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HMMSEQ: A HIDDEN MARKOV MODEL FOR DETECTING
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We introduce hmmSeq, a model-based hierarchical Bayesian technique
for detecting differentially expressed genes from RNA-seq data. Our novel
hmmSeq methodology uses hidden Markov models to account for potential
co-expression of neighboring genes. In addition, hmmSeq employs an inte-
grated approach to studies with technical or biological replicates, automat-
ically adjusting for any extra-Poisson variability. Moreover, for cases when
paired data are available, hmmSeq includes a paired structure between treat-
ments that incoporates subject-specific effects. To perform parameter estima-
tion for the hmmSeq model, we develop an efficient Markov chain Monte
Carlo algorithm. Further, we develop a procedure for detection of differen-
tially expressed genes that automatically controls false discovery rate. A sim-
ulation study shows that the hmmSeq methodology performs better than
competitors in terms of receiver operating characteristic curves. Finally, the
analyses of three publicly available RNA-seq data sets demonstrate the power
and flexibility of the hmmSeq methodology. An R package implementing
the hmmSeq framework will be submitted to CRAN upon publication of the
manuscript.

1. Introduction. RNA-seq has revolutionized the study of gene expression.
RNA-seq success may be attributed to its low noise, high-throughput and ability to
interrogate allele-specific expression and isoforms [Auer, Srivastava and Doerge
(2012), Zhao et al. (2014)]. Most RNA-seq studies aim to identify differentially
expressed (DE) genes between samples corresponding to different treatments or
biological conditions, for example, cancer tissue versus normal tissue, genetically
engineered animals versus control animals, or patients exposed to two or more
kinds of treatments. These differentially expressed genes usually form the starting
point of more extensive studies such as integration of expression data with tran-
scription factor binding [Karlebach and Shamir (2008)], RNA interference [Pe’er
and Hacohen (2011)] and DNA methylation [Louhimo and Hautaniemi (2011)],
all of which can lead to a better understanding of regulatory mechanisms. Cur-
rently available methods for RNA-seq data analysis assume that differential ex-
pression of genes occurs independent of the genomic loci of each gene [Auer and
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Doerge (2011), Robinson and Smyth (2007, 2008), Hardcastle and Kelly (2010),
Robinson, McCarthy and Smyth (2010), Si and Liu (2013)]. However, the litera-
ture contains evidence that neighboring genes on the chromosome tend to be co-
expressed [Caron et al. (2001), Michalak (2008), Singer et al. (2005)]. To account
for and take advantage of this potential co-expression, here we introduce hmmSeq.

Our hmmSeq framework incorporates potential co-expression by modeling dif-
ferential expression across the genome using hidden Markov models (HMM). In
the hmmSeq framework that we propose, neighboring gene co-expression may oc-
cur in two ways: in differential expression across treatments and in mean expres-
sion magnitude. Thus, we model gene differential expression across treatments
using an HMM with three states: not differentially expressed, under- or over-
expressed. This HMM takes advantage of the potential co-differential expression
by borrowing information across neighboring genes on the chromosome. In addi-
tion, we model gene mean expression magnitude with an HMM with two states:
low expression and high expression. The latter HMM borrows information across
the genome to increase estimation precision of the mean expression magnitude of
each gene. As we show in the simulation study in Section 4, the use of information
both from neighboring genes and across the genome increases detection power and
reduces false discovery.

The existing methods for RNA-seq data analysis do not account for the poten-
tial co-expression of neighboring genes. Robinson and Smyth (2007, 2008) use the
negative binomial distribution to model over-dispersed data through dispersion pa-
rameters. Specifically, Robinson and Smyth (2008) assume a common dispersion
parameter across all tags (or genes), whereas Robinson and Smyth (2007) assume
tag-wise (or gene-wise) dispersion parameters. To estimate these dispersion pa-
rameters, they assume a Gaussian hierarchical hyperprior that is estimated using
empirical Bayes. After that, the gene-wise dispersion parameters are estimated by
maximum weighted likelihood. This method is implemented in edgeR [Robinson,
McCarthy and Smyth (2010)]. The baySeq method of Hardcastle and Kelly (2010)
is an empirical Bayes approach that is also based on the negative binomial distri-
bution. An empirically determined prior distribution is derived from the entire data
set, and rather than producing significance values, this method calculates posterior
probabilities of multiple models of differential expression, ranking the genes by the
model probabilities. Blekhman et al. (2010) analyze RNA-seq data by a Poisson
generalized linear mixed-effect model, which explains inter-individual variability
through the inclusion of a random individual-specific effect. Data are fitted un-
der the null and alternative models gene by gene, then a likelihood ratio test is
conducted to compute p-values, and the false discovery rate (FDR; defined as the
proportion of incorrect calls among the genes declared as DE) is controlled by the
method of Storey and Tibshirani (2003). Auer and Doerge (2011) have proposed
the two-stage Poisson model (TSPM) which assumes data contain both overdis-
persed and nonoverdispersed genes. This technique seeks to reduce FDR by first
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separating the overdispersed genes from the nonoverdispersed genes, and then fit-
ting separate models to compute the p-values. Benjamini and Hochberg (1995)
FDR controlling is applied on each set of p-values to identify DE genes. Si and
Liu (2013) developed a test for the hypothesis that the log fold change belongs to
a subset of the real line. By assuming parameters under a null and alternative hy-
pothesis come from different distributions, they estimate this mixture distribution
from the data, then the test statistic is obtained as the ratio of unconditional prob-
ability from null parameter space over unconditional probability from full space.
All these previous methods assume that the genes are conditionally independent.
However, the exploratory data analysis we present in Section 2.2 suggests depen-
dence among neighboring genes. Our hmmSeq method addresses this dependence.

Our hmmSeq framework may also accommodate the case when there is no de-
pendence among the expression of neighboring genes. Specifically, HMMs include
as particular cases mixture models. In particular, the number of components of the
mixture model will be the same as the number of states in the HMM. Thus, when
there is no co-differential expression, the result will be a mixture model with three
components that correspond to a gene being not differentially expressed, under- or
over-expressed. Likewise, when there is no dependence in mean expression mag-
nitude among neighboring genes, the resulting mixture model will have two com-
ponents, one component for low expression genes and another for high expression
genes. Note that the proportion of genes in each component and the parameters of
the generating model for each component will be estimated from the data. Thus,
even without neighboring genes dependence, the hmmSeq framework will still bor-
row information across the genome to learn about each of the mixture components
and, as a result, increase estimation precision and detection power.

We model extra-Poisson variability in an indirect manner. If the experiment
contains technical replicates (i.e., samples from the same subject), then the liter-
ature provides evidence that the RNA-seq counts are Poisson distributed [Bullard
et al. (2010), Marioni et al. (2008)]. On the other hand, if the experiment con-
tains biological replicates, then the RNA-seq counts will have extra-Poisson vari-
ability [Langmead et al. (2010), Robinson and Smyth (2007)]. This extra-Poisson
variability may be a result of across-subjects variability or slight differences in
the experimental conditions when the samples were taken or analyzed. While the
RNA-seq literature usually uses the negative binomial distribution to model the
extra-Poisson variability, another way to deal with this extra-variability is through
the use of the Poisson distribution together with random effects. We prefer the lat-
ter because it provides a framework that can flexibly deal with known sources of
extra-Poisson variability such as, for example, biological variation among subjects.
In the case of paired data considered in Section 5.3, we deal with the biological
variation by including for each gene subject-specific random effects. Moreover,
for nonpaired data we implicitly deal with the subject-specific random effects (and
any other source of extra-Poisson variability) by assuming that for nondifferen-
tially expressed genes the differential treatment effect parameter may come from a
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normal distribution centered at zero. Hence, for nondifferentially expressed genes
the differential treatment effect parameter is a sum of the random effects of sub-
jects and other hidden sources. In addition to facilitating the implementation of
our HMM framework, this aspect of our model increases robustness with respect
to hidden unforeseen sources of variability.

We have investigated in three fronts the practical usefulness and adequacy of
HMMs and mixture components models for RNA-seq data analysis. First, we have
performed an exploratory data analysis presented in Section 2.2 that studies for two
real RNA-seq data sets the empirical statistical properties of preliminary estimates
of differential expression parameters and mean expression magnitude parameters.
Two patterns emerge from this exploratory data analysis: the existence of three
differential expression states and of two mean expression magnitude states; and a
possible dependence across neighboring genes. Second, we have performed a sim-
ulation study that considers all four possible combinations of HMMs and mixture
components models for differential expression and mean expression magnitude.
This simulation study compares the performance of our hmmSeq framework with
competing RNA-seq analysis methodologies. In all four possible cases, our hmm-
Seq framework beats the competing methods in terms of receiver operating char-
acteristic curves. Finally, we have used the deviance information criterion (DIC)
[Spiegelhalter et al. (2002)] to decide among the four possible combinations of
HMMs and mixture components models what is the most adequate model for each
of three real RNA-seq data sets. Our use of the DIC is justified by its good perfor-
mance in a simulation study presented in Section 4. The DIC indicates dependence
across neighboring genes for two of the three data sets. Therefore, in this paper we
provide further evidence that for some biological processes neighboring genes on
the chromosome tend to be co-expressed.

We take a full Bayesian analysis approach and develop a Markov chain Monte
Carlo algorithm to exploit the posterior distribution of the model parameters. To
simulate the differential effects and the mean effect magnitudes, we develop an ef-
ficient Metropolis–Hastings algorithm for hidden Markov models. In addition, we
use the output of the MCMC algorithm to identify differentially expressed genes
while controlling for false discovery rate. Specifically, we use a Bayesian approach
for controlling the FDR level proposed by Newton et al. (2004) and further stud-
ied by Müller, Parmigiani and Rice (2007). We demonstrate the advantages and
benefits of our hmmSeq methodology by analyzing three RNA-seq data sets. The
first data set [Marioni et al. (2008)] consists of five technical replicates each of
a kidney and liver RNA sample. The second data set [Zeng et al. (2012)] con-
sists of six biological replicates extracted from two regions, frontal pole and hip-
pocampus, of normal human brains. Finally, the third data set [Henn et al. (2013)]
consists of paired B-cell samples data of day 0 (before vaccination) and day 7
(post-vaccination) for 3 pre-vaccinated subjects. Therefore, we demonstrate the
power and flexibility of the hmmSeq methodology on three types of RNA-seq
data: technical replicates, biological replicates and paired samples.
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The remainder of the paper is organized as follows. Section 2 describes the de-
tails of the hmmSeq model and informally demonstrates the necessity for hidden
Markov models in Section 2.2. Section 3 describes the posterior inference pro-
cedure based on Markov chain Monte Carlo (MCMC) techniques and the proce-
dure for identification of DE genes. Section 4 uses simulated data to demonstrate
the effectiveness of hmmSeq relative to well-known techniques for RNA-seq. The
Marioni et al. (2008), Zeng et al. (2012) and Henn et al. (2013) data sets are ana-
lyzed in Sections 5.1, 5.2 and 5.3. In all cases, the results are compared and con-
trasted with those of existing approaches to demonstrate the success of hmmSeq.
A functional analysis of the detected sets of DE genes provides further evidence of
the reliability of the procedure. An R package implementing the hmmSeq frame-
work will be submitted to CRAN upon publication of the manuscript.

2. A Bayesian hierarchical model for RNA-seq data. We focus on two-
treatment comparisons. For a given chromosome c, let Yijkc denote the integer-
valued gene read of the kth replicate of gene i under treatment j , for gene
i = 1,2, . . . , Ic, treatment j = 1,2, and replicate k = 1,2, . . . ,Kj on chromo-
some c. The genes are sequentially arranged so that consecutive indices correspond
to neighboring genes on the chromosome. We assume that

Yijkc
indep∼ Poisson(λijkc) where

log(λi1kc) = βic − �ic + ρ1k and(2.1)

log(λi2kc) = βic + �ic + ρ2k,

where βic denotes the mean expression magnitude of gene i and 2�ic denotes the
log-fold change between the treatments. The treatment-specific replicate effects
are represented by ρjk . We observe that the treatments are a priori interchangeable
in equation (2.1). The differential treatment effect �ic for gene i is key because
it determines the relative expression levels of the treatments for the gene. That is,
�ic determines whether treatment 2 is over-, under-, or nondifferentially expressed
with respect to treatment 1.

To model the mean expression magnitude, the possible dependence among
the βic’s of neighboring genes on a chromosome is modeled using either a two-
component finite mixture model [Frühwirth-Schnatter (2006), Titterington, Smith
and Makov (1985)] or a stationary two-state hidden Markov model [MacDonald
and Zucchini (1997), Rabiner (1989)]. The latent average expression state sic de-
termines whether the expression of gene i, averaged over treatments and replicates,
is “small” (sic = 1) or “large” (sic = 2). In the absence of differential treatment
and replicate effects, the two levels of this categorical variable correspond, re-
spectively, to low and high reads for the genes. Conditional on sic, the average
expression βic is normally distributed:

βic|sic indep∼ N
(
μsicc, σ

2
sicc

)
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with μ1c < μ2c. The latent states s1c, . . . , sIcc follow either a finite mixture model
(FMM) with probability vector Pc = (p1c,p2c) or a hidden Markov model (HMM)
with stationary transition probability matrix Ac = ((autc))2×2 with the row sums∑

t=1,2 autc = 1 for u = 1,2. We denote the two-component FMM by F2c and
the two-state HMM by H2c, assuming independent, noninformative priors for its
dispersion parameters: p(σ 2

uc) ∝ σ−2
uc for u = 1,2.

To model differential expression, the differential effects �1c, . . . ,�Icc of the
genes are modeled either by a finite mixture model (FMM) F3c with probability
vector Qc = (q1c, q2c, q3c) or by a three-state stationary HMM denoted by H3c; the
matrix of transition probabilities is denoted by Bc = ((bvtc))3×3 with row sums∑3

t=1 bvtc = 1 for v = 1,2,3. With latent differential states h1c, . . . , hIcc taking
values in {1,2,3}, the values correspond, respectively, to the gene-specific under-,
nondifferential-, and over-expression of treatment 2 relative to treatment 1. Given
the state hic, differential effect �ic is distributed as

�ic|hic ∼

⎧⎪⎪⎨⎪⎪⎩
N

(
φ1c, τ

2
1c

)
, if hic = 1 (under-expressed),

N
(
0, τ 2

2c

)
, if hic = 2 (nondifferentially-expressed),

N
(
φ3c, τ

2
3c

)
, if hic = 3 (over-expressed),

(2.2)

where φ1c < 0 and φ3c > 0. Thus, for each chromosome, h1c, . . . , hIcc are the
parameters of interest because they identify the set of DE genes.

We observe that the latent states of both FMM F2c and HMM H2c are nonex-
changeable, being associated with particular biological conditions. The priors for
the state parameters are designed to reflect this and also to prevent label switch-
ing [Scott (2002)]. Specifically, the mean parameters, μ1c and μ2c are assigned
the prior p(μ1c,μ2c) ∝ 1{μ1c≤μ2c−δ} where δ > 0 is a predetermined constant. The
fact that δ is strictly positive guarantees that μ1c < μ2c and the two states are
identifiable.

For the same reason, for the FMM F3c and HMM H3c, we assume that
p(φ1c, φ3c) ∝ 1{φ1c<u1,φ3c>l3}, where u1 < 0 and l3 > 0 are prespecified constants
that can be chosen as follows. The log-fold change between the over- and under-
expressed categories is at least (l3 − u1). From a practical standpoint, in order
to distinguish between these two categories, it is reasonable to assume that the
ratios of their associated �ic’s exceed 2. Because of this, we symmetrically set
u1 = −(log 2)/2 and l3 = (log 2)/2. To further facilitate inferences of the state-
specific parameters, informative conjugate priors are assigned to τ 2

1c, τ 2
2c and τ 2

3c.

2.1. Paired data analysis. Our hmmSeq framework may also accommodate
paired data, that is, the case when each subject undergoes each of the treatments.
Here we describe the minor changes needed for that purpose. For a given chro-
mosome c, let Yijkc denote the gene read of the kth subject of gene i under treat-
ment j , for subject k = 1, . . . ,K . Obviously, because of the paired data structure
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there exists dependence between observations on the same subject. To account for
this dependence, we assume that

Yijkc
indep∼ Poisson(λijkc) where

log(λi1kc) = βic − �ic + εikc + ρ1k and(2.3)

log(λi2kc) = βic + �ic + εikc + ρ2k,

with εikc ∼ N(0, σ 2
ε ) denoting the subject-specific random effects. The other

parameters in the paired-data model have the same interpretations as in equa-
tion (2.1).

2.2. Exploratory data analysis. We have performed an exploratory data anal-
ysis (EDA) to verify some of the hmmSeq model assumptions for the Marioni et al.
(2008) and Zeng et al. (2012) data sets. Both data sets possess the feature described
by Bullard et al. (2010); for libraries under each treatment, 5% of the genes account
for over 50% of the total library size, and 10% of the genes account for over 60%
of the total library size. Focusing only on those genes whose reads exceeded nine
for all libraries, and ignoring the replicate effects, we preprocessed the raw counts
using the upper-quartile normalizing technique of Bullard et al. (2010).

For the genes i = 1,2, . . . , Ic of each chromosome, we have computed pre-
liminary estimates of the expression magnitude βic and differential effect �ic by
treating these parameters as the fixed effects in a Poisson regression model. Fig-
ure 1 displays graphical summaries of these estimates for a few chromosomes of
the Marioni et al. (2008) data set. The results were similar for the other chromo-
somes. The density plot for the βi ’s in Figure 1(a) and for the �i ’s in Figure 1(b)
are indicative of mixture of densities representations for these parameters. Further,
data analysis in Section 5.1 will select the dependence structures of βi ’s and �i ’s
by DIC model selection.

FIG. 1. Marioni et al. (2008) data set—density plots of preliminary estimates for the expression
magnitudes β and the differential expression effects �. (a) Density plot of β̂i for chromosome 13,
(b) density plot of �̂i for chromosome 19.
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FIG. 2. Zeng et al. (2012) data set—density plots of preliminary estimates for the expression magni-
tudes β and the differential expression effects �. (a) Density plot of β̂i for chromosome 13, (b) density
plot of �̂i for chromosome 9.

For the Zeng et al. (2012) data set, Figure 2 displays density plots for prelim-
inary estimates of the model parameters and also reveals a similar pattern as the
Marioni et al. (2008) data set. The above analysis, together with data analysis in
Section 5.2, suggests the need for mixture models, with first order dependence to
model the expression magnitudes βic and differential effects �ic, justifying the
use of the hidden Markov models H2c and H3c in the hmmSeq method.

3. Posterior inference. We investigate the posterior distribution of the
chromosome-specific parameters using Markov chain Monte Carlo (MCMC)
methods. Gibbs sampling cannot be applied to generate the parameters in equa-
tion (2.1) because the Poisson likelihood function is not conjugate to the normal
priors of the parameters. Consequently, we apply the Laplace approximation [e.g.,
Chib and Greenberg (1994), Zeger and Karim (1991)] to generate proposed up-
dates for the equation (2.1) parameters. The proposals are accepted or rejected
by a Metropolis–Hastings probability to compensate for the use of an approxima-
tion instead of the Poisson distribution. This guarantees the convergence of the
Markov chain to the posterior distribution of the hmmSeq model. We analyze each
chromosome separately and, for simplicity of notation, in this section we omit the
chromosome index c.

3.1. Metropolis–Hastings algorithm for HMMs. In this section we present
a Metropolis–Hastings algorithm for the simulation of a general latent process
{θi, i = 1, . . . , I } that follows an HMM Hm. We use this algorithm in Section 3.2
to simulate the expression magnitude β and the differential effects �. Under a
Laplace approximation, the working values of the read counts are defined as

wijk = log(λijk) + Yijk − λijk

λijk

.(3.1)
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These working values have an approximate normal distribution, specifically

wijk
approx∼ N(log(λijk),1/λijk).

For a more general case, suppose θi is the parameter of interest, and its value
at the previous MCMC iteration was θ

(old)
i . Then, the Laplace approximation (3.1)

gives us wijk = log (λ∗
ijk) + (Yijk − λ∗

ijk)/λ
∗
ijk

approx∼ N(log (λijk),1/λ∗
ijk), where

log (λijk) = ξijk + zijk · θi and log (λ∗
ijk) = ξijk + zijk · θ(old)

i .
Let the vectors wi = (wi11,wi12, . . . ,wi2K2)

′, λi = (λi11, λi12, . . . , λi2K2)
′ and

λ∗
i = (λ∗

i11, λ
∗
i12, . . . , λ

∗
i2K2

)′. Then wi
approx∼ N(log (λi ),Diag(1/λ∗

i )). Defining

w∗
i =

∑2
j=1

∑Kj

k=1 λ∗
ijk[zijk(wijk − ξijk)]∑2

j=1
∑Kj

k=1 z2
ijkλ

∗
ijk

,

we have that w∗
i is sufficient for θi and w∗

i |θi
approx∼ N(θi,1/

∑2
j=1

∑Kj

k=1 z2
ijkλ

∗
ijk).

Further assume that the prior of δ is an m-state hidden Markov model (Hm) with
transition matrix Cm, and θi |hi = t ∼ N(νt , κ

2
t ), for t = 1,2, . . . ,m, where hi is

the hidden state for θi . We marginalize over θi to obtain the approximate likelihood
function

p
(
w∗

i |hi = t
) approx∼ N

(
νt , κ

2
t + 1

/ 2∑
j=1

Kj∑
k=1

z2
ijkλ

∗
ijk

)
(3.2)

where t = 1,2, . . . ,m.

The conditional prior probability, P(hi = t |hj , j �= i), for t = 1,2,3, can be com-
puted from the transition matrix, Cm, of the HMM Hm.

The normalized product of the conditional prior probability and approxima-
tion (3.3) gives the approximate full conditional distribution of the differential
state hi , from which we propose a new value, h

(prop)
i . We then propose a new

value, θ
(prop)
i , from the approximate full conditional of θi given hi = h

(prop)
i . The

proposed values (h
(prop)
i , θ

(prop)
i ) are jointly accepted or rejected by a Metropolis–

Hastings probability [Gamerman and Lopes (2006)] to ensure that the post-burn-in
MCMC samples represent draws from model posterior.

3.2. MCMC procedure. We iteratively generate MCMC samples of the
chromosome-specific parameters by the following procedure:

1. The differential effects �1, . . . ,�I and latent differential states h1, . . . , hI

are generated as in Section 3.1, given the expression magnitudes β , subject-specific
effects ε (set to be 0 for nonpaired data) and treatment-replicate effects ρ.

2. The mean expression magnitudes β1, . . . , βI and latent states s1, . . . , sI are
generated as in Section 3.1, given the differential effects �, subject-specific ef-
fects ε (set to be 0 for nonpaired data) and treatment-replicate effects ρ.
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3. For paired data, the subject-specific effects εik for i = 1, . . . , I and k =
1, . . . ,K are also generated by a similar Laplace approximation and Metropolis–
Hastings procedure as in step 1.

4. Conditional on the mean expression magnitudes β1, . . . , βI , latent states
s1, . . . , sI , and the fact that μ2 −μ1 > δ, the hyperparameters μ1 and μ2 are jointly
sampled from the restricted bivariate normal distribution using the R package tmvt-
norm [Wilhelm and Manjunath (2013)].

5. For latent states h = 1,2,3, s = 1,2, the hyperparameters φh, τ 2
h , σ 2

s are all
generated from their full conditional distributions by Gibbs sampling steps.

3.3. Detection of DE genes. For each chromosome, interest focuses on the la-
tent vector of differential states h1, . . . , hI , where, as defined in equation (2.2),
hi = 1 (hi = 3) represents an under-expressed (over-expressed) gene in treat-
ment 2. We use the MCMC samples of the differential states to identify the DE
genes while controlling for false discovery rate. Specifically, we use a Bayesian
approach for controlling the FDR level first proposed by Newton et al. (2004), fur-
ther studied by Müller, Parmigiani and Rice (2007), and subsequently applied in
RNA-seq analysis by Lee et al. (2011).

Let q0 be the desired nominal FDR level. In addition, let ri ∈ {0,1} represent
the unknown truth that gene i is differentially expressed (ri = 1) or nondiffer-
entially expressed (ri = 0). Further, let pi be the posterior probability that gene
i is differentially expressed. Last, let δi ∈ {0,1} denote the decision of calling
gene i differentially expressed (δi = 1) or nondifferentially expressed (δi = 0).
Using the MCMC output, we compute the estimate p̂i = Pr(ri = 1|data) for genes
i = 1, . . . ,N on all chromosomes.

A possible decision is to flag all genes with p̂i greater than or equal to a certain
threshold p0. The resulting FDR would then be equal to

FDR =
∑N

i=1(1 − ri)1(p̂i≥p0)∑N
i=1 1(p̂i≥p0)

.(3.3)

Hence, the posterior expected FDR would be

F̂DR =
∑N

i=1(1 − p̂i)1(p̂i≥p0)∑N
i=1 1(p̂i≥p0)

.(3.4)

Alternatively and more effectively than assigning a prespecified threshold p0,
we may control the nominal FDR level q0 [Müller, Parmigiani and Rice (2007),
Newton et al. (2004)]. Specifically, first we rank genes in decreasing order of p̂i .
Denote the ordered estimated posterior probabilities by p̂(1) > p̂(2) > · · · > p̂(N).
Thus, if we declare as differentially expressed the set of genes such that p̂i ≥ p̂(d),
for each d = 1, . . . ,N , then the corresponding posterior expected FDR will be

F̂DRd =
∑N

i=1(1 − p̂i)1(p̂i≥p(d))∑N
i=1 1(p̂i≥p(d))

=
∑d

i=1(1 − p̂(i))

d
.(3.5)
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Finally, the decision rule for detecting DE genes is to flag all genes with
F̂DRd < q0.

4. Simulation study. To compare the accuracy of hmmSeq with existing
RNA-seq techniques, we performed two simulation studies. In the first study, the
data were generated from a Poisson distribution. In the second simulation study,
we generated the data from a negative binomial distribution. Three popular RNA-
seq techniques were considered for comparisons: edgeR [Robinson, McCarthy
and Smyth (2010)], baySeq [Hardcastle (2009)], and TSPM [Auer and Doerge
(2011)]. The methods edgeR and baySeq have been implemented in R packages
publicly available at http://www.bioconductor.org. R code for TSPM can be down-
loaded from http://www.stat.purdue.edu/~doerge/software/TSPM.R. The R code
for hmmSeq is available in the Supplementary Materials [Cui et al. (2015)].

We first consider a simulation study with data generated from a Poisson dis-
tribution. For each of the following simulations, read counts were simulated for
12 chromosomes having 800 genes each, resulting in a total of 9600 genes. Six
replicates of the set of read counts were generated for each of the two treatments.
The replicate effects were assumed to be equal to the estimates for the biological
replicates data of Zeng et al. (2012).

In the simulation study, the gene-specific magnitude factors β and the differ-
ential expression factors � were generated either from the hidden Markov model
or finite mixture model with hyperparameters values given in Tables 1 and 2. The
hyperparameters of the normal components were chosen to match the estimates
for the biological replicates data of Zeng et al. (2012). The other hyperparameters
were chosen according to our experience working with hidden Markov models
[Guha, Li and Neuberg (2008)]. Let “F” denote a finite mixture model and “H”
denote a hidden Markov model. We consider each model resulting from each pos-
sible combination of a FMM or a HMM for β and a FMM or a HMM for � in
a total of 4 possible models. We denote each model with FF, FH, HF and HH,
with the first letter indicating the process for β and the second letter indicating the
process for �.

We perform model selection with the deviance information criterion (DIC)
[Spiegelhalter et al. (2002)]. To evaluate the ability of DIC to discriminate among
the four competing models, we have performed a simulation study. Specifically,

TABLE 1
Simulation study—parameters for generation of β

Normal components HMM transition matrix FMM probability

β μ1 σ 2
1 μ2 σ 2

2 A P

1 0.37 3.91 2.4
(

0.50 0.50
0.05 0.95

)
(0.1,0.9)

http://www.bioconductor.org
http://www.stat.purdue.edu/~doerge/software/TSPM.R
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TABLE 2
Simulation study—parameters for generation of �

Normal components HMM transition matrix FMM probability

� φ1 τ2
1 τ2

2 φ3 τ2
3 B Q

−0.4 0.013 0.01 0.4 0.013

⎛⎝ 0.50 0.25 0.25
0.10 0.80 0.10
0.25 0.25 0.50

⎞⎠ (0.22,0.56,0.22)

for each of the 4 possible models, we have simulated 30 data sets. After that, we
have analyzed each simulated data set with the 4 different hmmSeq models: FF,
FH, HF and HH. Then, for each simulated data set we have conducted DIC model
selection. Table 3 presents for each true model the proportion of times that DIC
has chosen each of the 4 competing models. As we can see from Table 3, the DIC
chooses the correct model most of the time.

To compare hmmSeq with the other competing RNA-seq analysis methods, we
consider their receiver operating characteristic (ROC) curves. The ROC curve of
each method describes the relationship between the true positive rate (TPR) and the
false positive rate (FPR) of gene detection. The TPR (which is also known as the
sensitivity) is defined as the proportion of truly DE genes that are detected by
the method. The FPR is defined as the proportion of non-DE genes that are erro-
neously identified as DE. The greater the area under the ROC curve, the greater the
reliability of the method in detecting DE genes. For each simulation setup of FF,
FH, HF and HH, we plot the ROC curves of (DIC picked) hmmSeq, edgeR, bay-
Seq and TSPM averaged over 30 repetitions. Figure 3 displays the ROC curves for
the methods hmmSeq (solid line), edgeR (dashed line), baySeq (dotted line) and
TSPM (dot-dashed line) with the areas below the ROC curves being indicative of
the relative accuracies of the methods in detecting DE genes. While edgeR beat the
methods TSPM and baySeq in this simulation, hmmSeq achieves a substantially
higher area under the ROC curve than the competing methods.

TABLE 3
Simulation study—performance of DIC-based model selection

DIC chosen model

FF FH HF HH

True model FF 0.73 0.10 0.07 0.10
FH 0.00 0.77 0.00 0.23
HF 0.07 0.03 0.80 0.10
HH 0.00 0.10 0.00 0.90
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FIG. 3. For the simulation study of four setups FF (a), FH (b), HF (c) and HH (d), four panels de-
pict the ROC curves for hmmSeq, edgeR, baySeq and TSPM. Results are averaged over 30 simulated
data sets for each setup, where for each simulated data set we use the DIC-chosen hmmSeq model.

For each of the four competing methods, Figure 4 plots the observed FDR
against the nominal FDR. Ideally, we would like to observe a 45 degree line
through the origin in Figure 4 for each method. Observed FDR of edgeR is substan-
tially smaller than the nominal FDR. The observed FDR for TSPM and baySeq, on
the other hand, are quite liberal: The FDR for TSPM always exceeds 40%, while
the FDR for baySeq exceeds 35% for most values of nominal FDR. Finally, FDR
for hmmSeq is near and slightly lower than the 45 degree line. Therefore, hmmSeq
is the method that performs best at controling FDR.

To investigate the robustness of hmmSeq to overdispersed data, we sim-
ulated RNA-seq counts from a negative binomial distribution. This distribu-



914 CUI, GUHA, FERREIRA AND TEGGE

FIG. 4. For the simulation study, four panels depict the observed FDR versus nominal FDR for the
methods hmmSeq, TSPM, edgeR and baySeq under four different simulation setups FF (a), FH (b),
HF (c) and HH (d). Results are averaged over 30 simulated data sets for each setup, where for each
simulated data set we use the DIC-chosen hmmSeq model. The proposed method controls the FDR
closest and slightly lower to the 45 degree line.

tion is assumed by both edgeR and baySeq. Assume that y|λ ∼ Poisson(λ)

and λ|r,ψ ∼ gamma(r, (1 − ψ)/ψ). Then, unconditionally, we obtain y|r,ψ ∼
negative binomial(r,ψ). The negative binomial mean is m(1) = rψ/(1 − ψ) and
the variance is m(2) = rψ/(1−ψ)2. The variance m(2) = m(1)(1+m(1)/r) exceeds
the mean m(1), reflecting overdispersion; ζ = 1/r is usually called the dispersion
parameter.

The gene-specific magnitude factors β and the differential expression factors
� were generated from a hidden Markov model with parameters values given in
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Tables 1 and 2. To generate the negative binomial reads for each gene i, we first
generated the mean m

(1)
ijkc = λijkc by equation (2.1) and the dispersion parameter

ζi from a gamma distribution [as in, e.g., Kvam, Liu and Si (2012)]. To mimic the
dispersion observed in real data sets, the shape parameter and scale parameter of
the gamma distribution were estimated by the method of moments using the gene-
wise dispersion estimates of Zeng et al. (2012) (biological replicates) available
from edgeR. We computed the gamma distribution parameters r = 1/ζ and ψ =
ζμ/(1 + ζμ), and then hierarchically generated negative binomial read counts for
12 chromosomes having 800 genes each. This simulation procedure was replicated
30 times.

We fit four hmmSeq models to the negative binomial data. In addition, we fit
edgeR, baySeq and TSPM models to the data. DIC chose the true model (HH in
this case) 19 out of 30 times. The ROC curves and FDR controls are plotted in Fig-
ure 5. In the FDR control plot in Figure 5(b), we find that none of the methods are
accurate. The hmmSeq FDR tends to be large for small nominal FDR, converging
to the 45 degree line as the nominal level increases. In contrast, the observed FDR
of baySeq and edgeR are mostly lower than the nominal FDR. For the ROC plot
in Figure 5(a), hmmSeq achieves the highest area under the ROC curve than the
competing methods, demonstrating its high reliability in detecting DE genes.

5. Data analysis. To illustrate the power and flexibility of our proposed RNA-
seq analysis method, we have applied the hmmSeq method to analyze three data
sets: Marioni et al. (2008) (technical replicates), Zeng et al. (2012) (biological

FIG. 5. For the negative binomial simulation study, the left panel depicts the ROC curves for
DIC-selected hmmSeq, edgeR, baySeq and TSPM, and the right panel depicts the observed FDR
versus nominal FDR for DIC-selected hmmSeq, TSPM, edgeR and baySeq. (a) ROC curves, (b) FDR
control plot.
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replicates) and Henn et al. (2013) (paired data). For each of these three data sets,
the treatment-specific replicate effects ρjk are obtained by the upper-quartile nor-
malizing technique of Bullard et al. (2010). In addition, we compare the results
of the hmmSeq analysis with results of TSPM [Auer and Doerge (2011)], baySeq
[Hardcastle (2009)] and edgeR [Robinson, McCarthy and Smyth (2010)] based on
their publicly available R package implementations.

5.1. Marioni et al. (2008) data set. The Marioni et al. (2008) data set contains
RNA-seq data for five technical replicates each of a single sample of kidney RNA
(treatment 1) and liver RNA (treatment 2). Because genes with mostly small counts
are not informative about differential expression, we have applied the filtering cri-
terion of Auer and Doerge (2011) to eliminate the genes whose total read counts
were less than 10. Additionally, the Y chromosome was ignored because many of
its genes are transcribed on other chromosomes and the genders of the subjects
are unknown. This yielded 17,076 genes for the analysis. Further, we applied the
quantile normalization of Bullard et al. (2010) to preprocess the data. We have fit-
ted four hmmSeq models (FF, FH, HF and HH) to the data. The DIC favors the
FH model as the best, which implies neighboring genes dependence with respect
to the differential expression parameter �. Thus, in the remainder of this section
we present hmmSeq results based on the FH model.

We have applied the hmmSeq, edgeR, baySeq and TSPM methods to the
Marioni et al. (2008) data set with a nominal FDR of q0 = 0.001 [threshold
adopted by Auer and Doerge (2011)]. Recall that the simulation study in Section 4
had indicated that the actual FDR of TSPM and baySeq is relatively insensitive to
the value of q0 and is substantially higher when q0 is small. The sets of DE genes
identified by the methods hmmSeq, edgeR, baySeq and TSPM are summarized in
Figure 6(a). The method TSPM detected 9076 DE genes. In contrast, the hmmSeq
method discovered only 2831 DE genes.

A closer examination sheds light on the differing sets of genes detected by
TSPM and hmmSeq. Of the genes discovered by hmmSeq, as many as 2818 genes
(99.5%) were also identified by the TSPM method. Focusing on the 6258 genes
identified as DE by TSPM but not by hmmSeq, we find that TSPM flagged most
of them as DE genes because they have extreme values of mean log2-fold change
(from output of TSPM) for the treatments. In particular, we have observed that for
the 111 genes with log2-fold change less than −20, all five gene-specific reads
for liver RNA were zero. Table 4 lists 10 randomly selected genes from this set,
which reveals that the read counts for kidney, although positive, are not in hun-
dreds or thousands like typical DE genes. Thus, TSPM tends to classify genes with
0 observations under any single condition as DE, while hmmSeq takes the varia-
tional magnitude into consideration. The result for edgeR lies between hmmSeq
and TSPM.
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FIG. 6. Venn diagrams for the DE genes identified by the methods hmmSeq, baySeq, edgeR and
TSPM in the data analyses. (a) Technical replicates of Marioni et al. (2008), (b) biological replicates
of Zeng et al. (2012), (c) paired biological replicates of Henn et al. (2013).

Similarly, all 33 genes with mean log2-fold change greater than 20 have zero
counts for kidney and relatively small counts for liver. The hmmSeq method called
all of them non-DE, but TSPM classified them as DE genes due to their high mean
log2-fold changes. The former call seems more reasonable, given that the read
counts of truly DE genes are typically several orders of magnitude higher.

5.2. Zeng et al. (2012) data set. We have applied hmmSeq to the data set
of Zeng et al. (2012), which contains samples from 2 regions of the human
brain, frontal pole and hippocampus, with 6 biological replicates for each region.
Data sets with biological replicates typically exhibit substantial over-dispersion
or higher variability relative to the Poisson distribution. Researchers often model
extra-Poisson variability using the binomial, negative binomial or Bayesian hier-
archical Poisson models. We account for over-dispersion through hierarchical pri-
ors on the parameters in equation (2.1), for example, through random differential
expression factors. There were 13,574 genes available for analysis after filtering
(read sums for all the libraries did not exceed 9). Further, we have applied the
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TABLE 4
Marioni et al. (2008) data set—ten randomly selected genes with mean log2-fold change greater than 20 that were identified as DE genes by the TSPM

method. Rj LkK denotes j th run, kth replicate for kidney; Rj LkL denotes j th run, kth replicate for liver

Gene ID R1L1K R1L3K R1L7K R2L2K R2L6K R1L2L R1L4L R1L6L R1L8L R2L3L

ENSG00000198693 2 1 2 2 8 0 0 0 0 0
ENSG00000162746 3 4 2 4 4 0 0 0 0 0
ENSG00000168243 4 4 1 3 3 0 0 0 0 0
ENSG00000188935 2 0 3 5 5 0 0 0 0 0
ENSG00000173284 5 2 5 2 3 0 0 0 0 0
ENSG00000114113 4 5 4 1 1 0 0 0 0 0
ENSG00000169836 5 2 3 2 3 0 0 0 0 0
ENSG00000170180 2 2 3 2 5 0 0 0 0 0
ENSG00000186952 3 4 2 4 2 0 0 0 0 0
ENSG00000164385 3 2 3 3 4 0 0 0 0 0
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quantile normalization of Bullard et al. (2010) to preprocess the data. We have
fitted four hmmSeq models (FF, FH, HF and HH) to the Zeng et al. (2012) data
set. DIC chooses HH as the best model, which indicates neighboring genes de-
pendence with respect both to the differential expression parameter � and to the
expression level parameter β . Thus, in the remainder of this section we present
hmmSeq results based on the HH model.

We have applied the hmmSeq, edgeR, baySeq and TSPM methods to the data
set of Zeng et al. (2012) with a nominal FDR q0 = 0.05. TSPM, edgeR and bay-
Seq, respectively, identified 236, 134 and 278 DE genes. The hmmSeq technique
identified 333 DE genes. The overlapping set of DE genes for the methods are
summarized in Figure 6(b) and reveal a greater lack of agreement between the
methods than for the Marioni et al. (2008) data set. Only 1 gene is identified as
DE by all four methods. This low level of agreement is a result of the low overlap
that TSPM has with the other methods. In contrast, hmmSeq has relatively large
overlap both with edgeR (76 genes) and baySeq (110 genes).

We have investigated the biological implications of the results obtained with
the hmmSeq analysis of differential expression of the hippocampus to the frontal
pole. Though we expect a modest amount of differentially expressed genes, we
do find some meaningful results that are supported in the literature. There is an
increase in gene expression of Akt2 in the hippocampus compared to the frontal
pole. Akt2 is a gene involved in insulin signaling, which occurs in the hippocam-
pus [Agrawal and Gomez-Pinilla (2012), Robertson et al. (2010)]. In addition,
Wnt7B is upregulated in the hippocampus where Wnt activity has been implicated
in signaling of hippocampal synapses [Gogolla et al. (2009)]. Last, STAT5A is
known to be expressed in the hippocampus [Kalita et al. (2013)], and our results
show this upregulation. Taken all together, the results our hmmSeq method pro-
duced show biologically relevant genes when comparing the hippocampus to the
frontal pole. In addition, we have conducted a functional analysis using DAVID
[Huang, Sherman and Lempicki (2009a, 2009b)]; both our hmmSeq method and
edgeR identified differentially expressed genes that are known to be expressed in
brain tissue. The biological experiment presented tries to identify genes that are
differentially expressed between two types of brain tissue. These results, taken in
perspective with the biological experiment, suggest that the genes identified as dif-
ferentially expressed via these two methods are relevant to the biological problem
and help support the validity and accuracy of our predictions.

5.3. Henn et al. (2013) paired data set. Here we illustrate the application of
the hmmSeq method to paired data sets with an analysis of a subset of an RNA-seq
data set obtained by Henn et al. (2013) on immune response to a trivalent influenza
vaccine. The original data set contains RNA-seq data from B cell samples for five
subjects before vaccination (day 0) and for each of 10 days after vaccination (days
1 through 10). We consider a paired subset of three previously vaccinated subjects
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in the original data set, where we compare gene expression before vaccination
to gene expression after vaccination. Since peak B cell response usually appears
5–9 days post-vaccination, we apply our hmmSeq method to identify B cell gene
differential expression between day 0 and day 7.

For the hmmSeq analysis, we first estimate the variance σ 2
ε of subject-specific

random effects from the data. Specifically, for each gene we have fitted a gener-
alized linear mixed model with random subject effects, resulting in an estimated
random effects variance for each gene. We then use the median of these estimates
of random effects variances as an empirical Bayes estimate of σ 2

ε . In addition, we
have fitted the four hmmSeq models FF, FH, HF and HH. We have found that
the DIC favors the FF model, that is, a finite mixture model without neighbor-
ing genes dependence. Thus, in the remainder of this section we present hmmSeq
results based on the FF model.

We have analyzed this immune response data set using a nominal FDR of
0.05. To accommodate the paired data structure, in the edgeR analysis we include
subject-specific fixed effects. Such edgeR analysis identifies 175 genes as differen-
tially expressed. The TSPM that we used ignores the paired structure and treats all
observations for each gene as independent, which identifies a total of 186 genes.
Finally, in a paired baySeq analysis 100 genes are flagged to be DE. Figure 6(c)
presents a Venn diagram that summarizes the results for TSPM, edgeR, baySeq
and hmmSeq.

In order to further evaluate the competing methods, we compare their results to
those found by Henn et al. (2013). Henn et al. (2013) used the RNA-seq data set
from all 11 days, whereas we used only the data from days 0 and 7. Thus, here
we use the results of Henn et al. (2013) as a benchmark. Specifically, Henn et al.
(2013) identified a set of 742 genes as what they call the plasma cell gene signa-
ture (PCgs), that is, genes that have a common significant time-varying signature.
Hence, in Table 5 we list the overlap of the PCgs set with the genes identified
as differentially expressed by hmmSeq, edgeR, baySeq and TSPM. Our proposed
hmmSeq method obtains the largest overlap with PCgs set (130 genes), and edgeR
overlaps 121 genes with PCgs. We recall from Section 4 that hmmSeq and edgeR
are the two methods with the highest area under the ROC curve. Thus, the over-
lap with the PCgs set shows the power of DE genes identification of the proposed
hmmSeq method.

TABLE 5
Henn et al. (2013) data set—overlap of plasma cell gene signature (PCgs) set with genes identified

by hmmSeq, edgeR, baySeq and TSPM

hmmSeq edgeR baySeq TSPM

PCgs 130 121 7 1
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6. Conclusion. We propose hmmSeq, a method based on Bayesian hierarchi-
cal models for detecting DE genes between two treatments for paired or nonpaired
data in RNA-seq analyses. The approach employs hidden Markov models to ac-
count for the statistical dependence between the gene counts of neighboring genes
observed in many RNA-seq data sets. The hmmSeq model can be applied to stud-
ies with either biological or technical replicates, automatically adjusting for any
overdispersion relative to the Poisson distribution. Through simulated and real data
sets, we compare and contrast the performance of hmmSeq with some well-known
methods in the literature, demonstrating the reliability and success of our approach
in the identification of DE genes.

We have developed DIC-based model selection to decide for each data set
whether HMM or FMM should be used to model gene expression magnitude
and/or differential expression. For the Marioni et al. (2008) data set the DIC-
selected model is the FH model, for the Zeng et al. (2012) data set the DIC-selected
model is the HH model, and for the Henn et al. (2013) data set the DIC-selected
model is the FF model. Thus, for one data set there appears to be neighboring
genes dependence in expression magnitude. Even more important, for two data
sets there is evidence of neighboring genes dependence in differential expression.
This co-differential expression can be justified by how ancient species organized
their genomes and by evolution. Specifically, more ancient species, such as bacte-
ria, organize their genomes based on operons, where genes involved in the same
process or needed at the same time are transcribed in tandem [Alberts et al. (1994)].
Throughout evolution, operons have been divided into individual genes, but genes
involved in the same process now reside in gene clusters [Hurst, Pál and Lercher
(2004)]. Thus, neighboring genes tend to be jointly differentially expressed.

To further examine spatial genomic dependence (and clustering) among de-
tected DE genes, we have devised the following statistical test. Consider any de-
tected DE gene and the next detected DE gene in the chromosome as neighboring
DE genes. Consider the distance between two neighboring DE genes as the num-
ber of non-DE genes between them. If there is no spatial dependence, then all
the distances between any two neighboring DE genes should be a random sample
from a geometric distribution. Hence, to test for spatial dependence, we collect all
the distances between neighboring DE genes and conduct a goodness-of-fit test
of the hypothesis that the empirical distribution equals the null theoretical geo-
metric distribution. We use this procedure to test for spatial genomic dependence
for DE calls from edgeR and hmmSeq. First, we performed this test for the Henn
et al. (2013) data set for which hmmSeq prefers finite mixture model and spatial
independence. The spatial genomic dependence test for DE calls from edgeR and
hmmSeq yields p-values equal to 0.2201 and 0.5178, respectively, further support-
ing hmmSeq suggestion of spatial independence. Second, we performed this test
for the two real data sets for which hmmSeq prefers spatial dependence, that is,
the Marioni et al. (2008) and the Zeng et al. (2012) data sets. For the Marioni et al.
(2008) data set, the spatial dependence test for DE calls from both hmmSeq and



922 CUI, GUHA, FERREIRA AND TEGGE

edgeR yield p-values smaller than 2.2e–16. That is, even though edgeR does not
account for spatial dependence, its detected DE genes for the Marioni et al. (2008)
data set cluster spatially. For the Zeng et al. (2012) data set, edgeR only detected
134 DE genes which did not provide enough power for the goodness-of-fit data
set (p-value greater than 0.9). In contrast, there is strong statistical evidence that
the 333 genes identified by hmmSeq as DE cluster spatially (p-value smaller than
2.2e–16). Therefore, these data sets point to the need to consider spatial genomic
dependence in studies of differential gene expression.

In addition to genomic spatial dependence among genes based on genomic
position, for future research work we plan to extend hmmSeq to include other
sources of dependence among genes. Recent experimental techniques such as HiC
and ChIA-PET allow for the identification of explicit promoter–promoter and
promoter–enhancer–promoter interactions [Edelman and Fraser (2012), Mercer
and Mattick (2013), van Arensbergen, van Steensel and Bussemaker (2014)]. In
addition, we note that genes that belong to the same active functional pathways
tend to be co-expressed [Tegge, Caldwell and Xu (2012)]. This extension of hmm-
Seq may need a non-Markovian spatial correlation model. We leave this challeng-
ing inferential problem to future research.

DE gene call lists are frequently used in downstream pathway function calls in
what is known as functional enrichment analysis. Because functional enrichment
analysis methods usually assume independence of DE gene calls, caution needs to
be taken when using the DE gene call lists generated by hmmSeq. When hmmSeq
decides that the best model is a finite mixture model without spatial dependence,
then one can use hmmSeq’s DE gene call list without any concern. However, when
hmmSeq decides that a spatial dependence model is warranted, then the assump-
tion of independence no longer holds. This opens up a tremendous opportunity
for future research that performs joint differential expression gene calls and func-
tional enrichment analysis. We envision this joint analysis may be implemented by
extending hmmSeq to incorporate information on functional pathway networks.

In terms of computational time, on a desktop with a 2.3 GHz processor and
4 GB memory, hmmSeq takes approximately 3 hours to analyze a 1200-gene chro-
mosome. Although it does take a longer time than other methods, hmmSeq often
achieves a higher accuracy of DE gene detection than other methods by a real-
istic model that allows for spatial genomic dependence. Moreover, the computa-
tional time of all the considered statistical methods is negligible when compared
to the time (on the order of months or years) required by subject-matter scientists
to perform experiments to obtain RNA-seq data. Furthermore, to limit the com-
putational time the hmmSeq analysis can be performed in parallel for individual
chromosomes. Finally, when compared to the high costs of RNA-seq extraction,
the information gains obtained by the hmmSeq methodology seem well worth the
relatively low computational costs.

The hmmSeq method we propose relies on a single user-specified “tuning” pa-
rameter q0, that is, the nominal false discovery rate. A default value for q0 between
0.001 or 0.05 has produced satisfactory results for all the data sets, real or simu-
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lated, that we have analyzed, facilitating “black box” applications of hmmSeq. Fu-
ture work will focus on extending hmmSeq to investigations with more than two
treatments. An R package implementing the hmmSeq framework will be submitted
to CRAN upon publication of the manuscript.

Acknowledgments. The authors would like to thank Martin Zand and Stephen
Welle at the University of Rochester Medical Center for providing the vaccine data
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SUPPLEMENTARY MATERIAL

Supplement to “hmmSeq: A hidden Markov model for detecting differen-
tially expressed genes from RNA-seq data.” (DOI: 10.1214/15-AOAS815SUPP;
.zip). The R code for hmmSeq.
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