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Global marketing managers are interested in understanding the speed of
the new product diffusion process and how the speed has changed in our ever
more technologically advanced and global marketplace. Understanding the
process allows firms to forecast the expected rate of return on their new prod-
ucts and develop effective marketing strategies. The most recent major study
on this topic [Marketing Science 21 (2002) 97–114] investigated new product
diffusions in the United States. We expand upon that study in three important
ways. (1) Van den Bulte notes that a similar study is needed in the interna-
tional context, especially in developing countries. Our study covers four new
product diffusions across 31 developed and developing nations from 1980–
2004. Our sample accounts for about 80% of the global economic output and
60% of the global population, allowing us to examine more general phenom-
ena. (2) His model contains the implicit assumption that the diffusion speed
parameter is constant throughout the diffusion life cycle of a product. Rec-
ognizing the likely effects on the speed parameter of recent changes in the
marketplace, we model the parameter as a semiparametric function, allowing
it the flexibility to change over time. (3) We perform a variable selection to
determine that the number of internet users and the consumer price index are
strongly associated with the speed of diffusion.

1. Introduction. The diffusion process of a new product describes the growth
in the product’s penetration level, the proportion of the relevant population who
has adopted the new product [Bass (1969)]. For global business managers, a key
issue of interest has always been the diffusion process of new products with in
and across countries [Chandrasekaran and Tellis (2007); Talukdar, Sudhir and
Ainslie (2002)]. The recent unprecedented globalization of the marketplace has
only heightened that interest. According to the World Bank (2010), the volume
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of trade and direct investments internationally grew by about 126% and 550%,
respectively, from 1990–2007. As businesses pursue new international market op-
portunities in an increasingly “flat world” [Friedman and Wyman (2005)], an es-
pecially interesting aspect of international marketing is the speed of new product
diffusions [Kohli, Lehmann and Pae (1999); Peres, Muller and Mahajan (2010);
Van den Bulte (2000)]. Is there any systematic trend in the speed of the interna-
tional diffusion of new products over the recent decades? Which factors hasten
or slow the process? Insights to these questions hold significant implications for
strategic planning of investments for development and introduction of new prod-
ucts [Putsis et al. (1997); Talukdar, Sudhir and Ainslie (2002)].

Not surprisingly, given its strategic importance to businesses, there has been a
steady stream of studies in new product diffusion [for a good review of this liter-
ature, refer to Chandrasekaran and Tellis (2007) and Peres, Muller and Mahajan
(2010)]. This stream of studies primarily focuses on developing and empirically
testing predictive models. Typically, these studies use country-specific but time-
invariant covariates for diffusion speed parameters to analyze spatial or across-
country variation [Talukdar, Sudhir and Ainslie (2002)]. However, when it comes
to the specific issue of investigating systematic change over time in the speed of
new product diffusion, the literature is quite limited [Peres, Muller and Mahajan
(2010)]. Van den Bulte (2000) provides a nice review and critique of this limited
stream of literature.

As Van den Bulte (2000) notes, the existing insights on the issue of diffusion
speed change are often based on anecdotal evidence from the business press rather
than systematic studies. He further points out that the few academic studies in this
area typically suffer from shortcomings in their analysis and from the limited scope
of their data. For instance, these studies use no formal or use statistically weak
methodologies to test for diffusion speed change over time [e.g., Fisher and Pry
(1971); Grübler (1990); Clark, Freeman and Hanssens (1984)]. Also, they mainly
use data from before the public introduction of the internet and in the United States
only. Within this limited set of existing studies, the study by Van den Bulte (2000)
represents the most rigorous investigation of new product diffusion speed change
to date. Our study extends that study in several important ways—both substan-
tively and methodologically.

First, the scope and generality of the findings from the study by Van den Bulte
(2000) is limited by the fact that its data only includes new product diffusions
within the United States and only through 1996, before the popular emergence
of the internet. As Van den Bulte himself notes, an important research need is a
similar study in an international context, especially in developing countries. Recent
reviews of the new product diffusion literature also underscore the need for studies
that expand the scope to include developing countries [Chandrasekaran and Tellis
(2007); Peres, Muller and Mahajan (2010)]. Our study works to fill that need. We
cover four new product diffusions in each of 31 developed and developing nations
from 1980–2004. Our set of 31 countries accounts for about 80% of the global
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economic output and 60% of the global population. The time period of our analysis
also encompasses several interesting and relevant world events—for example, the
global economic slow-down and stock-market crash from the 1980s, the end of
the cold war, and the popular emergence of the internet in the mid-1990s—in the
context of investigating change in new product diffusion speed over time.

Second, our study not only provides the needed counterpart in terms of global
and post-internet era scope to the study by Van den Bulte (2000), but also uses
novel methodological approaches to analyze changes in diffusion speed. Specifi-
cally, the model used in Van den Bulte (2000) makes the restrictive assumption that
consumers’ propensity to adopt a new product remains constant over its diffusion
life cycle. In the logistic diffusion model, that is, equivalent to constraining the
diffusion speed parameter to be time invariant [Dixon (1980)]. While this assump-
tion makes the empirical estimation of the model parameters simpler, it comes at
the cost of imposing the unrealistic premise that consumers would necessarily ex-
hibit the same propensity to adopt a new product in the early phases as in the later
phases of its diffusion life cycle. In contrast, we adopt a semiparametric model
structure that allows the diffusion speed parameter to vary over the diffusion life
cycle of a new product.

It is relevant to point out here that there are previous studies [e.g., Van Everdin-
gen, Aghina and Fok (2005); Xie et al. (1997)] in the new product diffusion lit-
erature that have also allowed time-varying diffusion speed parameters. However,
such studies are very limited in number [Van Everdingen, Aghina and Fok (2005)].
More importantly, the focus of this limited set of studies is primarily on methods
which allow for time-varying diffusion parameters to reduce the out-of-sample
prediction error. The studies show that allowing for time-varying parameters does
indeed help their models to improve the prediction of future adoptions. However,
none of them discuss the parameters’ temporal patterns, that is, how the parame-
ters themselves changed over a product’s diffusion cycle, other than the difference
between their initial (before any data) estimates and the final estimates. Therefore,
we cannot specifically compare our findings on parameters’ temporal patterns to
those from the aforesaid studies. Further, the data used by those studies is quite
limited in its scope. For instance, Xie et al. (1997) use data from the pre-internet
time period and only within the United States. Similarly, Van Everdingen, Aghina
and Fok (2005) use data from the very early phases of the internet era and only
within a small and similar group of developed countries in Europe.

Finally, our study also uses a variable selection procedure to develop a parsimo-
nious model from the multitude of potential country-specific covariates available
in an international diffusion study. Such data-driven selection of a parsimonious set
of country-specific covariates is particularly valuable to business managers when
deciding which relevant market indicators to track in a global marketplace.

Taken together, the scope of our data and our methodology enable us to shed in-
sights into several important time-relevant issues that are hitherto missing from the
literature on new product diffusions. They include the following: What systematic
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patterns do we see in terms of change in international new product diffusion speed
since 1980? What are the macro-environmental factors related to global new prod-
uct diffusion speed patterns? To what extent are such patterns due to changes in
the levels of certain country-specific macro-environmental factors versus a change
independent of those factors? As the global marketplace has experienced major
socio-economic and technological changes over the past three decades with likely
consequences on consumers’ propensity to adopt new products, insights into the
aforesaid questions are especially interesting to both researchers and business man-
agers.

The next section describes our data used in this study. Section 3 and Section 4
provide details of our estimation methodology. Section 5 explains the results and
the Appendix concludes.

2. Data. As noted earlier, the new product diffusion data used in our study
consists of four product categories across 31 countries. The product categories
are CD players, camcorders, home computers and cellular phones. Data collec-
tion for international new product diffusion studies has always been a challenging
task [Chandrasekaran and Tellis (2007)]; our own experience in the context of this
study proves no exception. The key data for analyzing international new product
diffusion is the annual product penetration level—that is, the proportion of the
relevant population which has adopted a new product. Ideally, researchers would
like to collect the annual product penetration data directly. However, often such
data is not directly available, especially for developing countries [Talukdar, Sud-
hir and Ainslie (2002)]. In such cases, researchers use the more readily available
annual product sales data to indirectly compute the corresponding annual product
penetration levels as the ratio of the product sales to population levels. However,
when using indirectly computed product penetration levels from sales data, it is
important to mitigate any potential contamination due to the inclusion of replace-
ment purchases as opposed to only adoption or first purchases in product sales data
[Van den Bulte (2000)].

Accordingly, like the existing international diffusion studies [Putsis et al.
(1997); Talukdar, Sudhir and Ainslie (2002)], we use direct annual penetration
level data whenever it is available, and use indirect or computed penetration level
data otherwise. In our set of four product categories, we were able to get direct
penetration data for cellular phones and home computers, but had to use sales
data to estimate the penetration for camcorders and CD players. At the same time,
as has been the practice in the existing diffusion studies [Talukdar, Sudhir and
Ainslie (2002)], we use sales data only from within the first seven years of respec-
tive product introductions in a country for camcorders and CD players to reduce
the contamination of replacement purchases on our estimates. As such, while we
have an average of 17 years of data per country for cellular phones and homes
computers, we only have 7 years data per country for camcorders and CD players.
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TABLE 1
Countries in our sample

Country % Pop. % GNI Country % Pop. % GNI

Argentina 0.6 0.96 Italy 0.91 3.06
Australia 0.31 1.19 Malaysia 0.39 0.47
Austria 0.13 0.49 Mexico 1.6 1.96
Belgium 0.16 0.62 Netherlands 0.25 1.01
Brazil 2.88 2.75 Norway 0.07 0.34
Canada 0.5 1.9 Philippines 1.29 0.83
Chile 0.25 0.32 Portugal 0.16 0.39
China 20.19 15.87 Singapore 0.07 0.22
Denmark 0.08 0.33 South Korea 0.75 1.91
Finland 0.08 0.3 Spain 0.67 2.05
France 0.94 3.5 Sweden 0.14 0.53
Germany 1.28 4.44 Switzerland 0.12 0.52
Greece 0.17 0.46 Thailand 0.99 0.98
Hong Kong 0.11 0.43 United Kingdom 0.93 3.65
India 16.94 6.73 United States 4.59 22.3
Ireland 0.06 0.25 TOTAL 57.62 80.76

Source: World Bank (2010)

The overall time period covered by our diffusion data for the four product cate-
gories across the selected 31 countries spans 25 years from 1980 to 2004. For the
individual product categories, the time periods covered are as follows: CD players
(1985–1993), camcorders (1987–1996), home computers (1980–2004), and cellu-
lar phones (1980–2002).

Table 1 below lists the 31 countries that we use in our study. As the list shows,
it consists of most of the major developed and developing countries and accounts
for about 80% of the world economic output and 60% of the world population.
Thus, our study has 124 (4 × 31) product-country pairs across a broad representa-
tion of developing and developed markets. In the context of international diffusion
studies, the scale and scope of our data provide a substantial empirical basis for in-
vestigation. For instance, Chandrasekaran and Tellis (2007) note that a substantial
data basis in this context should have a sample size of more than 10 countries or 10
products. It is also important to recall here that the overall time period covered by
our diffusion data spans 25 years from 1980 to 2004 that saw several interesting
and relevant world events in the context of investigating change in new product
diffusion speed over time.

Since our data consists of a wide array of disparate country-product pairs over
a 25-year period, our diffusion data is particularly interesting, as it contains large
variations across countries, across products and over time. To exemplify such vari-
ations, Figure 1 plots diffusion trajectories for two of our products for each of the
31 countries over a common period of 1988–2002. As evident from the figure,
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(a) (b)

FIG. 1. Diffusion trajectories for home computers and cellular phones. (a) Cellular phones.
(b) Home computers.

a comparison across products shows that while the diffusion of cellular phones
was slow to take off, it accelerated rapidly after the early 1990s. In contrast, the
diffusion of home computers started earlier but its growth has been more grad-
ual. Also, for a given product, the variation in diffusion patterns across countries
is readily apparent from the figure, with some countries showing much steeper or
faster diffusion than others. For instance, in the case of home computers, our data
shows that the United States reached 20% penetration in 1989—five years before
the next four countries (Australia, Canada, Norway and Switzerland), although the
computer was introduced in all five countries around the same time. In contrast,
we find that 10 countries (32% of our sample) did not reach 20% penetration by
2004.

For our study, we were able to get data on 22 relevant country-specific covariates
across our sample of 31 countries and for our overall time period of 1984–2004.
Such country-specific covariates are essential to analyze what drives variation in
diffusion speed across countries, products and over time. Although all our 22 co-
variates are obviously time-variant, we were able to find annual data for each of our
31 countries over our entire time window (1980–2004) for only 10 of the covari-
ates. These covariates are used in our analysis to specifically capture the temporal
variation of diffusion speed within and across countries. For the other 12 covari-
ates, we were unable to get annual data for all the countries and every year in
our time window. Such paucity of continuous time-series data on country-specific
covariates, especially in the context of developing countries, is quite typical in in-
ternational diffusion studies [Chandrasekaran and Tellis (2007)]. As in other diffu-
sion studies, we use these covariates as time-invariant country-specific covariates
to specifically capture the variation of diffusion speed across countries [Talukdar,
Sudhir and Ainslie (2002)]. The list of the covariates is given below (the respec-
tive years show the particular year’s data used in our analysis for the time-invariant
covariates).
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Time-varying covariates

• Age dependency ratio: ratio of those in the workforce to those not in the work-
force

• Consumer price index
• Electric power consumption (KWH per capita)
• Gross domestic product (GDP) per capita
• Household final consumption: average total expenditure per household
• Internet users (per 1000 people)
• Labor force participation rate, female: proportion of females in the labor force
• Number of telephone mainlines (per 1000 people)
• Unemployment (%)
• Urban population: percent of population living in an urban area

Time-invariant covariates

• Daily newspapers: number of newspapers delivered each day, on average, in
2000

• Ease of doing business index: how conducive is the regulatory environment to
business, in 2000

• GINI index: a measure of the inequality of wealth in 2000
• Households with television: percentage of households with a television in 1995
• Individualism index: measure of the degree to which individuals are integrated

into groups [Hofstede (2001)]
• International migrant stock: number of migrants in the country in 2000
• International tourism: total tourist entering the country in 1998
• International voice traffic: minutes of international telephone calls in 2000
• Population growth rate in 2000
• Price basket for residential fixed line: average cost of a residential fixed tele-

phone line in 2000
• Pump price for gasoline in 1995
• Uncertainty avoidance index: deals with tolerance for uncertainty and ambiguity

[Hofstede (2001)]

Our study data comes from several international organizations such as the Inter-
national Monetary Fund (IMF), International Telecommunications Union (ITU),
the United Nations (UN), the World Bank and the World Tourism Organization
(WTO). Specifically, product adoption and sales data for each country are based
on annual household and respective industry surveys conducted by various national
government agencies. We obtained the data from the country-level databases of
the World Bank, ITU and from publications by Euromonitor (European and Inter-
national Marketing Data and Statistics, various years). As for our various coun-
try specific covariates, the socio-economic development indicator databases at the
UN, WTO and World Bank served as the sources. Our access to the data is based
on specific permission obtained from the various organizations, so unfortunately
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we are unable to post the data as a supplement to this article. Interested parties can
contact the individual organizations for access details.

3. Methodology.

3.1. Model. A review of new product diffusion literature shows that re-
searchers have essentially used two distinct types of models—the logistic diffu-
sion model and the Bass diffusion model [Chandrasekaran and Tellis (2007)]. The
key difference in the structure of the two models is that while the logistic diffu-
sion model has a single parameter to capture consumers’ propensity to adopt new
products, the Bass diffusion model has two such parameters. Since the speed of
the diffusion process in either of these two models is expressed in terms of the re-
spective parameters that capture consumers’ propensity to adopt new products, the
logistic model—with its single parameter—provides a more direct and cleaner re-
lationship between its single parameter for consumers’ propensity to adopt a new
product and the speed of the diffusion process [Fisher and Pry (1971)]. So, past
diffusion studies focused on diffusion speed, like the one by Van den Bulte (2000)
noted earlier, used the logistic diffusion model. They have also termed the model’s
single parameter to be the diffusion growth or speed parameter. Given that the cen-
tral focus of our study is diffusion speed, we also use the logistic diffusion model
as the base model for our analysis.

For the diffusion of a new product in a given country, the basic logistic diffusion
model is given by

y(t)

Y (t − 1)
= λ

[
1 − Y(t − 1)

M(t)α

]
+ ε(t),(1)

where y(t) is the number of adopters in time t , Y(t − 1) is the number of cumu-
lative adopters by time t − 1, M(t) is the population at time t , α is the adoption
ceiling parameter (proportion of the population which will eventually adopt the
product), λ is the speed parameter (the main focus of our study), and ε(t) is the
error term, ε(t) ∼ N(0, σ 2). To analyze the diffusion of 31 electrical household
durables in the United States, Van den Bulte (2000) modified the above single
product, single country basic logistic diffusion model into a multi-product, single
country model. Specifically, his model for product n is

yn(t)

Yn(t − 1)
= λn

[
1 − Yn(t − 1)

M(t)αn

]
+ ∑

k∈KTV

ψkXkn(t) + εn(t),(2)

λn = λ0 + ∑
k∈KTIV

βkXkn + εn,(3)

where KTV is the set of time-varying covariates Xkn(t), and KTIV is the set of
time-invariant covariates Xkn. We augment the model in equations (2) and (3) in
three main ways. First and most importantly, we allow the speed parameter (λ)
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to vary over the diffusion life cycle of the product. Second, we modify the model
to allow for multiple products and multiple countries. Additionally, we perform a
variable selection procedure to determine the significant covariates.

3.2. Multiple products and countries. To account for the expanded scope of
our data in terms of multiple countries and multiple products, we rewrite the model
for country i and product n. Because there are only country-specific covariates, we
include a product-specific random effect term, τn, to account for variation in speed
across products:

yin(t)

Yin(t − 1)
= λin

[
1 − Yin(t − 1)

Mi(t)αin

]
+ ∑

k∈KTV

ψkXki(t) + εin(t),(4)

λin = λ0 + ∑
k∈KTIV

βkXki + τn + εin.(5)

3.3. Time effect. As is apparent from its specification in equation (3), the dif-
fusion model used in the study by Van den Bulte (2000) assumes that the speed
parameter for a given product remains constant throughout its diffusion life cy-
cle. In this context, it is pertinent to note that the study by Van den Bulte (2000)
focused on investigating change in diffusion speed across products introduced in
different time periods. So, for that focus, using a model with a time-invariant speed
parameter over a given product’s diffusion life cycle is reasonable. The assumption
of time-invariant speed parameters in a diffusion model also provides two distinct
advantages. For one, it makes it relatively easier to empirically estimate such mod-
els [Xie et al. (1997)]. It also enables easier derivations of closed-form expressions
for the link between the speed parameter and the amount of time it takes to go from
one penetration level to a higher one [Van den Bulte (2000)].

At the same time, as noted in our introductory discussion, the assumption of
time-invariant diffusion speed parameters imposes the restrictive premise that con-
sumers’ propensity to adopt a new product remains constant over its diffusion life
cycle. This premise is conceptually at odds with consumers’ adoption process in
reality, as consumers’ propensity to adopt a new product is likely to vary over its
diffusion life cycle [Horsky (1990)]. Such variation in consumers’ propensity to
adopt a new product will be driven by changes in market environments over time
that influence consumers’ risk attitude and perceived risk of adopting a specific
new product and/or new products in general.

Not surprisingly, even though it makes empirical estimation of diffusion models
more difficult, researchers now recognize the need to relax the aforesaid restrictive
assumption of time-invariant diffusion speed parameters [Van Everdingen, Aghina
and Fok (2005); Xie et al. (1997)]. Accordingly, to make our model consistent
with this reality, we allow the diffusion speed parameter λ to be time-varying.
We should note here that while using the time-variant diffusion speed parameter
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makes it more difficult to derive a closed-form expression for the link between
speed parameter and the amount of time it takes to go from one penetration level
to a higher one, it is still possible under specific conditions (see Appendix A for
details).

To allow the diffusion speed parameter λ to be time-varying, we modify our
model specification as follows:

yin(t)

Yin(t − 1)
= λin(t)

[
1 − Yin(t − 1)

Mi(t)αin

]
+ εin(t),(6)

λin(t) = f (t) + Bi(t) + τn + τin(t),(7)

Bi(t) = ∑
k∈K

βkXki(t) + τi(t),(8)

τin(t) ∼ N(0, θH ), τn ∼ N(0, θA), τi(t) ∼ N(0, θB).(9)

As equation (7) shows, we decompose the speed parameter into three components:
(1) a common baseline time effect in the form of a nonparametric function, f (t),
which depends only upon time, (2) a country-specific term,

∑
k βkiXki(t), which

includes all the covariates, and (3) a product-specific random effect τn. The coun-
try and product effects on the speed parameter are included through the Bi(t) and
τn terms; so f (t) describes common time-related effects not specific to any one
product or country. Additionally, any omitted covariates whose values are highly
correlated to the time would also be incorporated in this term (e.g., contemporane-
ous global macro-environmental trends; expected improvements in quality, price
and availability as a product matures). As such, our model specification allows
temporal variation in the speed parameter to be driven by changes in both the
country-specific covariates as well as by an across-country common time effect.
The covariate Xki(t) for the speed parameter λ includes both the time-varying and
time-invariant country-specific covariates. Therefore, K is the union of KTV and
KTIV. We are able to combine those covariates because we allow our speed pa-
rameter to vary over time. In contrast to the model specifications (equations (2)
and (3)) in Van den Bulte (2000), this allows us to directly capture the effects of
the time-varying country-specific covariates on the speed parameter or consumers’
propensity to adopt.

By incorporating a Gaussian residual effect τin(t), many of the conditional dis-
tributions for the model parameters are now of standard form, greatly increas-
ing our computational efficiency. Conditional on λin(t), equation (7) is indepen-
dent of Yin(t) and can be written as a standard normal–normal conjugate. This
approach of inducing additional random effects has been taken by Holmes and
Mallick (2003) and Liechty, Liechty and Müller (2009) in different contexts. We
constrained θH , the variance of τin(t), to be small as suggested in these papers. Us-
ing Bayesian adaptive regression splines [DiMatteo, Genovese and Kass (2001)],
f (t) is approximated by a cubic spline with k knots in locations ξ = (ξ1, . . . , ξk),
where a < t(1) < ξ1 ≤ · · · ≤ ξk < t(n) < b. Also, bj (t), j ∈ {1, . . . , k + 2} is the
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j th function in a cubic B-spline basis with natural boundary constraints. Then
f (t) = ∑k+2

j=1 ωjbj (t) for some ωk, k ∈ {1, . . . , k + 2}. The prior distributions are
defined as [Kass and Wasserman (1995)]

p(k) = Poi(2),(10)

p(ξ) = Unif(a, b),(11)

p(η|k, ξ) = N(0,1).(12)

The posterior distributions of the ξ and η have dimensions dependent upon k.
To estimate the distributions, we use a reversible jump MCMC sampler [Green
(1995); Denison, Mallick and Smith (1998); Denison et al. (2002)]. For each itera-
tion of the sampler one of three moves are proposed: birth (add a new knot), death
(remove an existing knot), or relocation (move an existing knot to a new location).
This method performs well in our case, because the smoothness of the function
is chosen automatically and not constrained to be constant across the domain. If
there is a sharp change point in our data, this method will discover it. For further
information on the implementation of this method, please see Wallstrom, Liebner
and Kass (2008).

3.4. Determining the significant covariates. In the interest of parsimony, we
determine which covariates significantly contribute to the model. The parameter γk

is a binary variable determining if βk is significantly different from zero [George
and McCulloch (1993); George and McCulloch (1997); Kuo and Mallick (1998)].

The prior distributions for γ , θB and β are

p(γi) = ∏
i

w
γi

i (1 − wi)
(1−γi),(13)

p(θB) = IG(ν/2, νκ/2),(14)

p(β|θB, γ ) = N(0, θBDγ RDγ ),(15)

where Dγ is a diagonal matrix and R is a correlation matrix which we set to
be (XT X)−1. The hyperparameters for θB were chosen according to the advice
in George and McCulloch (1993). They recommend choosing κ = s2

LS and then
choosing ν so there is substantial probability on the interval (s2

LS, s2
Bi(t)

), where

s2
Bi(t)

is the sample variance of Bi(t) acquired from a pilot run. The ith diagonal

element of D2
γ is set to

(D2
γ )ii =

{
0, when γi = 0,

υ, when γi = 1.
(16)

Under those conditions, the marginal distribution of βi is modeled as

p(βi |θB, γ ) = (1 − γi)I0 + γiN(0, θBυ),(17)
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where I0 is a point mass at 0. Following the suggestions in George and McCulloch
(1997), we set the value of υ to υβ/θ̂ = 0.122/0.017 = 7.00, where υβ is an esti-
mate consistent with the expected β values (we used the standard deviation of the
least-squares estimates) and θ̂ is the LS estimate of θ . In the interest of parsimony,
we chose w to be 0.1.

When γk equals one, the covariate is included in the model. When it equals zero,
the coefficient for that covariate is not significantly different from zero. Because
we draw γk values from their posterior distribution in each iteration of the algo-
rithm, we can determine the posterior probabilities of significance for each of the
covariates by simply finding the proportion of draws which return a one.

It is possible that the set of selected covariates is dependant upon the order in
which they are sampled [for further exposition, see, e.g., Heaton and Scott (2010)].
To overcome that potential problem, we randomly determine the order in which
the γk values are sampled in each iteration and run multiple simultaneous chains
to check convergence.

3.5. Other prior specifications. The adoption ceiling (α) is bounded both
above and below. It is bounded above by one and below by the maximum cumula-
tive adoption for the product-country pair observed in our data (max(Yin(t))). The
prior distribution for α is taken to be uniform on that interval.

The precision parameters not involved in the variable selection are given rela-
tively noninformative prior distributions

p(θL) = Ga(10−5,10−5),(18)

p(θA) = Ga(10−5,10−5).(19)

The details of the sampling algorithm are available in Appendix B. The algorithm
was implemented in R and the code is available as a supplement to this article
[Hartman, Mallick and Talukdar (2011)].

4. Results.

4.1. Variable selection results. After running the model with the chosen hy-
perparameters 100 times, we obtained the following results. Figure 2 plots kernel
density estimates for the posterior inclusion probabilities for all the possible co-
variates. We see that the probabilities are relatively consistent across runs. The two
covariates with all of their mass above 0.5 are the internet penetration level and the
consumer price index (CPI). Electric power consumption only had 19% of its mass
above 0.5 and households with television had less than 1% above 0.5; so we con-
clude that they do not have significant effects. The β estimates were consistent
across sampler runs, with regular and unimodal posterior densities. The estimates
for the coefficients for CPI and internet penetration level are −0.081 and 0.123 re-
spectively. Because all the covariates are standardized to have a mean of zero and
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FIG. 2. Posterior inclusion probabilities for each covariate.

a standard deviation of one, the absolute size of the estimates are less informative
than the sign of the estimates.

The variable selection results are consistent with the expected negative role of
the CPI. As the cost of living rises with inflation and CPI, it adversely affects
consumers’ discretionary income and thus their willingness and ability to pay for
new products introduced in the marketplace [Horsky (1990); Talukdar, Sudhir and
Ainslie (2002)]. The results also follow the expected positive role of internet ac-
cess on the speed of a behavior process, that is, fundamentally driven by infor-
mation flow among the adopting population. In this context, it is relevant to point
out that past studies using data from the pre-internet period have included TV and
newspaper penetration levels as covariates of diffusion speed parameters to recog-
nize the role of mass media on diffusion process [Putsis et al. (1997); Talukdar,
Sudhir and Ainslie (2002)]. Consistent with those past studies, our findings under-
score the strong role of the new mass medium represented by the internet, which
has fundamentally altered how consumers and firms search for, store and transmit
product related information, as well as buy and sell products [Ratchford, Talukdar
and Lee (2007)]. The internet also helps speed up the adoption process by acting
as a product complement for one of the products (home computers) in our study.

4.2. Prior sensitivity. The variable selection results can be highly sensitive to
the prior specification. To test the prior sensitivity of the results, we performed
the analysis ten times for all possible combinations of the following values for the
hyperparameters (300 total runs):

υ ∈ {1,5,7,10,15,20,25,50,100,500},
w ∈ {0.1,0.3,0.5}.

The inclusion probabilities for all the covariates are plotted in Figure 3, with the
iterations then sorted by the average inclusion probability over all the covariates.

Two of the covariates (internet penetration level and the consumer price index)
are significantly above the others regardless of the hyperparameter settings. The
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FIG. 3. Prior sensitivity of variable selection.

prior specification obviously has a large effect on the inclusion probabilities. Ta-
ble 2 contains the average inclusion probabilities for various hyperparameter set-
tings. The hyperparameter υ is negatively related to inclusion probability and w is
positively related, but the chosen covariates are largely invariant to the settings.

4.3. Adoption ceiling. As noted in Van den Bulte (2000), ceiling and speed
parameters tend to be negatively correlated and data with a shorter time series tend
to have lower estimates of the adoption ceiling parameter. However, this obser-
vation is based on diffusion model specifications which impose a time-invariant
structure on the speed parameter. An interesting issue is whether the observation
still holds for a model, as in our study, which allows the speed parameter to in
fact vary over time. In fact, contrary to the observation, we find a slightly pos-
itive correlation coefficient (r = 0.203) between the adoption ceiling and speed
parameter estimates for our four products. We also checked whether our adoption

TABLE 2
Marginal inclusion probabilities

w

υ 0.1 0.3 0.5 Marginal

1 0.20 0.38 0.55 0.37
5 0.16 0.28 0.46 0.30
7 0.15 0.25 0.39 0.26

10 0.13 0.20 0.33 0.22
15 0.13 0.18 0.26 0.19
20 0.11 0.16 0.22 0.17
25 0.11 0.15 0.21 0.16
50 0.09 0.13 0.16 0.13

100 0.08 0.11 0.14 0.11
500 0.04 0.07 0.09 0.07

Marginal 0.12 0.19 0.28 0.20
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TABLE 3
Adoption ceiling parameter estimates

Product Mean 95% Credible interval

Cell Phone 0.8001 (0.6069, 0.9840)
Home Computer 0.6802 (0.6010, 0.9468)
Camcorder 0.7998 (0.6100, 0.9899)
CD Player 0.7973 (0.6096, 0.9897)

ceiling parameter estimates are in line with those in past studies, especially for
the CD players and camcorders, as those series have only 7 years of data for each
country. The mean and 95% credible intervals for the adoption ceiling parameter
are in Table 3. We find the estimates to be quite consistent with the findings from
other studies [Talukdar, Sudhir and Ainslie (2002)]. In this context, it is pertinent
to point out that the study by Van den Bulte (2000), like our study, also does not
find any systematic bias in its estimates of adoption ceiling parameters for products
like camcorders and CD players with shorter data series.

4.4. Time component. Our focal interest in this study is the temporal trajectory
of the diffusion speed parameter. In the context of new product diffusion, there are
two distinct ways we could measure time: calendar year and year since new prod-
uct introduction. Also, as noted earlier, our model specification allows temporal
variation in the speed parameter to be driven by changes in the country-specific
covariates as well as a common time effect captured through the nonparametric
function f (t). For the purpose of testing alternative models within our overall
model structure, we can use either measure of time or remove f (t) from the model
completely. We compared the various alternative models by keeping the prior set-
tings common and then using DIC [Spiegelhalter et al. (2002)]. Table 4 describes
the results of the model comparison. D̄ is a measure of how well the model fits
the data. PD is the effective number of parameters which is used as a complexity
penalty. PD is different from the nominal number of parameters, especially in hi-
erarchical models. Two models may have the same number of nominal parameters,
but if one model is more identifiable and precise, it will have a smaller number of

TABLE 4
DIC results

Time measure D̄ PD DIC

Year since introduction −5654.05 1054.10 −4599.95
Calendar year −5645.56 1057.42 −4588.15
N.A. (Time-invariant) −5638.83 1057.17 −4581.66
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FIG. 4. f (t) against year since introduction.

effective parameters [Congdon (2006)]. DIC is the sum of those two values. In all
cases, a smaller number is better.

Based on the DIC values, we find that a time-varying speed parameter with time
measured in terms of either the calendar year or the year since product introduc-
tion provides a better fit than using a time-invariant speed parameter. Additionally,
using year since introduction provides the best fit and fewer effective parameters.
Our findings show that modeling the diffusion speed with a time-invariant speed
parameter adversely affects the precision and identification of the parameters in
the model. Even though the nominal number of parameters is greater when using
the number of years since the introduction, the effective number of parameters in
fact gets smaller. Our findings thus underscore the value for new product diffu-
sion models in relaxing the typical restrictive assumption of time-invariant diffu-
sion speed parameters, and corroborate similar conclusions from past studies [e.g.,
Van Everdingen, Aghina and Fok (2005); Xie et al. (1997)].

Figure 4 plots the estimated posterior distribution of f (t) against the number
of years since the introduction of the product in each country. The solid line is
the pointwise posterior mean, and the dashed lines are the 95% pointwise cred-
ible interval bounds. The plot sheds interesting insights into the patterns of the
diffusion speed parameter λ(t) based on the common time effect induced by the
time-correlated product and general macro-environmental trends. The plot clearly
shows that there is a systematic temporal trend in the speed parameter—thus, in
the underlying consumers’ propensity to adopt a new product–over a product’s dif-
fusion life cycle. Specifically, the diffusion speed parameter is found to exhibit a
U-shaped pattern with respect to the time since a new product’s introduction in a
country.

Our finding of the U-shaped temporal pattern in the diffusion speed parameter
since a new product’s introduction in a country indicates that consumers’ propen-
sity to adopt a new product goes through a relative drop in its value from the
initial phase of the diffusion cycle before climbing back. While our analysis does
not provide any direct causal insight as to why we see such a temporal pattern in
consumers’ propensity to adopt a new product since its introduction in a country,
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the pattern appears to be consistent with expectations based on conceptual notions
and empirical evidence in the diffusion literature. For instance, the initial phase
of a new product’s diffusion in a country is primarily driven by the so-called early
adopters or consumer innovators [Bass (1969); Chandrasekaran and Tellis (2007)].
The early adopters as a consumer segment represent a relatively small proportion
of the eventual adopters for the new product, but by nature they have a higher
propensity to adopt and are the first consumer groups to adopt a new product. Our
finding of consumers’ propensity to adopt starting high and then declining is also
consistent with the likely effect of promotion by businesses which accompanies the
launch of a new product in a country [Golder and Tellis (1997)]. Such promotion
usually has the highest intensity at introduction to generate consumer awareness
and interest for the product, but then declines to a lower but steady level as busi-
nesses rely more on word-of-mouth from the early adopters. However, the early
adopters are followed by the laggards or late adopters [Chandrasekaran and Tellis
(2007)] with lower propensity to adopt the new product.

At the same time, as time passes since the introduction, the risk perception
among consumers toward adopting a new product declines with better quality,
price and availability on the supply side. That in turn will have a positive impact on
the value proposition of the new product on the demand side, thereby increasing the
propensity to adopt the new product among late adopters [Horsky (1990)]. In our
study, these later years specifically include cellular phones and home computers,
and reflect the time period from the early 1990s to 2004. Both the products over
this time period saw steep decline in price even as their quality and the scope of
their use in everyday life improved significantly [Blinder (2000); Chwelos, Berndt
and Cockburn (2008); Lawal (2002); Merkle (1998); Prensky (2001)]. Globally,
that has not only made consumers more appreciative of the value of these products
in their everyday life but also more willing to pay for them [Talukdar, Sudhir and
Ainslie (2002)].

As noted earlier, the function f (t) in our model specification of the diffu-
sion speed parameter will reflect not only the effect of product-specific covari-
ates that are highly correlated with time but also the effect of contemporaneous
global macro-environmental trends. In that context, it is relevant and interesting
to observe here that the early time periods in the diffusion cycle of our products
span the early 1980s and early 1990s. This time period saw high levels of eco-
nomic anxieties and unemployment across the globe driven by two recessions and
a stock-market crash (1987) in the United States. On the other hand, the later time
periods in the diffusion cycle of our products span the late 1990s and early 2000s.
That time period, in contrast, witnessed some singular global macro-environmental
trends. For instance, it saw unprecedented trends in economic policy liberalization
and digitization of key aspects of market economies all over the world [Gilpin
and Gilpin (2001)]. These trends had a profound impact on the global flow of
goods, capital and labor—essentially on factors creating the flat world [Friedman
and Wyman (2005)]. They also continue to have significant impact on how product
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(a) (b)

FIG. 5. Variation in selected covariates across countries and over time. (a) Internet users (per 1000
people). (b) Consumer price index.

information is disseminated and products are sold by firms as well as how they are
searched for and purchased by consumers. Based on economic rationale [Horsky
(1990)], all the above global macro-environmental trends are likely to boost con-
sumers’ likelihood of adoption of new products in general, and especially of cel-
lular phones and home computers—consistent with our findings discussed earlier
about the temporal pattern of f (t) in the later stages of the diffusion cycle in Fig-
ure 4.

Further, in our model specification, the temporal variation in the diffusion speed
parameter is not just driven by the common time effect captured through the func-
tion f (t). It is also driven by changes in the country-specific time-varying co-
variates. Since the two covariates (internet penetration level and consumer price
index) identified through our variable selection analysis are both time-varying, we
thus need to include them when looking at the time trend patterns of the diffu-
sion speed parameter. Figure 5 plots the two selected covariates against calendar
year for each country. Consumer price index (CPI) is calibrated by setting the year
2000 value to 100. As evident from Figure 5, CPI has increased over our time
window. As for internet penetration level, it first grew above zero in 1989, but did
not dramatically increase until the introduction of Netscape in 1995 [Friedman and
Wyman (2005)].

Now that we have all the individual time-varying components, we can exponen-
tiate the sum of the components to examine how the diffusion speed parameter,
λin(t), has changed over calendar time. Figure 6 plots the expected value of λin(t)

over the calendar time covered by our analysis across the four products. Since the
time period covered for each product is different, it is also instructive to look at
similar plots (see Figure 7) separately for each product. Looking at the plots in
Figures 6 and 7, it is apparent that there are two separate time periods correspond-
ing to two distinct time-trends in the expected value of the speed parameter. From
1980 to the early 1990s, the countries had significant variations in terms of CPI
but very little in terms of internet penetration levels. At the same time, we find the
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FIG. 6. Expected trajectory of the diffusion speed parameter.

expected value of the speed parameter for each product and country pair during
this time period to be relatively parallel. That suggests that during that period the
expected value is dominated by the f (t) term. Consumers’ propensity to adopt
new products during this time period declined and was primarily driven by a com-
mon time effect across the countries rather than by any country-specific covariate
effects.

As for the time period between the mid-1990s to 2004, our analysis covers the
later stages of the diffusion cycle for two of the products, viz., cell phones and

(a) (b)

(c) (d)

FIG. 7. Expected trajectory of the diffusion speed parameters for each product. (a) Cell phones.
(b) Home computers. (c) Camcorders. (d) CD players.
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TABLE 5
Expected value of the diffusion speed parameter for home computers

Country Expected value Country Expected value

Argentina 0.482 Italy 0.474
Australia 0.494 Malaysia 0.473
Austria 0.474 Mexico 0.534
Belgium 0.466 Netherlands 0.491
Brazil 0.559 Norway 0.491
Canada 0.487 Philippines 0.510
Chile 0.509 Portugal 0.493
China 0.478 Singapore 0.493
Denmark 0.485 South Korea 0.504
Finland 0.508 Spain 0.468
France 0.457 Sweden 0.512
Germany 0.467 Switzerland 0.480
Greece 0.546 Thailand 0.464
Hong Kong 0.495 United Kingdom 0.481
India 0.588 United States 0.502
Ireland 0.461

home computers. Except for a few exceptions that we note below, we find the ex-
pected value of the speed parameter for each country for both these products not
only reversing direction but also showing distinctive differences in that upward
trend. Coupled with our earlier finding in Figure 4, this finding suggests that the
positive impacts of common time effect and country-specific internet penetration
effects dominated the negative impacts of country-specific CPI effects on con-
sumers’ propensity to adopt new products from the mid-1990s to 2004. We should
note here that there are a few exceptions to the observed U-shaped temporal pat-
tern in the diffusion speed parameter over the entire time period from the 1980s
to the 2000s. Specifically, the expected speed parameters for five home computer
(Argentina, Brazil, Greece, India and the Philippines) and four cellular phone (Ar-
gentina, Brazil, India and the Philippines) series start high and drop to a low, but do
not significantly increase toward the end of our data. Interestingly, both Argentina
and Brazil had the highest inflation of the countries in our set. Such high inflation
is expected to depress the speed parameter through its negative relationship with
CPI. The other three countries also had high inflation (all in the top seven of our
set), but they were mainly affected by a late introduction year (they were late in
home computers and actually were the last three to introduce cell phones).

For an illustration of the estimated values of the diffusion speed parameter
across the countries, we show in Table 5 the expected values of the speed pa-
rameter for home computers by country. All of the expected values of the speed
parameter are between 0.35 and 0.60, with an average value of 0.49 and a stan-
dard deviation of 0.03. For our entire data set, the expected values of the speed
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parameter have a mean of 0.55 and a standard deviation of 0.27 across all the 124
product-country pairs. These mean estimates of the time-varying speed parameter
are well within the range seen in the past studies [Sultan, Farley and Lehmann
(1990); Van den Bulte and Stremersch (2004)]. It is also interesting and pertinent
to note here that while there are very few past studies of diffusion in developing
countries, those studies found that developing countries often show higher speed
at comparable stages of their diffusion cycle [Talukdar, Sudhir and Ainslie (2002);
Takada and Jain (1991)]. The accepted rationale is that developing countries gen-
erally experience a lagged national introduction of a new product. Such lag in fact
has a positive effect on diffusion speed, as it means that some developing countries
had not only conducive macroeconomic conditions for adoption but also the advan-
tage of less adoption risk perception (through better product price and/or quality)
by their consumers at comparable stages of the diffusion cycle [Chandrasekaran
and Tellis (2007); Takada and Jain (1991)]. As Table 5 shows, we also find several
developing countries like India and Brazil exhibiting relatively higher values of the
diffusion speed parameter for home computers.

5. Conclusion. Understanding the dynamic nature of new product diffusion
speed is essential for global marketing managers to make informed decisions. Our
paper provides one of the most comprehensive studies of international new product
diffusion speed from both a substantive and methodological perspective. First, re-
cent reviews of the new product diffusion literature underscore the need for studies
that expand the scope to include developing countries [Chandrasekaran and Tellis
(2007); Peres, Muller and Mahajan (2010)]. Our study works to fill that need by us-
ing a data set that includes 31 developed and developing countries that account for
about 80% of the global economic output and 60% of the global population. The
time period (1980–2004) analyzed includes several global events—for example,
the popular emergence of the internet—that are relevant in the context of investi-
gating change in international new product diffusion speed over time. Second, our
study uses a novel methodology to analyze the changes in diffusion speed. Specif-
ically, we use a semiparametric model to allow the diffusion speed parameter to
be time-variant. We also use a variable selection procedure to develop a parsimo-
nious model from the multitude of potential covariates available in an international
diffusion study.

Taken together, the scope of our data and our methodology enables us to shed
insights into several important issues that are hitherto missing from the extant lit-
erature on new product diffusions. By relaxing the assumption of a time-invariant
speed parameter over the diffusion cycle of a new product [Van den Bulte (2000)],
we show that the speed parameter is generally higher at its introduction, falling
to a low in the middle of the diffusion process, and increasing again in the later
stages. Also, our global data set allows us to show that this phenomenon occurs
not only in developed nations but also in developing ones. Putting our findings in
a broader context, we find that the global new product diffusion speed increased
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from the mid-1990s to 2004, a time period which saw sustained global economic
expansion driven by a high level of globalization and the ushering in of the digital
age [Friedman and Wyman (2005)]. Through our variable selection analysis, we
find that the internet penetration level and the consumer price index in a country
are highly associated with the speed of new product diffusion.

In conclusion, given the scope of our data and our methodology, we have been
able to shed several interesting insights into new product diffusion speed. We hope
our research serves as an impetus for more work in international new product diffu-
sion. An example of future research directions from a methodological perspective
could be to relax the assumption of a time-invariant adoption ceiling parameter
that has been used in both past studies and this study. Additionally, the scope of
our data could be expanded to include product-specific covariates. Although col-
lecting such information in itself—especially for developing countries—will be
quite challenging, the collected data can be easily incorporated into our hierar-
chical model structure above the τn terms. While the function f (t) incorporates
product-specific covariates highly correlated with time, more data would allow
our model to account for those covariates which are relatively uncorrelated with
time.

APPENDIX A: CALCULATION OF THE TIME FROM ONE PENETRATION
LEVEL TO ANOTHER

The speed parameter [denoted in this paper by λ, and by β in Van den Bulte
(2000)] in the logistic diffusion model conceptually represents consumers’ propen-
sity to adopt a new product through a social-contagion based diffusion process. The
analytical structure of the standard logistic diffusion model is given by

x(t) = λF(t − 1)[M − X(t − 1)],(20)

where X(t) is the cumulative number of adopters at time t , x(t) is the incremental
adoption at time t , M is the number of eventual adopters, and F(t) = X(t)/M

is the penetration level at time t . The speed parameter λ affects the slope and
displacement of the logistic diffusion curve, and has thus an intrinsic relationship
to the speed of the underlying diffusion process. To see this relationship, from
equation (20) we get

X(t) − X(t − 1)

M
= λ

X(t − 1)

M

[
1 − X(t − 1)

M

]
,(21)

F(t) − F(t − 1) = λF(t − 1)[1 − F(t − 1)],(22)

dF(t)

dt
= λF(t)[1 − F(t)],(23)

∫
λdt =

∫
dF(t)

F (t)[1 − F(t)] .(24)
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Assuming the speed parameter λ is time-invariant, it is quite easy to solve the in-
tegral in equation (24) to get a closed-form solution for the relationship between λ

and the speed of the underlying diffusion process. For instance, the time (t2 − t1)
that it takes for the diffusion process to go from one penetration level, p1, to a
higher level, p2, is equal to

t2 − t1 = λ−1
∫ p2

p1

[
1

F(t)[1 − F(t)]
]
dF(t),(25)

�t = λ−1 ln
[
(1 − p1)p2

(1 − p2)p1

]
.(26)

On the other hand, assuming that the speed parameter λ is time-variant, the in-
trinsic mapping of the parameter λ to the speed of the diffusion process is more
difficult to derive as a closed-form solution like equation (26), because the solution
comes from equation (27) rather than equation (24):∫

λ(t) dt =
∫

dF(t)

F (t)[1 − F(t)] .(27)

Obviously, equation (27) can still be solved numerically. However, the availabil-
ity of a closed-form solution will depend on the specific functional form of λ(t).
For instance, if λ(t) is specified as a linear function of t , meaning λ(t) = λt , the
solution will be

�t = 2

λ(t1 + t2)
ln

[
(1 − p1)p2

(1 − p2)p − 1

]
.(28)

APPENDIX B: POSTERIOR COMPUTATION

Samples from the posterior distributions of the parameters are drawn using the
following algorithm.

1. Draw the precision parameters from the following full conditional distributions:

s2
1 =

N∑
n=1

I∑
i=1

∑
t∈Tin

{
yin(t)

Yin(t − 1)λin(t)[1 − Yin(t − 1)/(αinMi(t))]
}2

,(29)

p(θL|·) = Ga
(

10−5 +
∑N

n=1
∑I

i=1 Tin

2
,10−5 + s2

1

2

)
,(30)

s2
2 =

N∑
n=1

I∑
i=1

∑
t∈Tin

{[λin(t)] − f (t) − τn − Bi(t)}2,(31)

p(θA|·) = Ga
(

10−5 + N

2
,10−5 +

∑N
n=1

∑
t∈Ti

τ 2
n

2

)
,(32)

p(θB |·) = Ga
(

10−5 + I

2
,10−5 +

∑I
i=1

∑
t∈Ti

(Bi(t) − ∑
k∈K γkβkXki)

2

2

)
.(33)
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2. Draw the random effects from

p(τn|·) = N

(
NθH

∑
(λin(t) − f (t) − Bi(t))

θA + NθH

, θA + NθH

)
,(34)

p(Bi(t)|·) = N(μB, θB + NθH ),(35)

μB = θB

∑
γkXk(t)βk + IθH

∑
(λin(t) − f (t) − τn)

θB + NθH

.(36)

3. Draw γ from

Ỹ =
[
Bi(t)

0

]
, X̃γ =

[
X

Dγ RDγ

]
,(37)

S2
β = Ỹ T Ỹ − Ỹ T X̃γ (X̃T

γ X̃γ )−1X̃T
γ Ỹ ,(38)

p(γ |·) = |X̃T
γ X̃γ |−1/2|Dγ RDγ |−1/2

(39)
× (2 · 10−5S2

β)−(
∑I

i=1 Ti+10−5)/2p(γ ).

4. Draw β from

p(β|·) = N
(
(XT X + Dγ RDγ )−1XBi(t), (X

T X + Dγ RDγ )−1)
.(40)

5. Draw f (t) using the Bayesian adaptive regression splines algorithm described
in Wallstrom, Liebner and Kass (2008).

6. Propose a new αin from its prior distribution (p(αin) ∝ 1[Yin(Tin),1]) and use
a Metropolis–Hastings step to compute the acceptance probability using the
following likelihood:

p(Y |αin, ·) ∝ N

[
yin(t)

Yin(t − 1)
− λin(t)

[
1 − Yin(t − 1)

Mi(t)αin

]∣∣∣0, θL

]
.(41)

7. Propose a new λin by adding white noise to the previous value. Use a
Metropolis–Hastings step to calculate the acceptance probability using the fol-
lowing likelihood:

p(λin(t)) ∝ N

[
yin(t)

Yin(t − 1)
− λin(t)

[
1 − Yin(t − 1)

Mi(t)αin

]∣∣∣0, θL

]

× N [λin(t) − f (t) − Bi(t) − τn|0, θH ](42)

× Ga(λin(t)|0.001,1000).

8. Repeat steps 1–7 until convergence.
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SUPPLEMENTARY MATERIAL

R Code (DOI: 10.1214/11-AOAS519SUPP; .R). This supplement contains the
R code from “Investigating International New Product Diffusion Speed: A Semi-
parametric Approach.”
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