclusters
4 and 6 have a relative gene redundancy of 51.8%). Some other interesting biclus-
ters showed either enrichment of GO ontology terms for inflammatory response
(bicluster 41, which consists of 91% RD samples) or for cell death (bicluster 8,
which consists of only 54% RD samples). Both types of responses have been pre-
viously described [Delyfer et al. (2011)], but are not related to photoreceptor cells
and are therefore less helpful in establishing a better understanding of the fate of
photoreceptor cells. The biclusters obtained using AIC had globally similar results
with respect to enriched GO ontologies. However, the terms related to vision and
photoreceptor cells showed less dominant enrichment. In addition, this bicluster-
ing contains only a few “significant” biclusters. Moreover, following our simula-
tion results, the large difference in the number of biclusters suggested by AIC and
DIC indicate that the DIC results should be more reliable than those obtained from
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AIC in this case. Therefore, in the subsequent analysis, we focused on the results
obtained using DIC and, in particular, on bicluster 4, which contained all the RD
samples and only one non-RD sample.

Subsequent inspection of the protein interaction map7 for the proteins identified
in DIC bicluster 4 (formed by 332 probe-sets and representing 301 different pro-
teins) was performed using the STRING database of documented protein-protein
interactions [Jensen et al. (2009)]. This is displayed in Figure 6 (see the supple-
mentary material [Chekouo, Murua and Raffelsberger (2015)] for a high-resolution
image). On the basis of 301 proteins, we obtained a fairly small network of 50
directly interconnected proteins. We decided to construct an extended network by
adding proteins that allowed us to link two or more of the 301 proteins from biclus-
ter 4, and for which the expression values were sufficiently high to call them un-
ambiguously expressed genes. Again, the threshold of 31.5 units described above
and in Delyfer et al. (2011) was used so as to ensure that only genes with an un-
ambiguous presence be considered for addition to the network. This approach has
been successfully applied to identify proteins that are part of regulatory cycles and
which are themselves not regulated at the level of transcription, but rather by ei-
ther phosphorylation [Guérin et al. (2012)] or proteins in the same pathway that are
more weakly regulated. Using this approach, we constructed an extended network
of 50 proteins from the initial network and 68 additional proteins from bicluster 4,
which could then be connected to the network because of the addition of 192 novel
proteins that were not present in bicluster 4 (Figure 6).

In the extended network, the proteins identified in bicluster 4 are shown as large
nodes, whereas the added proteins are shown as small nodes. All nodes (proteins)
are divided into three regions that correspond to early, middle and late latency of
RD. The regions are colored according to the change of gene expression values
(fold-change) relative to the control group. The three respective fold-change val-
ues are displayed in a blue to red color scale (saturated blue for down-regulation
stronger than 6-fold; saturated red for up-regulation stronger than 6-fold). It is
important to note that the majority of proteins added to construct this extended
network have node colors that are similar to the color of their neighbors originally
identified in bicluster 4. This confirms that adding these genes conserves well the
overall structure of up- or down-regulated groups of proteins. Several GO ontology
features are displayed in Figure 6 according to the following shapes of the nodes:
triangles display genes with “GO:0007601 visual perception,” parallelograms,
genes with “GO:0008219 cell death,” and rectangles, genes with “GO:0006954
inflammatory response.” No cases of multiple annotations combining any of these

7In analogy to maps of urban public transport (in particular, subway maps), networks of protein-
protein interaction have been called “interaction maps.” Both types of graphs have nodes that are
interconnected [proteins are connected with other proteins when they have previously been identified
to interact (biologically/physically) with each other], and, in both types of graphs, some nodes have
a high number of connections while the majority has simply one or two connections.
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FIG. 6. Network map of retinal detachment transcriptome data. Bicluster 4 from the DIC results
was analyzed for protein-protein interaction networks (PPIN) using the STRING database. As the
initial network of proteins with direct interactions was fairly small, an extended network of 310 pro-
teins was constructed based on 118 proteins from bicluster 4 and 192 added proteins (smaller node
size in the figure). Relative change in biopsies for three subgroups of RD latency are represented by
different colors of nodes (proteins). Selected classes of GO-ontologies are shown via the node shape:
triangles for “GO:0007601 visual perception,” parallelograms for “GO:0008219 cell death” and
rectangles for “GO:0006954 inflammatory response.” Genes central to selected pathways further
discussed in Section 5 are surrounded (highlighted) by black rectangles.

three terms were observed among the 310 proteins that form this network. Genes
annotated with other functions are shown as circles. Proteins involved in cell death
and inflammation were key results in the traditional analysis using t-tests [Delyfer
et al. (2011)]. In contrast, proteins with these annotations are fairly rare in DIC
bicluster 4, and are found in separate substructures of the enriched network when
compared to the down-regulated genes annotated as being involved in visual per-
ception. In fact, most other subnetworks based on DIC bicluster 4 are somehow
related to signaling, and thus reflect substantial biological and molecular activity
in specimens of RD. One may note other relevant subnetworks, such as the one
around RHOU and ARHGAP30 (framed by rectangles at the top left part of Fig-
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ure 6), which is highly enriched in GTPases, which in turn are found at the very
end of signaling pathways; the subnetwork around MX1 and RNAF135 (framed
by rectangles at the bottom left part of Figure 6), which is enriched in up-regulated
antiviral activity; or the subnetwork around PPARA, NR4A2 and NR2C1 (framed
by rectangles at the bottom right of Figure 6), which is enriched in mostly down-
regulated nuclear receptors. The surprisingly strong antiviral activity subnetwork
mentioned above may be involved in the general acute inflammatory response;
however, it has not been noted in the literature. Alternatively, these findings may
open novel perspectives for further detailed studies to investigate the potential par-
ticipation of viral infections as risk factors for RD or as factors related to a worse
prognosis at the onset of RD.

6. Conclusion. We have proposed a model for biclustering that incorporates
biological knowledge from the Gene Ontology (GO) project and experimental con-
ditions (if available). We use this knowledge to specify prior distributions that ac-
count for the dependency structure between genes and between conditions. Our
goal was to determine whether using prior information on the genes and the condi-
tions would improve the biological significance of the biclusters obtained from this
method. We incorporated this prior information by efficiently modeling mutual in-
teractions between genes (or conditions) with discrete Gibbs fields. The pairwise
interaction between the genes is given by entropy similarities estimated from GO.
These are embedded into a relational graph with nodes that correspond to genes
and edges to similarities. The graph is kept sparse by filtering out gene interactions
(edges) that arise from genes that do not share much common biological function-
ality as measured by GO. In some cases, the conditions may also be compared
by building a notion of similarity between them, for example, in the case of gene
expression time courses. These similarities can also be represented by a corre-
sponding relational graph. To our knowledge, the introduction of Markov models
and Gibbs fields in the context of biclustering is new. However, this has already
been attempted in the fields of clustering and regression.

In order to estimate the biclusters, we adopted a hybrid procedure that mixes
the Metropolis–Hastings sampler with a variant of the Wang–Landau algorithm. To
efficiently sample the labels through a block Gibbs sampling, we used an algorithm
based on the Swendsen–Wang algorithm. Experiments on simulated data showed
that our model is an improvement over other algorithms. They also showed that
criteria based on the conditional DIC and AIC may be used to guide the choice of
the number of biclusters.

The application of Gibbs-plaid biclustering to a data set created from RD re-
search brings several advantages and novel insights. In comparison to previous
efforts, we noted that biclustering is much more adaptive to biological settings,
which are characterized by numerous proteins that have multiple functions and
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tissues or cells of interest that make use of multiple biological processes at the
same time. A detailed inspection of the biclustering results allowed us to identify
biclusters that are associated with all major known groups of cellular and molec-
ular events. Adding a protein-network component to these results revealed several
previously unknown aspects of RD that lead to the generation of new hypotheses
regarding: (i) proteins directly involved in subsequent changes in photoreceptor
cells, and (ii) subnetworks of proteins potentially linked to these events.

Acknowledgments. The authors are grateful to LeeAnn Chastain at MD An-
derson Cancer Center for editing assistance.

SUPPLEMENTARY MATERIAL

Supplement to “The Gibbs-plaid biclustering model” (DOI: 10.1214/15-
AOAS854SUPP; .zip). A high-resolution version of the image shown in Figure 6,
as well as the complete biclustering results associated with the RD data have been
provided as supplementary material. A proof of the convergence of the stochastic
algorithm of Section 3 and further details on Lin’s similarity (Section 2.2) are also
included.

REFERENCES

AKAIKE, H. (1974). A new look at the statistical model identification. IEEE Trans. Automat. Control
AC-19 716–723. MR0423716

ALLAN, J., CARBONELL, J., DODDINGTON, G., YAMRON, J. and YANG, Y. (1998). Topic detec-
tion and tracking pilot study: Final report. In Proc. DARPA Broadcast News Transcription and
Understandingepl Workshop 194–218. Morgan Kaufmann, San Francisco, CA.

ASHBURNER, M., BALL, C. A., BLAKE, J. A., BOLSTEING, D., BUTLER, H., CHERRY, J. M.,
DAVIS, A. P., DOLINSKI, K., DWIGHT, S. S., EPPIG, J. T., HARRIS, M. A., HILL, D. P.,
ISSEL-TARVER, L., KASARSKIS, A., LEWIS, S., MATESE, J. C., RICHARDSON, J. E., RING-
WALD, M., RUBIN, G. M. and SHERLOCK, G. (2000). Geneontology: Tool for the unification of
biology the gene ontology consortium. Nat. Genet. 25 25–29.

ATCHADÉ, Y. F. and LIU, J. S. (2010). The Wang–Landau algorithm in general state spaces: Ap-
plications and convergence analysis. Statist. Sinica 20 209–233. MR2640691

BESAG, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc.
Ser. B. Stat. Methodol. 36 192–236. MR0373208

BESAG, J. (2001). Markov chain Monte Carlo for statistical inference. Working Paper 9, Center for
Statistics and the Social Sciences, Univ. Washington, Seattle, WA.

BLATT, M., WISEMAN, S. and DOMANY, E. (1996). Superparamagnetic clustering of data. Phys.
Rev. Lett. 76 3251–3254.

CALDAS, J. and KASKI, S. (2008). Bayesian biclustering with the plaid model. In Proceedings of
the IEEE International Workshop on Machine Learning for Signal Processing XVIII (J. Príncipe,
D. Erdogmus and T. Adali, eds.) 291–296. Cancun, Mexico.

http://dx.doi.org/10.1214/15-AOAS854SUPP
http://www.ams.org/mathscinet-getitem?mr=0423716
http://www.ams.org/mathscinet-getitem?mr=2640691
http://www.ams.org/mathscinet-getitem?mr=0373208
http://dx.doi.org/10.1214/15-AOAS854SUPP


GIBBS-PLAID BICLUSTERING 1667

CALZA, S., RAFFELSBERGER, W., PLONER, A., SAHEL, J., LEVEILLARD, T. and PAWITAN, Y.
(2007). Filtering genes to improve sensitivity in oligonucleotide microarray data analysis. Nucleic
Acids Res. 35 e102.

CHEKOUO, T. and MURUA, A. (2015). The penalized biclustering model and related algorithms.
J. Appl. Stat. 42 1255–1277. MR3317943

CHEKOUO, T., MURUA, A. and RAFFELSBERGER, W. (2015). Supplement to “The Gibbs-plaid
biclustering model.” DOI:10.1214/15-AOAS854SUPP.

CHENG, Y. and CHURCH, G. M. (2000). Biclustering of expression data. In Proceedings of the
Eighth International Conference on Intelligent Systems for Molecular Biology (P. Bourne et al.,
eds.) 93–103. AAAI Press, Menlo Park, CA.

CHO, R. J., CAMPBELL, M. J., WINZELER, E. A., STEINMETZ, L., CONWAY, A., WOD-
ICKA, L., WOLFSBERG, T. G., GABRIELIAN, A. E., LANDSMAN, D., LOCKHART, D. J. and
DAVIS, R. W. (1998). A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell
2 65–73.

CHO, H., DHILLON, I. S., GUAN, Y. and SRA, S. (2004). Minimum sum-squared residue co-
clustering of gene expression data. In Proceedings of the 4th SIAM Conference on Data Mining
114–125.

DE LICHTENBERG, U., JENSEN, L. J., BRUNAK, S. and BORK, P. (2005). Dynamic complex for-
mation during the yeast cell cycle. Science 307 724–727.

DELYFER, M.-N., RAFFELSBERGER, W., MERCIER, D., KOROBELNIK, J.-F., GAUDRIC, A.,
CHARTERIS, D. G., TADAYONI, R., METGE, F., CAPUTO, G., BARALE, P.-O., RIPP, R.,
MULLER, J.-D., POCH, O., SAHEL, J.-A. and LÉVEILLARD, T. (2011). Transcriptomic anal-
ysis of human retinal detachment reveals both inflammatory response and photoreceptor death.
PLoS ONE 6 e28791.

EDGAR, R., DOMRACHEV, M. and LASH, A. E. (2002). Gene expression omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Res. 30 207–210.

FRANKLIN, A. J., YU, M. and MATURI, R. K. (2002). Tobacco smoking negatively affects the
outcome of retinal detachment repair. Investigative Ophthalmology and Vision Science 43 635.

GENTLEMAN, R., CAREY, V. J., HUBER, W., IRIZARRY, R. A. and DUDOIT, S., eds. (2005).
Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer, New
York. MR2201836

GETZ, G., LEVINE, E., DOMANY, E. and ZHANG, M. Q. (2000). Super-paramagnetic clustering of
yeast gene expression profiles. Phys. A 279 457–464.

GEYER, C. J. and THOMPSON, E. A. (1995). Annealing Markov chain Monte Carlo with applica-
tions to ancestral inference. J. Amer. Statist. Assoc. 90 909–920.

GU, J. and LIU, S. J. (2008). Bayesian biclustering of gene expression data. BMC Genomics 9
(Suppl. 1) 113–120. From The 2007 Int. Conf. on Bioinformatics & Computational Biology
(BIOCOMP′07), Las Vegas, Nevada, USA (2007).

GUÉRIN, E., RAFFELSBERGER, W., PENCREACH, E., MAIER, A., NEUVILLE, A., SCHNEI-
DER, A., BACHELLIER, P., ROHR, S., PETITPREZ, A., POCH, O., MORAS, D., OUDET, P.,
LARSEN, A. K., GAUB, M. P. and GUENOT, D. (2012). In vivo topoisomerase I inhibition at-
tenuates the expression of Hypoxia Inducible Factor 1 alpha target genes and decreases tumor
angiogenesis. Molecular Medicine 18 83–94.

HACKSTADT, A. J. and HESS, A. M. (2009). Filtering for increased power for microarray data
analysis. BMC Bioinformatics 10 11.

HANG, S., YOU, Z. and CHUN, L. Y. (2009). Incorporating biological knowledge into density-
based clustering analysis of gene expression data. In Proceedings of the 2009 Sixth International
Conference on Fuzzy Systems and Knowledge Discovery, China, Vol. 05. FSKD ’09 52–56. IEEE
Press, Piscataway, NJ.

http://www.ams.org/mathscinet-getitem?mr=3317943
http://dx.doi.org/10.1214/15-AOAS854SUPP
http://www.ams.org/mathscinet-getitem?mr=2201836


1668 T. CHEKOUO, A. MURUA AND W. RAFFELSBERGER

HARTIGAN, J. A. (1972). Direct clustering of a data matrix. J. Amer. Statist. Assoc. 67 123–129.
HOCHREITER, S., BODENHOFER, U., HEUSEL, M., MAYR, A., MITTERECKER, A.,

KASIM, A., KHAMIAKOVA, T., SANDEN, S. V., LIN, D., TALLOEN, W., BIJNENS, L.,
GÖHLMANN, H. W. H., SHKEDY, Z. and CLEVERT, D.-A. (2010). FABIA: Factor analysis
for bicluster acquisition. Bioinformatics 26 1520–1527.

ISING, E. (1925). Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik A Hadrons and
Nuclei 31 253–258.

JENSEN, L. J., KUHN, M., STARK, M., CHAFFRON, S., CREEVEY, C., MULLER, J., DOERKS, T.,
JULIEN, P., ROTH, A., SIMONOVIC, M., BORK, P. and VON MERING, C. (2009). STRING 8—
A global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res.
37 D412–D416.

JOLLIFFE, A. K. and DERRY, W. B. (2013). The TP53 signaling network in mammals and worms.
Brief Funct. Genomics 12 129–141.

KANEHISA, M. and GOTO, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic
Acids Res. 28 27–30.

KERR, G., RUSKIN, H. J., CRANE, M. and DOOLAN, P. (2008). Techniques for clustering gene
expression data. Comput. Biol. Med. 38 283–293.

KLUGER, Y., BASRI, R., CHANG, J. T. and GERSTEIN, M. (2003). Spectral biclustering of mi-
croarray cancer data: Co-clustering genes and conditions. Genome Research 13 703–716.

LAZZERONI, L. and OWEN, A. (2002). Plaid models for gene expression data. Statist. Sinica 12
61–86. MR1894189

LIN, D. (1998). An information-theoretic definition of similarity. In Proceedings of the 15th Inter-
national Conference on Machine Learning 296–304. Morgan Kaufmann, San Francisco, CA.

LORD, P., STEVENS, R., BRASS, A. and GOBLE, C. (2003). Semantic similarity measures as tools
for exploring the gene ontology. Pac. Symp. Biocomput. 8 601–612.

MADEIRA, S. C. and OLIVEIRA, A. L. (2004). Biclustering algorithms for biological data analysis:
A survey. IEEE Transactions on Computational Biology and Bioinformatics 1 24–45.

MEWES, H. W., HEUMANN, K., KAPS, A., MAYER, K., PFEIFFER, F., STOCKER, S. and FRISH-
MAN, D. (1999). MIPS: A database for genomes and protein sequences. Nucleic Acids Res. 27
44–48.

MURUA, A., STANBERRY, L. and STUETZLE, W. (2008). On Potts model clustering, kernel K-
means, and density estimation. J. Comput. Graph. Statist. 17 629–658. MR2528240

MURUA, A. and WICKER, N. (2014). The conditional-Potts clustering model. J. Comput. Graph.
Statist. 23 717–739. MR3224653

NEWTON, M. A., KENDZIORSKI, C. M., RICHMOND, C. S., BLATTNER, F. R. and TSUI, K. W.
(2001). On differential variability of expression ratios: Improving statistical inference about gene
expression changes from microarray data. J. Comput. Biol. 8 37–52.

PARK, M. Y., HASTIE, T. and TIBSHIRANI, R. (2007). Averaged gene expressions for regression.
Biostatistics 8 212–227.
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