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A MIXED EFFECTS MODEL FOR LONGITUDINAL RELATIONAL
AND NETWORK DATA, WITH APPLICATIONS TO

INTERNATIONAL TRADE AND CONFLICT

BY ANTON H. WESTVELD AND PETER D. HOFF1

University of Nevada, Las Vegas and University of Washington, Seattle

The focus of this paper is an approach to the modeling of longitudinal so-
cial network or relational data. Such data arise from measurements on pairs
of objects or actors made at regular temporal intervals, resulting in a social
network for each point in time. In this article we represent the network and
temporal dependencies with a random effects model, resulting in a stochas-
tic process defined by a set of stationary covariance matrices. Our approach
builds upon the social relations models of Warner, Kenny and Stoto [Jour-
nal of Personality and Social Psychology 37 (1979) 1742–1757] and Gill and
Swartz [Canad. J. Statist. 29 (2001) 321–331] and allows for an intra- and
inter-temporal representation of network structures. We apply the methodol-
ogy to two longitudinal data sets: international trade (continuous response)
and militarized interstate disputes (binary response).

1. Longitudinal network (relational) data. Radcliffe-Brown (1940) stated
that an understanding of the “complex network of social relations” can be gained
by measuring the relations or interactions within a set of actors. Since pairwise
relations are the most elemental type of relationship, relational data which consist
of measurements made on pairs of actors are ubiquitous. Our focus in this article
is on relational data from the field of political science, including (1) trade between
nations, and (2) militarized disputes between nations. For such data, we let yi,j de-
note the value of the measurement on the potentially ordered pair of actors (i, j ). In
this paper we refer to social network data or relational data as the set of measure-
ments of relations on dyads for a group of actors under study. These measurements
could be binary, ordinal or continuous, as such, the methodology applies to a broad
range of applications beyond those discussed in this paper.

In the case of international trade, yi,j is the directed level of trade from nation i

to nation j . Since the relation is directed, yi,j is not necessarily equal to yj,i . Typi-
cally, social network data, directed or undirected, are represented by a socio-matrix
[Wasserman and Faust (1994)], with the ith row representing data for which actor
i is the sender, and column j representing data for which j is the receiver. Since
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the data are based on pairs of actors, the diagonal representing the relationships of
actors with themselves is generally absent from the socio-matrix.

Many researchers have worked on models for this data structure. The seminal
work on relational data of this form was done by Warner, Kenny and Stoto (1979),
where a method of moments estimation procedure was developed based upon an
ANOVA style decomposition. Models of this form have come to be known as so-
cial relations models or models for round robin data. Wong’s (1982) work derived
maximum likelihood estimators for these types of models, and Gill and Swartz
(2001) studied method of moments, maximum likelihood and Bayesian estima-
tion procedures for the same problem. More broadly, Li (2002) and Li and Loken
(2002) developed a general unified theory for dyadic data which derives the social
relations model and other similar models from principles of group symmetry and
exchangeability.

In a series of papers [Hoff, Raftery and Handcock (2002); Hoff (2003, 2005,
2007)], the social relations model was expanded in several directions: (1) A latent
social space was introduced to capture patterns of transitivity, balance and clus-
terability that are often exhibited in dyadic data [Wasserman and Faust (1994)];
(2) A generalized linear model was developed to allow for a variety of data types
(binary, ordinal and continuous); (3) A Bayesian estimation procedure was thor-
oughly outlined for (1) and (2) to estimate the model parameters.

However, all models mentioned thus far are for static relational data. Often,
scientific questions are concerned with the evolution of networks over time. For
example, in the field of international relations, questions related to the evolution
of international trade or interstate conflicts are of great interest [Hoff and Ward
(2003); Ward and Hoff (2007); Ward, Siverson and Cao (2007)]. In the field of bi-
ology, an understanding of the evolution of interactions of biological entities under
various experimental stimuli could provide important insights [Barabasi and Olt-
var (2004)]. With such applications in mind, this paper expands the social relations
model to account for dependence over time.

This article proposes a model that accounts for temporal dependence among all
pairwise measurements of a set of actors, thus, it falls into the realm of longitudi-
nal data analysis methodology. To date, there has been little work on models which
account for both network and temporal dependencies. A notable exception is the
work by Thomas Snijders and coauthors [Huisman and Snijders (2003); Snijders,
van de Bunt and Steglich (2010); Snijders, Koskinen and Schweinberger (2010)]
which developed an actor-oriented model for network evolution that incorporated
individual-level attributes. This approach is based on an economic model of ra-
tional choice, whereby individuals make unilateral changes to their networks and
behaviors in order to maximize personal utility functions. Parameter estimates de-
scribe individual’s utilities for various network configurations. Parameter estima-
tion methods for such a model have been developed into a freely-available software
package (http://stat.gamma.rug.nl/siena.html), which has been applied to a number
of data sets.

http://stat.gamma.rug.nl/siena.html
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While this work has been groundbreaking, the applicability of an actor-oriented
model may be limited to certain types of networks. As described by the primary
developers of this approach [Snijders, Steglich and Schweinberger (2007)], such a
model may not be appropriate in situations for which network and behavioral data
might depend on unobserved latent variables. Additionally, the interpretation of the
parameters in an actor-based choice model may be problematic if the data do not
actually represent choices of the actors, but rather outcomes determined by other
actors, which may be constrained by circumstances beyond an individual’s control.
In the context of trade, for example, exports from one country to another may be
determined by forces of supply and demand beyond just the pair. In the context
of international conflict, countries are often unwilling participants in militarized
disputes.

Recently, Hanneke, Fu and Xing (2010) considered a temporal extension of
the exponential random graph modeling (ERGM) framework [Frank and Strauss
(1986); Hunter and Handcock (2006); Handcock, Raftery and Tantrum (2007)].
Their work is similar to that of Thomas Snijders and coauthors in that it parame-
terizes various network configurations, however, they do not take an agent-based
approach to the construction of the model.

Another approach to modeling dynamic network data is discussed in Xing, Fu
and Song (2010). Building on ideas of Erosheva, Fienberg and Lafferty (2004) and
Airoldi et al. (2005), these authors model each actor as having partial memberships
to several groups. Relationships between individuals are determined by the groups
of which they are members. Such models often result in a concise description of
the data, as the large number of relationships between actors are summarized by
the relationships between a small number of groups to which the actors belong.

In contrast to an actor-oriented utility model, ERGM, or a group-membership
model, the approach we propose is more statistical, in that the main parameters
in our model represent expectations and covariances of relational measurements
leading to inference about network characteristics. Our reason for taking such an
approach is that in the empirical study of international relations, focus is primar-
ily on mean or regression effects and assessments of their statistical significance.
As discussed in Ward and Hoff (2007), common practice is to merge data on all
pairs of countries across several years and base inference on ordinary least squares
estimates, treating all observations as independent. By ignoring network and tem-
poral dependence, such an approach can potentially dramatically overestimate the
significance of results and precision of estimates. One of the objectives of our
methodology is to provide mean and regression estimates, by properly account-
ing for statistical dependencies in the data. Additionally, our modeling framework
is very flexible and extendable: Using a generalized linear model framework, it
can accommodate continuous and ordinal relational data. This could include data
on intensity or duration of relationships, or the number of contacts between two
individuals.
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The next section will outline the set of possible second-order dependencies
inherent in this data structure. Section 3 represents the dependencies with a mixed-
effects model, and Section 4 outlines a Bayesian approach to parameter estima-
tion. Sections 5 and 6 provide in-depth data analysis examples involving interna-
tional trade and militarized disputes, including comparisons to simpler modeling
approaches. A discussion follows in Section 7.

2. Dependence structure for LSR data. Figure 1 summarizes the set of pair-
wise (second order) potential dependencies for directed longitudinal social net-
work data that we will consider in this article. These are the dependencies possible
assuming a dependence structure in which two relational measurements are de-
pendent if and only if they share a common actor. In the figure, three nonidentical
actors i, j, k and two time points t1, t2 are used to illustrate the dependencies. The

arrow i
t−→ j represents the random variable yi,j,t for a particular relationship

from actor i to actor j at time t . If we are to study patterns of international trade,

i
t−→ j might represent the monetary value of the exports from nation i to nation

j during year t . Based on the figure, two directed relations are potentially depen-
dent only if they share a common actor, regardless of the relation’s time index. In
other words, the random variables ya,b,t1 and yc,d,t2 are independent for all t if
{a, b} ∩ {c, d} = ∅.

To provide a description of the five dependencies depicted in Figure 1, let us
first consider a fixed time point t1 = t2 = t . Under this condition, (a) represents
the potential dependence among measurements having a common sender (i.e., the
“row effects”). As an example of such dependence, consider the exports from the
United States and those from Morocco in a given year. Due to the overall difference
in trade activity of these two nations, we might expect the exports from Morocco
to other countries to be more similar in magnitude to each other than to the exports
from the United States to other countries. Similarly, (b) represents potential depen-
dence among measurements having a common receiver (i.e., the “column effects”).

(a) same sender (b) same receiver (c) common participant

(d) reciprocity (e) observational dependence

FIG. 1. Second order dependencies for longitudinal directed social network data.
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Considering the context of international trade again, some countries consume more
goods than other countries, which could lead to within-column correlation of trade
values. Next, (c) represents dependence between the relations sent and received by
the same actor. For example, countries that import at a higher than average rate
may also export at a higher rate. Next, (d) represents the idea of reciprocity or de-
pendence between the directed relations of a pair of actors, such as between a pair
of international trading partners or disputes between a pair of nations.

For t1 �= t2 we additionally consider temporal dependence: The figure in (e)
indicates the dependence among a pair of actors across time.2

3. Mixed effects model with Markov temporal dependence. We base our
longitudinal network model on multivariate normal distributions, with nonzero co-
variances corresponding to the dependencies represented by Figure 1. For example,
we allow Cov(ya,b,t1, yc,d,t2) �= 0 if {a, b}∩ {c, d} �= ∅. Otherwise, this covariance
is zero. Based on this, the complete set of nonzero covariances are in Table 1.
Such a covariance structure can be obtained via a mixed effects model, defined by
equations (1)–(3) that follow:

yi,j,t = x′
i,j,tβt + εi,j,t ,

(1)
εi,j,t = si,t + rj,t + gi,j,t .

In this model, x′
i,j,tβt is a fixed effect expressing the mean for yi,j,t , while the

error term εi,j,t is decomposed into a set of mean-zero Gaussian random effects.
This linear decomposition consists of a sending effect si,t , a receiving effect rj,t
and a residual error term gi,j,t . For a fixed t , the network dependencies can be
characterized by specifying covariance structures for the random effects in (1).

TABLE 1
Covariances in the longitudinal social relations model

t1 = t2 t1 < t2

(a) Cov(i
t1−→ j, i

t2−→ k) = Cov(yi,j,t1 , yi,k,t2) = ξ2
1,[t1] ξ1,[t1,t2]

(b) Cov(i
t1−→ j, k

t2−→ j) = Cov(yi,j,t1 , yk,j,t2 ) = ξ2
2,[t1] ξ2,[t1,t2]

(c)
Cov(i

t1−→ j, j
t2−→ k) = Cov(yi,j,t1 , yj,k,t2 ) = ξ3,[t1] ξ3,[t1,t2]

Cov(i
t2−→ j, j

t1−→ k) = Cov(yi,j,t2 , yj,k,t1 ) = ξ4,[t1] ξ4,[t1,t2]
(d) Cov(i

t1−→ j, j
t2−→ i) = Cov(yi,j,t1 , yj,i,t2) = ξ5,[t1] ξ5,[t1,t2]

(e) Cov(i
t1−→ j, i

t2−→ j) = Cov(yi,j,t1 , yi,j,t2) = ξ2
6,[t1] ξ6,[t1,t2]

2In the case of nondirected network data, the minimal set of dependencies are obtained by replacing
the directed edges in Figure 1 with nondirected edges. In this case, cases (a), (b) and (c) essentially
represent the same dependencies, as do (d) and (e). This leaves only two minimal dependencies.
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While Figure 1 describes the structure of the network dependencies (pairwise
dependencies in the actor domain), it does not provide guidance about the structure
of the temporal dependence. We accommodate temporal dependence by expanding
the model to allow the random effects to be correlated over time. We consider the
following first order (Markov) auto-regressive structure for the random effects:

(si,t , ri,t )
′ = �sr(si,t−1, ri,t−1)

′ + εsr,t ,

(gi,j,t , gj,i,t )
′ = �gg(gi,j,t−1, gj,i,t−1)

′ + εgg,t ,(2)

where �sr =
(

φs φsr

φrs φr

)
, �gg =

(
φg φgg

φgg φg

)
,

and εsr,t and εgg,t are independent mean-zero bivariate normal vectors with co-
variance matrices �sr and �gg :

�sr =
(

γ 2
s γsr

γsr γ 2
r

)
, �gg =

(
γ 2
g λggγ

2
g

λggγ
2
g γ 2

g

)
.(3)

The resulting covariance matrix for the vector sri = (si,1, ri,1, . . . , si,T , ri,T )′ can
be written as

Cov(sri) = 
sr =

⎛
⎜⎜⎜⎝


sr(0) 
sr(1) · · · 
sr(T − 1)


sr(1)′ 
sr(0) · · · 
sr(T − 2)
...

...
...


sr(T − 1)′ 
sr(T − 2)′ · · · 
sr(0)

⎞
⎟⎟⎟⎠ ,

where 
sr(d) depends on �sr , �sr and the time lag d . The covariance matrix
of the vector g[i,j ] = (gi,j,1, gj,i,1, . . . , gi,j,T , gj,i,T )′ has a similar block Toeplitz
structure, which we write as Cov(g[i,j ]) = 
gg , and is made up of the blocks
{
gg(0), . . . ,
gg(T − 1)}. Putting the two sources of variation together, Table 2
outlines the set of potentially nonzero covariances defined by the random effects
model. The different σ ’s in Table 2 replace their more general counterparts, the ξ ’s
of Table 1.

TABLE 2
Covariances based upon the stationary mixed effects model

d = 0 d > 0

(a) Cov(yi,j,t , yi,k,t+d ) = σ 2
s σs,d

(b) Cov(yi,j,t , yk,j,t+d ) = σ 2
r σr,d

(c)
Cov(yi,j,t , yj,k,t+d ) = σsor σrs,d

Cov(yi,j,t+d , yj,k,t ) = σsor σsr,d

(d) Cov(yi,j,t , yi,j,t+d ) = σ 2
s + σ 2

r + σ 2
g σs,d + σr,d + σg,d

(e) Cov(yi,j,t , yj,i,t+d ) = σgg + 2σsor σgg,d + σsr,d + σrs,d
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Note that if we were to consider a static network, the covariances given by

sr(0) and 
gg(0) would represent those for the social relations models as out-
lined in Warner, Kenny and Stoto (1979) and Gill and Swartz (2001). As such,
those models are submodels of the one defined by equations (1)–(3).

Through the use of a generalized linear model [McCullagh and Nelder (1989)],
the mixed effects model for Gaussian longitudinal social relations data can be ex-
tended to analyze relations that are not appropriately modeled by a Gaussian distri-
bution, such as binary responses or counts. This is done by using the above model
to describe a linear predictor θi,j,t in a generalized linear model. This leads to the
following formulation:

E(yi,j,t |θi,j,t ) = h(θi,j,t ),

θi,j,t = x′
i,j,tβt + si,t + rj,t + gi,j,t .

Under the model, the yi,j,t ’s are conditionally independent given the θi,j,t ’s, so
that we have

p(y|θ) =
A−1∏
i=1

A∏
j=i+1

T∏
t=1

p(yi,j,t |θi,j,t )p(yj,i,t |θj,i,t ).

The covariance structure here is approximately that of the Gaussian model multi-
plied by a factor depending on the link function h [Hoff (2005); Westveld (2007)],
indicating that the second order dependence outlined by Figure 1 is still captured:

Cov(yi1,j1,t1, yi2,j2,t2) ≈ Cov(θi1,j1,t1, θi2,j2,t2) × h′(x′
i1,j1,t1

βt1)h
′(x′

i2,j2,t2
βt2).

4. Parameter estimation. Estimation of model parameters is most easily
done in the context of Bayesian inference. In this section we present a general
Markov chain Monte Carlo (MCMC) algorithm for continuous data which are
modeled as Gaussian, and binary data which are modeled through a particular
probit formulation based on the work of Albert and Chib (1993) and Chib and
Greenberg (1998).

4.1. Gaussian mixed effects model. The model fully defined by equations (1)–
(3) has the following parameters 
 that need to be estimated: 
 = {(βt ; t =
1, . . . , T ), (φs, φsr , φrs, φr), (φg,φgg), (γ

2
s , γ 2

r , γsr), (γ
2
g , λgg), (si,t , ri,t ; i = 1,

. . . ,A; t = 1, . . . , T )}. A Bayesian analysis is conducted by examining the joint
distribution of the parameters in 
 given the data y:

P(
|y) ∝
A−1∏
i=1

A∏
j=i+1

dmvn
(
y[i,j ]|η[i,j ] + sri + rsj ,
gg

)
(4)

×
A∏

i=1

dmvn(sri |0,
sr) × P(β)P (�gg)P (�gg)P (�sr)P (�sr),
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where “dmvn” stands for a multivariate normal density function and

y[i,j ],t = (yi,j,t , yj,i,t )
′, y[i,j ] = (

y′[i,j ],1, . . . , y′[i,j ],T
)′
,

η[i,j ],t = (β ′
t xi,j,t , β

′
t xj,i,t )

′, η[i,j ] = (
η′[i,j ],1, . . . , η′[i,j ],T

)′
,

sri,t = (si,t , ri,t )
′, sri = (sr ′

i,1, . . . , sr
′
i,T )′,

rsi,t = (ri,t , si,t )
′, rsi = (rs′

i,1, . . . , rs
′
i,T )′.

The first double product of equation (4) is the density of the data given the sender–
receiver random effects, the next product is the sampling distribution of the random
effects, and the remaining terms are the priors for the model. We use the following
semi-conjugate priors for β,�sr,�gg , and �sr :

β = (β ′
1, . . . , β

′
T )′ ∼ mvn(Mβ,Vβ),

(φs, φsr , φrs, φr)
′ ∼ mvn(M�sr ,V�sr )I(�sr ∈ S),

(φg,φgg)
′ ∼ mvn(M�gg ,V�gg )I(�gg ∈ S),

�sr ∼ inverse-Wishart(vsr , S
−1
sr ).

The φ-parameters are constrained to ensure that the temporal processes for the
sender–receiver effects and the residual error terms produce a stationary process S
[Reinsel (1997)]. Such a constraint allows the fixed-effects and covariance para-
meters to represent means and variances of the observed data over the observed
time period. For an AR(1) model, the constraint is satisfied if the absolute value of
eigenvalues for the �’s are less than 1.

A conjugate prior for the Toeplitz matrix �gg can be obtained by considering a
transformation described by Wong (1982). In order to apply this approach to our
problem, we consider the following bivariate innovations to obtain independent
bivariate distributions:

(g̃i,j,t , g̃j,i,t )
′ = (gi,j,t , gj,i,t )

′ − �gg(gi,j,t−1, gj,i,t−1)
′

∼ mvn(0,�gg).

Now using the property of bivariate normal distributions, we can create two in-
dependent vectors: ai,j,t = g̃i,j,t + g̃j,i,t and bi,j,t = g̃i,j,t − g̃j,i,t , where ai,j,t ∼
normal(0, σ 2

a ) and bi,j,t ∼ normal(0, σ 2
b ). We use inverse-gamma priors for σ 2

a

and σ 2
b : σ 2

a ∼ inverse-gamma(αa, δa), σ 2
b ∼ inverse-gamma(αb, δb). The matrix

�gg can be constructed as γ 2
g = (σ 2

a + σ 2
b )/4 and λgg = (σ 2

a − σ 2
b )/(σ 2

a + σ 2
b ).

Based on this class of prior distributions, a Markov chain Monte Carlo approx-
imation to the joint posterior distribution may be obtained via Gibbs sampling
for the β’s and the sender–receiver effects, with a Metropolis–Hastings update for
�sr , �gg , �sr , and �gg . However, the Metropolis–Hastings updates are based on
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their full conditional distributions. For example, consider that the full conditional
distribution of �sr is given by

P(�sr |·) ∝
A∏

i=1

dmvn(sri,1|0,
sr(0))(5a)

×
A∏

i=1

T∏
t=2

dmvn(sri,t |�srsri,t−1,�sr)(5b)

× dmvn(�sr |M�sr ,V�sr )I(�sr ∈ S).(5c)

If we were to ignore the first product [equation (5a)] and the stationarity constraint,
the expression above would be proportional to a multivariate normal distribution.
Since most of the information about �sr is contained in equation (5b) and (5c), the
full conditional distribution of �sr will be close to this multivariate normal distri-
bution. We use this approximation to the full conditional distribution as a proposal
distribution, but make the necessary correction in the acceptance probability via
the Metropolis–Hastings algorithm. We use a similar Metropolis–Hastings pro-
posal for updating �gg . Further details about the MCMC algorithm, including
information for updating �sr and �gg , can be found in the Appendix.

4.2. Probit mixed effects model. In order to model data that are not approx-
imately Gaussian, such as binary data, we move the Gaussian structure to a sec-
ondary level in the hierarchical model leading to the following formulation:

yi,j,t ∼ p(y|θi,j,t ),

θi,j,t = x′
i,j,tβt + si,t + rj,t + gi,j,t ,

where p(y|θ) represents the probability distribution of the response. For example,
a probit model for binary data can be obtained by setting p(y|θ) = �(θ)y[1 −
�(θ)]1−y . For the probit model, we specify the covariance of the sender–receiver
effects 
sr as before based upon the parameters �sr and �sr . However, as noted
in Albert and Chib (1993), the variance parameter σ 2

gg in covariance matrix 
gg

is not identifiable. For ease of interpretation, we will set σ 2
gg to be equal to one

so that 
gg is a correlation matrix. In doing this, additional constraints are placed
on �gg and �gg . Consider the following Yule–Walker equations for a first order
auto-regressive process:

Cov
(
g[i,j ],t , g[i,j ],t+d

) = 
gg(d) =
{


gg(d − 1)�′
gg + �gg, if d = 0,


gg(d − 1)�′
gg, if d > 0.

Since 
gg is a correlation matrix, 
gg(0) is also a correlation matrix, with a corre-
lation coefficient ρgg . Solving the Yule–Walker equations in terms of 
gg(0), we
have


gg(0) = �gg
gg(0)�gg + �gg.
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Writing this out in terms of the individual parameters results in(
1 ρgg

ρgg 1

)
=

(
φg φgg

φgg φg

)(
1 ρgg

ρgg 1

)

×
(

φg φgg

φgg φg

)
+

(
γ 2
g γgg

γgg γ 2
g

)
.

Now we solve for γ 2
g and γgg in terms of φg,φgg and ρgg to get

γ 2
g = 1 − φ2

g − φ2
gg − 2ρggφgφgg,

γgg = ρgg − 2φgφgg − ρggφ
2
g − ρggφ

2
gg.

If we consider a Bayesian estimation algorithm, we can propose values of φg,φgg

and ρgg such that �gg is a proper covariance matrix and it is guaranteed that 
gg

will be a correlation matrix.
The joint density of the parameters conditional on the data y is proportional to

p(
|y) ∝
A−1∏
i=1

A∏
j=i+1

P
(
y[i,j ]|θ[i,j ]

) × dmvn
(
θ[i,j ]|η[i,j ] + sri + rsj ,
gg

)
(6)

×
A∏

i=1

dmvn(sri |0,
sr) × P(β)P (�gg)P (ρgg)P (�sr)P (�sr).

Because of the nonidentifiability and reparameterization of �gg discussed above,
we impose constraints on �gg and �gg via the following priors:

ρgg ∼ normal(Mρgg ,Vρgg )I(−1 ≤ ρgg ≤ 1)I(�gg is positive definite),

(φg,φgg)
′ ∼ mvn(M�gg ,V�gg )I(�gg ∈ S)I(�gg is positive definite).

To estimate the model parameters, the MCMC algorithm presented in Section 4.1
is modified in two ways: (1) ρgg is now explicitly updated, and (2) the latent re-
sponse θi,j,t must also be updated. For most GLMs a Metropolis–Hastings step
is required to update the latent response. However, the probit model allows for a
Gibbs sampling procedure based upon the work of Albert and Chib (1993) and
Chib and Greenberg (1998). The Gibbs sampling procedure for each (i, j) and
(j, i) pair at times t = 1, . . . , T proceeds by sampling the conditional distribution
for each θi,j,t , based on a truncated normal distribution: The truncation is to the
left of zero if yi,j,t = 0 and to the right of zero if yi,j,t = 1. Further details on the
MCMC algorithm can be found in the Appendix.

5. International trade. In this section we apply the methodology to the study
of yearly international trade between 58 countries from 1981–2000.3 A commonly

3A list of countries (including their three-letter ISO codes) used in this analysis can be found in
the Appendix. Additionally, the data and some of the R code used to fit the model are available as
supplementary material [Westveld and Hoff (2010)].
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used model for international trade is the gravity model [Tinbergen (1962)] which,
based on Newton’s law of gravity, posits that the force of trade between two coun-
tries is proportional to the product of their economic “masses” divided by the dis-
tance between them (raised to some power). Taking logs, a formulation of the
gravity model in the context of longitudinal trade is given by

ln Tradei,j,t = β0,t + β1,t ln GDPi,t + β2,t ln GDPj,t + β3,t ln Di,j,t + εi,j,t ,

where Tradei,j,t is the trade between two countries at time t , Di,j the geographic
distance between them, and GDPi,t and GDPj,t denote their gross domestic prod-
ucts at time t .4

Over the past forty years the gravity model of bilateral trade has become a
benchmark for several reasons: (1) A gravity model can typically explain about
one-half the variation in bilateral international commerce [Ward and Hoff (2007)];
(2) The gravity model can be derived from first principles of economic theory
[Anderson (1979)]; (3) The linear formulation of the model is easy to work
with empirically and readily accommodates other factors that might affect trade
flows.

Following Ward and Hoff (2007), we will consider two other factors for this
analysis: the polity of a nation and whether pairs of nations cooperated in mil-
itarized interstate disputes. Polity, denoted by Pol, measures a nation’s level of
democracy, and ranges from 0 for highly authoritarian regimes to 20 for highly
democratic ones. Cooperation in conflict, denoted by CC, measures active military
cooperation. If the pair cooperated on a particular dispute, it receives a value of +1.
However, if the two countries were on opposite sides of a dispute, a value of −1
is recorded. If there was more than one dispute in a single year involving the same
pair, then the pair’s scores are summed over all disputes in that year. It should
be noted that all of the covariates except distance are changing over time.5 This
leads to the following model, which is motivated by the gravity model, additional
covariates of interest and the longitudinal network structure:

ln Tradei,j,t = β0,t + β1,t ln GDPi,t + β2,t ln GDPj,t + β3,t ln Di,j,t

+ β4,tPoli,t + β5,tPolj,t + β6,tCCi,j,t + β7,tPoli,t × Polj,t

+ si,t + rj,t + gi,j,t

4As opposed to Ward and Hoff (2007) and Westveld (2007), real values for GDP and the level of
trade were used in this paper. The reason the other works used nominal values was to avoid modeling
the inflation rate for out of sample prediction. An inflator using the CPI-All Urban Consumers data
was calculated to set the amounts into real values based on the year 2000. The CPI data can be
obtained from the following: http://www.bls.gov/data/home.htm. Note: this CPI data is used in the
BLS inflation calculator: http://data.bls.gov/cgi-bin/cpicalc.pl.

5For further discussion of the data used in this paper, we refer the reader to Ward and Hoff (2007).

http://www.bls.gov/data/home.htm
http://data.bls.gov/cgi-bin/cpicalc.pl
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with the following diffuse priors:

βt ∼ mvn(0,100 × I),

(φs, φsr , φrs, φr)
′ ∼ mvn(0,100 × I)I(�sr ∈ S),

(φg,φgg)
′ ∼ mvn(0,100 × I)I(�gg ∈ S),

�sr ∼ inverse-Wishart(4, I),

σ 2
a ∼ inverse-gamma(1,1),

σ 2
b ∼ inverse-gamma(1,1).

Initially we implemented the MCMC algorithm outlined in Section 4.1, however,
we found the Markov chain to be very “sticky.” This result may have occurred
since the semi-conjugate Gibbs proposals are similar to an independence proposal.
In this case the distribution of the proposal should be close to the respective pos-
terior distribution but should be “fatter” in the tails to prevent “stickiness” [Givens
and Hoeting (2005)]. This would suggest that we should increase the variance of
the semi-conjugate Gibbs proposals to increase the rate of mixing. However, the
posterior distribution of �sr is near the boundary for stationary processes, and
increasing the variance of the proposals may lead to more unaccepted proposed
values. Therefore, to safeguard against poor mixing of the chain, we randomly al-
ternated between using (1) semi-conjugate Gibbs proposals (without an increased
variance), and (2) random walk proposals around the current values of the para-
meters (�sr,
sr ,�gg,
gg). A Markov chain of 55,000 iterations was generated,
the first 10,000 of which were dropped to allow convergence to the stationary dis-
tribution. Parameter values were saved every 20th scan, resulting in 2,250 samples
with which to approximate the joint posterior distribution.

5.1. Results. The 95% posterior credible intervals (blue bars) and their medi-
ans (black dots) for the β’s are in Figure 2. Let us first consider the panels on the
top row, excluding the intercept. The posterior distributions of the coefficients in
the gravity model have several features: (1) In general, the credible intervals of the
coefficients for the ln GDP of the exporter are shifting downward over the period.
Additionally, these intervals contain zero from 1994 to 2000, heuristically sug-
gesting that this covariate is becoming a less important correlate of bilateral trade
flows. (2) The coefficients for the ln GDP of the importer over the period are all
positive, suggesting that the economic size of the importer is an important factor
in bilateral trade flows. (3) As might be expected, over the twenty-year period the
medians of the coefficients for distance are generally decreasing. An intuitive ex-
planation is that the transportation of goods and services has become more efficient
over the period.

The four panels on the bottom row of Figure 2 are the results for the additional
predictors of trade beyond the gravity model. There appears to be a general decline
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FIG. 2. 95% credible intervals of the covariate coefficients over time for the gravity model.

in the coefficients for the main effects of polity of the exporter and importer over
the period, with a notable exception for the latter in the year 2000 (the 95% credible
interval still contains zero). However, there appears to be a rising trend in the co-
efficients of polity interaction (β7,t ) over the period. The trend suggests that trade
between democratic countries is increasing faster than the average. Finally, for the
polity coefficients in general we see that our estimate is becoming more uncertain
over time, as the credible intervals are widening over the period. A plausible ex-
planation for this phenomenon is that the countries under study are becoming more
democratic, thus, there is less variation in the polity covariate. The sample mean
and variance of the polity score for 1980 are 3.62 and 56.66, respectively, while in
2000 they are 7.43 and 20.56. Based upon the model, whether two nations cooper-
ate in conflicts is not indicative of the level of trade between them, except for the



856 A. H. WESTVELD AND P. D. HOFF

FIG. 3. Posterior distributions of the sender–receiver effects over time for the gravity model.

notable case of 1986, where bilateral trade is positively correlated with military
cooperation.

We now examine the posterior distributions of the country-specific sender and
receiver random effects. These effects describe the average deviations of a coun-
try’s export and import levels from those that would be predicted by the regression
model alone. In Figure 3 the colored dots are a random sample of 150 values from
the bivariate posterior distribution of the sending and receiving effects for each
country, and the country labels are located at the posterior means. Countries that
are close to each other, based on their posterior mean, are similar in color. As
might be expected, we see in each plot that there exists a strong positive relation-
ship between exporting (sending) and importing (receiving) and that the relative
positions of the nations change only slightly over the four years shown in the fig-
ure. This strong positive relationship suggests a possible model simplification for
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these data in which the sender and receiver effects are co-linear, although such a
model reduction may not be appropriate for other data sets.

A closer examination of the plots reveals that the United States (USA), Ger-
many (DEU), Japan (JPN) and the United Kingdom (GBR) are located at the top
right corner for most of these plots, and thus are considered some of the most ac-
tive nations in the network, even after accounting for their covariate information.
On the other hand, nations such as Nepal (NPL), Oman (OMN), Barbados (BRB)
and Mauritius (MUS) are among the least active, based on their location in the
plots. Over the period, the rise of East Asian countries through trade is exempli-
fied by the movement of Singapore (SGP) on the receiving axis—the 95% credible
interval of Singapore’s receiving position in 2000 minus its receiving position in
1981 is (1.449, 3.967). Finally, note the dip in imports to Argentina (ARG) in
1991 and Egypt (EGY) in 2000. In each situation, the value of imports from all
countries in the data is zero. It is unlikely that there were no imports for either
country for those years. A plausible explanation for the imports to Argentina be-
ing “zeroed-out” might be due to a currency reform that the country undertook
in 1991. As for the Egyptian case, around the year 2000 there was not a period
of financial instability, suggesting that the zero imports are an aberration in the
data. We note that, by allowing for time and country-specific importer and ex-
porter effects, our estimates of the regression coefficients will be fairly robust to
such outliers.

The assumption of a stationary covariance structure allows us to interpret the
the marginal covariances 
(0)sr and 
(0)gg as across-year average covariances.
Using the posterior samples from �sr,�sr ,�gg and �gg , the empirical posterior
distributions for 
(0)sr and 
(0)gg can be computed. The results are in Table 3,
which presents the trace plots of the Markov chains along with the 95% credible in-
tervals and posterior medians. Notice that the medians of the posterior distributions

TABLE 3

(0)sr and 
(0)gg parameter estimates for the gravity model

Parameter Markov chain 2.5% Median 97.5%

σ 2
s 6.777 9.841 14.733

σsor 2.429 3.665 5.591

ρsr 0.597 0.705 0.790

σ 2
r 2.129 2.787 3.829

σ 2
g 10.089 10.292 10.496

σgg 3.113 3.327 3.523

ρgg 0.307 0.323 0.338
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TABLE 4
�sr and �gg parameter estimates for the gravity model

Parameter Markov chain 2.5% Median 97.5%

φs 0.991 0.997 1.002

φsr −0.010 0.005 0.019

φrs 0.121 0.161 0.201

φr 0.505 0.572 0.632

φg 0.665 0.670 0.676

φgg 0.100 0.106 0.111

for σ 2
s and σ 2

r coincide with the spread of the posteriors of the sender–receiver es-
timates for the nations (Figure 3). Also from the table we see that: (1) the median
posterior correlation ρsr between the sending and receiving effects is 0.705, and
(2) the median posterior residual correlation ρgg within a pair of nations is 0.323.
The latter suggests a modest degree of reciprocity among pairs of actors in the
network at a given point in time.

We also examine the auto-regressive coefficients to see what effect the previous
year has on exports, imports and reciprocity for the current year. From Table 4, the
medians of the posterior distributions of φs and φsr are 0.997 and 0.005, respec-
tively. This suggests that the level of exports this year is highly dependent on level
of exports from the previous year but perhaps not dependent on imports from the
previous year. Comparatively, the medians of the posterior distribution for φr and
φrs are 0.572 and 0.161, respectively. That is, the level of imports this year is fairly
dependent on imports from the previous year and somewhat dependent on exports
from the previous year, indicating a possible effect of increased purchasing power
after a year of high exports. Since the median of the posterior distribution of φgg is
0.106, we see that a relatively small amount of positive reciprocity in a given year
can be explained by the level of reciprocity in the previous year.

5.2. Out-of-sample prediction. In order to investigate the possibility that we
are overfitting the data, we randomly deleted 25% of the responses, amount-
ing to 16,120 cases, and compared the out-of-sample predictions for the LSR
model with covariates (M1) against four submodels (M2–M5). The first sub-
model (M2) used the LSR structure but did not use any covariate information
(yi,j,t = μt + si,t + rj,t + gi,j,t ). The rest of the submodels considered (M3–M5)
used covariate information along with either only network dependence, only tem-
poral dependence, or neither dependence structure:
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(M3) Social Relations Model:

ln Tradei,j,t = x′
i,j,tβt + si,t + rj,t + gi,j,t ,

(si,t , ri,t )
′ ∼ mvn

[
0,

(
γ 2
s γsor

γsor γ 2
r

)]
,

(gi,j,t , gj,i,t )
′ ∼ mvn

[
0,

(
γ 2
g γgg

γgg γ 2
g

)]
.

(M4) AR(1) Model:

ln Tradei,j,t = x′
i,j,tβt + gi,j,t ,

gi,j,t = φggi,j,t−1 + εi,j,t ; εi,j,t ∼ normal(0, γ 2).

(M5) Standard Regression Model:

ln Tradei,j,t = x′
i,j,tβt + εi,j,t ; εi,j,t ∼ normal(0, γ 2).

For each of the five models, we used the median of the posterior of the missing val-
ues as our predictor and compared the overall predictions using the mean squared
error score. Table 5 presents these scores for the LSR model with covariates and
the four submodels. From the ranking, the LSR model with covariates has the best
performance, suggesting that we may not be overfitting the data. Interestingly, the
next best model is the LSR mean model and is just slightly worse than M1, sug-
gesting that the covariates add little to the predictive performance after the network
and temporal dependence structures are taken into account. The fact that the AR(1)
model is next and performs better than the Social Relations model suggests that
there are strong temporal dependencies in the data and these dependencies may
be more critical than capturing the second order network dependencies. As might
be expected, the standard regression model performs substantially worse than the
others. Finally, it is interesting to examine the estimates of the β’s for the standard
regression model against those of the LSR model, which accounts for the temporal
and network dependence inherent in the data. The results are shown graphically
in Figure 4. The figure illustrates two main points: (1) Even though the model

TABLE 5
Mean-squared-errors for LSR and submodels

Model Temporal dep. Network dep. MSE

(M1) LSR Cov yes yes 4.665
(M2) LSR mean yes yes 4.681
(M4) AR(1) yes no 5.554
(M3) Social relations no yes 9.932
(M5) Standard regression no no 14.101
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FIG. 4. Posterior 95% credible intervals for the LSR (blue) and standard regression model (green).

for the expected value, unconditional on the random effects, is the same (x′
i,j,tβt ),

there is a definite difference in the estimated values of the coefficients; (2) The
95% credible intervals for standard regression are generally shorter than those for
the LSR model. However, the length of the intervals of the β’s for the polity of
the exporter, cooperation in conflict and polity interaction are actually shorter for
the LSR model compared to those of the standard regression model. These results
illustrate that accounting for dependency in data typically increases the nominal
precision of the estimated coefficients, but this is not always the case, and depends
on the distribution of the covariates themselves.

6. Militarized interstate disputes. Jones, Bremer and Singer (1996) defined
the term militarized interstate dispute (MID) as an event “in which the threat,
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display or use of military force short of war by one member state is explicitly
directed toward the government, official representatives, official forces, property,
or territory of another state.” In this analysis, we will investigate the patterns of
MIDs in the Middle East and United States from 1991 to 2000.6 For this data
analysis, yi,j,t is the binary indicator of a MID initiated by country i with target
j in year t . We are interested in relating the response to the following covariates:
(1) the ordinal level of alliance between i and j , ranging from 0 (no alliance) to 3
(will defend each other militarily), (2) the real value of the log trade from i to j ,
(3) the real value of the log trade from j to i, (4) the number of inter-governmental
associations of which both nations are members, and (5) the log distance between
the two nations. Note that all of the covariates, except distance, are potentially
changing over time.

As discussed in Section 4.2, for the probit mixed effects model the variance of
gi,j,t is set to one, leading to additional restrictions on the priors for φg , φgg and
ρgg . Specifically, we considered the following set of diffuse priors:

β ∼ mvn(0,100 × I),

(φs, φsr , φrs, φr)
′ ∼ mvn(0,100 × I)I(�sr ∈ S),

(φg,φgg)
′ ∼ mvn(0,100 × I)I(�gg ∈ S)I(�gg is positive definite),

�sr ∼ inverse-Wishart(4, I),

ρgg ∼ normal(0,100)I(−1 ≤ ρgg ≤ 1)I(�gg is positive definite).

The posterior distribution for these parameters was approximated with a Markov
chain Monte Carlo algorithm consisting of 7 million scans. The first two million of
these scans were dropped to allow for convergence to the stationary distribution.
Parameter values were saved every 1,000th scan, resulting in 5,000 samples for
each parameter with which to approximate the posterior distribution.

6.1. Results. Figure 5 presents the 95% credible intervals for the coefficients
of the covariates. We focus attention on the intervals not containing zero (with high
credibility), suggesting an effect on MIDs. Overall, the pattern of the intervals
for the level of alliance between a pair of nations appears mixed. As might be
expected, for four of the years (1993, 1996, 1997, 1999) the medians are below
zero, suggesting a negative impact on MIDs for higher levels of alliance—in 1999,
the empirical probability that the coefficient is below zero is 79%. However, in
1991 and 1994, it appears that the higher the level of alliance between two nations,
the more likely that they would have a MID. A possible reason for this paradox
is that Oman has the only level 3 alliances in the data and in 1991 it had disputes
with both Iraq and Jordan, and in 1994 it had a dispute with Iraq. The effect of the

6A list of countries used in this analysis (including their three-letter ISO code) can be found in
the Appendix. Additionally, the data and some of the R code used to fit the model are available as
supplementary material [Westveld and Hoff (2010)].



862 A. H. WESTVELD AND P. D. HOFF

FIG. 5. 95% posterior credible intervals for the covariate coefficients.

number of inter-governmental organizations to which a pair of nations belong also
appears to be minimal over the period, except for the year 1993. The effects of the
log of exports from the initiator to the target and the log of imports from the target
to the initiator are very interesting. Over the period, there appears to be a slight
trend for the coefficients of both of the covariates (with extremely large variability
in the final year).7 These trends suggest that the more a potential initiator of a
dispute exports to a particular nation, the less likely it is for a dispute to occur.
This is in contrast to importing from a particular country. Finally, distance appears
to be a deterrent to conflict; the farther a pair of nations are from each other, the
smaller the chance of a militarized dispute between the pair.

7We also fit the model without the year 2000 and found the precision of the β’s for 1991–1999 to
be similar to those in Figure 5.
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FIG. 6. Sender–receiver effects for the model with covariates.

Figure 6 presents 200 random samples from the bivariate posterior distribution
of the sender and receiver effects for each country. These effects represent devi-
ations of the country-specific rates of initiating and receiving MIDs from what
would be predicted by a probit regression model alone. From the figure, we see
that there are some nations for which the distributions do not overlap, suggesting
differences between the nations with respect to their sending and receiving effects.
There appears to be a positive correlation between the sending and receiving of
militarized disputes—the median correlation turns out to be 0.563 (Table 6). As
the United States (USA) is near the far right corner for all the plots in the fig-
ure, it is the most active in the network over the period. This suggests that the
United States has far more disputes than would be expected, given just its covari-
ate information. In particular, since distance is generally a significant deterrent to
disputes, the United States has far more disputes than would be expected, based on
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TABLE 6

(0)sr and 
(0)gg parameter estimates for the MIDs model

Parameter Markov chain 2.5% Median 97.5%

σ 2
s 1.632 5.412 21.088

σsor 0.314 2.831 14.373

ρsr 0.100 0.563 0.846

σ 2
r 1.765 5.491 23.056

σ 2
g ≡ 1 1 1 1

ρgg 0.187 0.683 0.955

its distance from the Middle East. Note that in 1991, Iraq (IRQ) and Jordan (JOR)
are also high initiators of disputes. However, Oman (OMN), Lebanon (LBN) and
Cyprus (CYP) neither initiate nor are the target of many disputes over the period.
In contrast, the results can be compared to those in Figure 7, where the analysis
was conducted without the covariates; that is, only a mean was fit at each point in
time (yi,j,t = μt + si,t + rj,t + gi,j,t ). Now the United States is no longer in the
upper right-hand corner of the plots. However, Cyprus is still in the lower left-hand
corner of all the plots. In this case, accounting for influential covariate information
induces greater variability in the sender–receiver random effects.

Tables 6 and 7 describe the variability of the sender and receiver effects and
the temporal variation. The median of ρgg is 0.683, and while the 95% credible
interval is quite spread out, its range is completely above zero, suggesting a certain
amount of positive reciprocity in the network at a given point in time. However,
since the median of the posterior distribution of φgg is 0.189 (and this interval
partially contains zero), we see that positive reciprocity in a given year may not be
readily explained by the level of reciprocity in the previous year. Since the median
of the posterior distributions for φs and φsr are 0.761 and 0.245, respectively, we
see that the initiation of disputes by a particular nation depends to a large degree
on whether they initiated disputes in the previous year and, to a lesser extent, on
whether they were a target in the previous year. Finally, the median of the posterior
distributions for φr and φrs are 0.909 and −0.029, respectively. This suggests that
whether a nation is a target this year depends heavily on whether they were a target
in the previous year, but depends very little on whether they initiated disputes in
the previous year.

7. Discussion. This paper has developed a framework that incorporates tem-
poral dependence within the domain of social relations regression models. We
showed that our particular mixed effects model can account for both second order



LONGITUDINAL RELATIONAL DATA 865

FIG. 7. Sender–receiver effects for the mean model.

network dependence and temporal dependence. By placing the temporal depen-
dence on the random effects representing the network dependence, the network is
allowed to evolve over time. Additionally, a generalized linear modeling frame-
work was developed and a general Bayesian estimation approach was outlined.
Specific examples for Gaussian and binary responses were illustrated and applied
to the study of international trade and militarized interstate disputes, respectively.
The incorporation of temporal dependence allowed for insight into the network of
international trade by noting that after accounting for covariate information, the
level of exports in a given year is highly dependent on the level from the previous
year, but not dependent on the level of imports. Conversely, the level of imports
in a particular year is fairly dependent on imports from the previous year and only
somewhat dependent on exports the previous year. Additionally, only a slight de-
gree of reciprocity can be explained by the level of reciprocity in the previous year.
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TABLE 7
�sr and �gg parameter estimates for the MIDs model

Parameter Markov chain 2.5% Median 97.5%

φs 0.560 0.761 0.902

φsr 0.067 0.245 0.468

φrs −0.207 −0.029 0.155

φr 0.679 0.909 1.081

φg 0.003 0.741 0.947

φgg −0.034 0.189 0.920

The authors plan to extend the research by (1) considering other approaches
for modeling the temporal dependence, both stationary and nonstationary, and (2)
allowing for third-order dependencies, such as those outlined in Hoff, Raftery and
Handcock (2002) and Hoff (2005), to be dependent over time.

APPENDIX A: MCMC ALGORITHM FOR THE GAUSSIAN CASE

Parameter estimation is conducted through the construction of a Markov chain
in the parameters 
. The following MCMC algorithm presents one possible con-
struction:

1. Sample β from its mvn(M,V ) full conditional distribution, where

V =
(

A−1∑
i=1

A∑
j=i+1

x′[i,j ]
−1
gg x[i,j ] + V −1

β

)−1

,

M = V

(
A−1∑
i=1

A∑
j=i+1

x′[i,j ]
−1
gg B[i,j ] + V −1

β Mβ

)
,

B[i,j ] = y[i,j ] − sri − rsj .

2. Sample each sri , i ∈ 1, . . . ,A, from its mvn(M,V ) full conditional distribution,
where

V = (
(A − 1)
−1

gg + 
−1
sr

)−1
,

M = V

(

−1

gg

A∑
j �=i=1

B[i,j ]
)
,

B[i,j ] = y[i,j ] − x[i,j ]β − rsj .
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3. Sample (φ∗
s , φ∗

sr , φ
∗
rs, φ

∗
r )′ from a mvn(M,V ) distribution, where

V =
(

A∑
i=1

T∑
t=1

Z′
i,t−1�

−1
sr Zi,t−1 + V −1

�sr

)−1

,

M = V

(
A∑

i=1

T∑
t=1

Z′
i,t−1�

−1
sr sri,t + V −1

�sr
M�sr

)
,

Zi,t−1 =
(

sr ′
i,t−1 0
0 sr ′

i,t−1

)
.

(a) Calculate 
∗
sr from �∗

sr and �sr and compute the Metropolis–Hastings ra-
tio:

r =
∏A

i=1 dmvn(sri |0;
∗
sr (�

∗
sr ,�sr))∏A

i=1 dmvn(sri |0;
sr(�sr ,�sr))

× dmvn(�∗
sr |M�sr ;V�sr )

dmvn(�sr |M�sr ;V�sr )
× dmvn(�sr |M;V )

dmvn(�∗
sr |M;V )

.

(b) Accept �∗
sr with probability r ∧ 1.

4. Sample (φ∗
g,φ∗

gg)
′ from a mvn(M,V ) distribution, where

V =
(

A−1∑
i=1

A∑
j=i+1

T∑
t=1

Z′[i,j ],t−1�
−1
gg Z[i,j ],t−1 + V −1

�gg

)−1

,

M = V

(
A−1∑
i=1

A∑
j=i+1

T∑
t=1

Z′[i,j ],t−1�
−1
gg g[i,j ],t + V −1

�gg
M�gg

)
,

g[i,j ],t = y[i,j ],t − η[i,j ],t − sri,t − rsj,t ,

Z[i,j ],t−1 =
(

gi,j,t−1 gj,i,t−1
gj,i,t−1 gi,j,t−1

)
.

(a) Calculate 
∗
gg from �∗

gg and �gg and compute the Metropolis–Hastings
ratio:

r =
∏A−1

i=1
∏A

j=i+1 dmvn(g[i,j ]|0;
∗
gg(�

∗
gg,�gg))∏A−1

i=1
∏A

j=i+1 dmvn(g[i,j ]|0;
gg(�gg,�gg))

× dmvn(�∗
gg|M�gg ;V�gg )

dmvn(�gg|M�gg ;V�gg )
× dmvn(�gg|M;V )

dmvn(�∗
gg|M;V )

.

(b) Accept �∗
gg with probability r ∧ 1.



868 A. H. WESTVELD AND P. D. HOFF

5. Sample �∗
sr from an inverse-Wishart(AT + vsr , {SSsr + Ssr}−1) distribution,

where

SSsr =
A∑

i=1

T∑
t=1

(sri,t − �srsri,t−1)(sri,t − �srsri,t−1)
′.

(a) Calculate 
∗
sr from �sr and �∗

sr and compute the Metropolis–Hastings ra-
tio:

r =
∏A

i=1 dmvn(sri |0;
∗
sr (�sr ,�

∗
sr ))∏A

i=1 dmvn(sri |0;
sr(�sr ,�sr))

× inverse-Wishart(�∗
sr |vsr;S−1

sr )

inverse-Wishart(�sr |vsr;S−1
sr )

× inverse-Wishart(�sr |AT + vsr; {SSsr + Ssr}−1)

inverse-Wishart(�∗
sr |AT + vsr; {SSsr + Ssr}−1)

.

(b) Accept �∗
sr with probability r ∧ 1.

6. Sample a proposal for �∗
gg as follows:

[σ 2∗
a |·] ∼ inverse-gamma

(
α†

a = N/2 + αa, δ
†
a =

(
N∑

m=1

a2
m

)/
2 + δa

)
,

[σ 2∗
b |·] ∼ inverse-gamma

(
α

†
b = N/2 + αb, δ

†
b =

(
N∑

m=1

b2
m

)/
2 + δb

)
,

where N = A(A − 1)(T − 1), and set γ 2∗
g = (σ 2∗

a + σ 2∗
b )/4 and λ∗

gg = (σ 2∗
a −

σ 2∗
b )/(σ 2∗

a + σ 2∗
b ).

(a) Calculate 
∗
gg from �gg and �∗

gg and compute the Metropolis–Hastings
ratio:

r =
∏A−1

i=1
∏A

j=i+1 dmvn(g[i,j ]|0;
∗
gg(�gg,�

∗
gg))∏A−1

i=1
∏A

j=i+1 dmvn(g[i,j ]|0;
gg(�gg,�gg))

× inverse-gamma(σ 2∗
a |αa; δa)

inverse-gamma(σ 2
a |αa; δa)

× inverse-gamma(σ 2∗
b |αb; δb)

inverse-gamma(σ 2
b |αb; δb)

× inverse-gamma(σ 2
a |α†

a; δ†
a)

inverse-gamma(σ 2∗
a |α†

a; δ†
a)

× inverse-gamma(σ 2
b |α†

b; δ†
b)

inverse-gamma(σ 2∗
b |α†

b; δ†
b)

.
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(b) Accept �∗
gg with probability r ∧ 1.

7. Sample the missing data yi,j,t from its mvn(Mt ,Vt ) full conditional distribu-
tion, where
(a) t = 1:

μ[i,j ],1 = η[i,j ],1 + sri,1 + rsj,1,

C[i,j ],2 = g[i,j ],2 + �ggμ[i,j ],1,

V1 = (
�′

gg�
−1
gg �gg + 
gg(0)−1)−1

,

M1 = V1
(
�′

gg�
−1
gg C[i,j ],2 + 
gg(0)−1μ[i,j ],1

)
.

(b) 1 < t < T :

μ[i,j ],t = η[i,j ],t + sri,t + rsj,t ,

C[i,j ],t+1 = g[i,j ],t+1 + �ggμ[i,j ],t ,
D[i,j ],t−1 = μ[i,j ],t + �ggg[i,j ],t−1,

Vt = (�′
gg�

−1
gg �gg + �−1

gg )−1,

Mt = Vt

(
�′

gg�
−1
gg C[i,j ],t+1 + �−1

gg D[i,j ],t−1
)
.

(c) t = T :

μ[i,j ],T = η[i,j ],T + sri,T + rsj,T ,

D[i,j ],T −1 = μ[i,j ],T + �ggg[i,j ],T −1,

VT = �gg,

MT = VT

(
�−1

gg D[i,j ],T −1
)
.

APPENDIX B: MCMC ALGORITHM FOR THE PROBIT MODEL

In order to augment the previous algorithm for the probit LSR model, the
Gibbs sampling procedure for each (i, j) and (j, i) pair at the following times
t = 1, . . . , T proceeds by sampling the conditional distribution for each θi,j,t ,
based on a truncated normal distribution; the truncation is to the left of zero if
yi,j,t = 0 and to the right of zero if yi,j,t = 1:

[θ[i,j ],t |·] ∼ mvn(Mt ,Vt ),

[θi,j,t |θj,i,t , ·] ∼
{

normal(M∗
t , V ∗

t )I(θi,j,t < 0)I(yi,j,t = 0),

normal(M∗
t , V ∗

t )I(θi,j,t > 0)I(yi,j,t = 1),

[θj,i,t |θi,j,t , ·] ∼
{

normal(M∗
t , V ∗

t )I(θj,i,t < 0)I(yj,i,t = 0),

normal(M∗
t , V ∗

t )I(θj,i,t > 0)I(yj,i,t = 1).
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The means and variances of [θ[i,j ],t |·] for t = 1,1 < t < T, t = T have the same
expressions as those for yi,j,t in Step 7 of Appendix A. For ρgg we simply suggest
using a Metropolis–Hastings update using an uniform proposal distribution around
the current value. The range of this distribution is the only tuning parameter in the
Markov chain Monte Carlo algorithm.

APPENDIX C: SET OF NATIONS IN THE TRADE APPLICATION

Algeria (DZA), Argentina (ARG), Australia (AUS), Austria (AUT), Barba-
dos (BRB), Belgium (BEL), Bolivia (BOL), Brazil (BRA), Canada (CAN), Chile
(CHL), Colombia (COL), Costa Rica (CRI), Cyprus (CYP), Denmark (DNK),
Ecuador (ECU), Egypt (EGY), El Salvador (SLV), Finland (FIN), France (FRA),
Germany (DEU), Greece (GRC), Guatemala (GTM), Honduras (HND), Iceland
(ISL), India (IND), Indonesia (IDN), Ireland (IRL), Israel (ISR), Italy (ITA), Ja-
maica (JAM), Japan (JPN), Malaysia (MYS), Mauritius (MUS), Mexico (MEX),
Morocco (MAR), Nepal (NPL), Netherlands (NLD), New Zealand (NZL), Nor-
way (NOR), Oman (OMN), Panama (PAN), Paraguay (PRY), Peru (PER), Philip-
pines (PHL), Portugal (PRT), Republic of Korea (KOR), Singapore (SGP), Spain
(ESP), Sweden (SWE), Switzerland (CHE), Thailand (THA), Trinidad and Tobago
(TTO), Tunisia (TUN), Turkey (TUR), United Kingdom (GBR), United States
(USA), Uruguay (URY), Venezuela (VEN).

APPENDIX D: SET OF NATIONS IN THE MIDS APPLICATION

Afghanistan (AFG), Bahrain (BHR), Cyprus (CYP), Egypt (EGY), Iran (IRN),
Iraq (IRQ), Israel (ISR), Jordan (JOR), Kuwait (KWT), Lebanon (LBN), Oman
(OMN), Qatar (QAT), Saudi Arabia (SAU), Syria (SYR), United Arab Emirates
(ARE), United States (USA), and Yemen (YEM).
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SUPPLEMENTARY MATERIAL

Data and R Code for the Examples (DOI: 10.1214/10-AOAS403SUPP; .zip).
A zip file associated with the paper contains the data and some of the R code used
in the examples.

http://dx.doi.org/10.1214/10-AOAS403SUPP
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