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An important question in health services research is the estimation of
the proportion of medical expenditures that exceed a given threshold. Typi-
cally, medical expenditures present highly skewed, heavy tailed distributions,
for which (a) simple variable transformations are insufficient to achieve a
tractable low-dimensional parametric form and (b) nonparametric methods
are not efficient in estimating exceedance probabilities for large thresholds.
Motivated by this context, in this paper we propose a general Bayesian ap-
proach for the estimation of tail probabilities of heavy-tailed distributions,
based on a mixture of gamma distributions in which the mixing occurs over
the shape parameter. This family provides a flexible and novel approach for
modeling heavy-tailed distributions, it is computationally efficient, and it only
requires to specify a prior distribution for a single parameter. By carrying out
simulation studies, we compare our approach with commonly used methods,
such as the log-normal model and nonparametric alternatives. We found that
the mixture-gamma model significantly improves predictive performance in
estimating tail probabilities, compared to these alternatives. We also applied
our method to the Medical Current Beneficiary Survey (MCBS), for which we
estimate the probability of exceeding a given hospitalization cost for smok-
ing attributable diseases. We have implemented the method in the open source
GSM package, available from the Comprehensive R Archive Network.

1. Introduction. In health services research, there is extensive literature on
models for predicting health costs or health services utilization. These prediction
problems are usually complicated by the nature of the distributions being ana-
lyzed: high skewness, heaviness of the right tail and significant fractions of zeros
or token amounts are commonly encountered. At present, there is no agreement
about the best methods to use [see Mullahy and Manning (2001), Kilian et al.
(2002), Buntin and Zaslavsky (2004), Barber and Thompson (2004), Manning and
Mullahy (2005), Powers et al. (2005), Dodd et al. (2004); for a recent survey, see
Willan and Briggs (2006)].

An important and still open research question is how to best predict the pro-
portion of (total or single-event related) medical expenditures that will exceed a
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given threshold [see, e.g., Briggs and Gray (2006), Conwell and Cohen (2005)].
For example, insurance companies and governmental health departments are often
interested in predicting how many customers or citizens will ask for a reimburse-
ment above a certain threshold. Similarly, financial institutions are often interested
in estimating the probability of the potential loss that could take place in the next
day, week or month. In all these situations the parameter of interest is a tail prob-
ability of a highly skewed distribution. Thus, it is important to develop methods
that do not simply smooth the distribution of the data, but that are able to perform
well from a predictive point of view.

The work presented in this article is motivated by an analysis of medical
expenditures from the Medicare Beneficiaries Survey (MCBS). We are inter-
ested in modeling the distribution of medical costs paid by the Medicare pro-
gram for treating smoking attributable diseases, specifically lung cancer (LC)
and coronary heart disease (CHD). We need to estimate the probability that
the hospitalization cost for a smoking attributable disease exceeds a certain
value.

MCBS is a continuous, multipurpose survey of a U.S. nationally representa-
tive sample of Medicare beneficiaries (people aged 65 or older, some people un-
der age 65 with disabilities and people with permanent kidney failure requiring
dialysis or a kidney transplant). The central goal of MCBS is to determine expen-
ditures and sources of payment for all services used by Medicare beneficiaries.
The data set includes medical expenditures for LC or CHD as primary diagnosis
for 26,834 hospitalizations of 9,782 individuals for the period 1999–2002. For our
analyses, we extract medical expenditures on the first hospitalization for 7,615 in-
dividuals over the same period.

A typical assumption in health services research is that medical costs are log-
normally distributed [Zhou, Gao and Hui (1997), Tu and Zhou (1999), Zhou et
al. (2001), Briggs et al. (2005)]. In our case, as well as many others, this assump-
tion is not appropriate, since the distribution of log-transformed expenditures is
still far from being symmetric. For this reason, new methods have been recently
proposed for estimating the cost mean difference between two groups [Johnson
et al. (2003), Dominici et al. (2005), Dominici and Zeger (2005)]. However, few
methods have been evaluated for modeling the entire distribution and for predic-
tion.

The presence of few large observations is characteristic of skewed, heavy-
tailed distributions. It is well known that these observations can influence the re-
sults of statistical analyses. The remedies proposed in the health research litera-
ture are either to transform the data [see Duan (1983), Mullahy (1998), Manning
(1998), Mullahy and Manning (2001)] or to use robust methods [see Conigliani
and Tancredi (2005), Cantoni and Ronchetti (1998)]. However, the combination
of a transformation with a parametric form may still not be sufficiently flexible to
accommodate large values, and also retains the undesirable property of borrowing
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information from the left tail to fit the right tail. On the other hand, robust meth-
ods may discount extreme outliers, even though those may be critical in helping
decision makers evaluate the change of incurring in a very large cost. We sought
a more reasonable trade-off by modeling the medical costs distribution using mix-
ture, a direction that has not been explored in health services research as far as we
know. Mixture models are parametric models which are flexible enough to rep-
resent a large spectrum of different phenomena. The mixture models literature is
extensive [for general overviews, see Titterington, Smith and Makov (1985), Lind-
say (1995), McLachlan and Peel (2000); for a comprehensive list of applications,
see Titterington (1997)]. Particularly relevant for this paper is the well-developed
parametric Bayesian literature on mixture distributions [see Diebolt and Robert
(1994), Robert (1996), Roeder and Wasserman (1997), Marin, Mengersen and
Robert (2005)].

Motivated by these considerations, we propose a new method for density esti-
mation of very skewed distributions and for predicting the proportion of medical
expenditures that exceed a given threshold. We model the distribution of med-
ical expenditures by use of a mixture of gamma density functions with unknown
weights. Using this model, we then estimate the tail probability P(Y > k), for
different values of k. Each gamma distribution in the mixture is indexed by a
component-specific shape parameter and a single unknown scale parameter θ .
This parameterization allows to create a convenient and flexible model charac-
terized by a single parameter for all the gamma components, plus the ordinary
set of mixture weights. Moreover, our parameterization overcomes the so-called
“label-switching” identifiability problem that affects mixture model estimation by
automatically providing an ordering of the mixture components. For a recent sur-
vey on identifiability problems in Bayesian mixture modeling, see Jasra, Holmes
and Stephens (2005). The number of mixture components in our model is fixed.
We provide practical advice on how to choose it as well as the hyperparameters
of the prior on the scale parameter. In a simulation study closely mimicking the
MCBS data we demonstrate that our method has a better predictive performance
compared to standard approaches.

In Section 2 we introduce the gamma shape mixture model, the estimation ap-
proach, and provide guidance on how to choose prior hyperparameters. In Sec-
tion 3 we illustrate the results of the simulation study and the data analysis.
Section 4 contains a discussion and concluding remarks. The Appendix contains
technical details about the Gibbs sampler used.

2. The gamma shape mixture model. In this section we introduce the
gamma shape mixture (GSM) model. We begin by describing the likelihood and
its main properties. In particular, we show that the gamma mixture model does
not suffer from identifiability problems. We then present the prior structure and an
approach for posterior calculations.
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2.1. Likelihood and prior structure. Let Y be a positive random variable, for
example, nonzero medical expenditures. The GSM model is defined as

f (y|π1, . . . , πJ , θ) =
J∑

j=1

πjfj (y|θ),(2.1)

where fj (y|θ) = θj

�(j)
yj−1e−θy , the density function of a gamma Ga(j, θ) ran-

dom variable. We assume that the number of components J is known and fixed,
whereas π = (π1, . . . , πJ ) is an unknown vector of mixture weights. Discussion
on how to choose J will be provided later. In what follows, we denote (2.1) as
GSM(π , θ |J ).

The GSM model has two useful properties:

1. 1
θ

is a scale parameter [Lehmann and Casella (1998)] for the whole model,
since

f (y|π1, . . . , πJ , θ) = θ · f (θ · y|π1, . . . , πJ ,1).

2. Its moments are convex combinations of the moments of the Yj |θ ∼ fj (y|θ)

mixture components, so that the mth moment is given by

E[Ym|π1, . . . , πJ , θ ] =
J∑

j=1

πjE[Ym
j |θ ] =

J∑
j=1

πj

∏m
�=1 (j + � − 1)

θm
.

A further issue related to mixture modeling is label switching, that is, invari-
ance to permutations of the components’ indexes [see Jasra, Holmes and Stephens
(2005)]. A typical solution is to impose an identifiability constraint, usually an
ordering of either the components means or the variances or the mixture weights
[see Aitkin and Rubin (1985)]. A nice feature of the GSM model (2.1) is that it
automatically imposes a constraint on both the means and the variances, since

1

θ
<

2

θ
< · · · < J − 1

θ
<

J

θ
and

1

θ2 <
2

θ2 < · · · < J − 1

θ2 <
J

θ2 .

Therefore, the model is always identified and label switching is not a concern.
We assume that θ and π are independent a priori and we specify the following

conjugate prior distributions:

θ ∼ Ga(α,β),

π = (π1, . . . , πJ ) ∼ DJ

(
1

J
, . . . ,

1

J

)
.

In practice, choosing the π prior hyperparameters equal to 1/J tends to produce
posterior distributions where only a small subset of the J mixture weights will
have high prior probability to be selected at each iteration of the MCMC, as we
will see in the application.
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Given a sample y = (y1, . . . , yn) of i.i.d. observations from (2.1), the likelihood
is given by

L(π , θ |y) =
n∏

i=1

J∑
j=1

πjfj (yi |θ).(2.2)

Unfortunately this expression is untreatable because it includes Jn different terms
[Marin, Mengersen and Robert (2005)]. To overcome this hurdle we use the
so-called missing data representation of the mixture [Dempster, Laird and Ru-
bin (1977), Tanner and Wong (1987), Diebolt and Robert (1990, 1994)]. Given
y = (y1, . . . , yn) from (2.1), we can associate to each yi an integer xi between
1 and J that identifies the component of the mixture generating observation yi .
Thus, the variable xi takes value j with prior probability πj , 1 ≤ j ≤ J . The vec-
tor x = (x1, . . . , xn) of component labels is the missing data part of the sample
since it is not observed. Figure 1 illustrates this for our model, highlighting that y
is conditionally independent from the mixture weights π , given the missing data x.

Suppose the missing data x1, . . . , xn were available. Then the model could be
written as

p(y1, . . . , yn|x1, . . . , xn, θ) = θ
∑n

i=1 xi∏n
i=1 �(xi)

(
n∏

i=1

y
xi−1
i

)
e−θ

∑n
i=1 yi .(2.3)

Thus, using (2.3) and the priors, the posterior distribution is

p(π1, . . . , πJ , θ |y1, . . . , yn, x1, . . . , xn)
(2.4)

∝
(

J∏
j=1

π
(1/J )+nj−1
j

)
θα+(

∑n
i=1 xi)−1e−(β+∑n

i=1 yi)θ ,

where nj = ∑n
i=1 I(xi = j), j = 1, . . . , J , and I(·) is the indicator function. The

main consequence of this conditional decomposition is that, for a given missing
data vector x1, . . . , xn, the conjugacy is preserved and, therefore, the simulation
can be easily performed, conditional on the missing data x1, . . . , xn.

FIG. 1. Directed acyclic graph (DAG) for the missing data representation of the GSM(π , θ |J )

model.



GAMMA SHAPE MIXTURES 761

2.2. Computation of the posterior distribution. We implement two approaches
for estimating the unknown parameters of interest. In the first approach we esti-
mate the posterior distribution of π , x and θ by using a Gibbs sampler (details are
reported in the Appendix). To increase the efficiency, we also propose a second
estimation approach where we integrate out the scale parameter θ analytically.
The advantage of this second strategy is both computational, since the Markov
chain runs in a smaller space, and theoretical, since generally simulated values are
less autocorrelated after partial marginalization [Liu (1994), MacEachern (1994),
MacEachern, Clyde and Liu (1999)].

After having integrated out θ , the full conditional distribution of the mixture
weights is given by

p(π1, . . . , πJ |y1, . . . , yn, x1, . . . , xn) ∝
J∏

j=1

π
(1/J )+nj−1
j ,

that is, the DJ ( 1
J

+ n1, . . . ,
1
J

+ nJ ) Dirichlet distribution. In addition, the full
conditional of the ith missing label is then given by

p
(
xi |y,x(−i),π

) =
J∑

j=1

πj
y

j−1
i

�(j)

(α+∑
(−i) xr )j

(β+∑n
r=1 yr )j∑J

k=1 πk
yk−1
i

�(k)

(α+∑
(−i) xr )k

(β+∑n
r=1 yr )k

I(xi = j),(2.5)

where x(−i) is the x = (x1, . . . , xn) vector with the ith element deleted,
∑

(−i) xr

denotes the sum of all the component labels except for the ith one, and (n)k =
n(n + 1) · · · (n + k − 1) is the Pochhammer symbol [see Abramowitz and Stegun
(1972)]. We assume that α is an integer, for computation speed, and to avoid over-
flow errors. See Section A.1 in the Appendix for further details. The integration
of θ implies that the missing data are no longer independent.

We have implemented this approach in an R package called GSM [Venturini, Do-
minici and Parmigiani (2008)], also available from the Comprehensive R Archive
Network (www.r-project.org).

2.3. Choice of hyperparameters. Our model specification only requires the
user to specify three hyperparameters: the number of components J , and the α

and β from the conjugate prior on θ . Though these can be chosen based on prior
knowledge when available, we also propose, and use in our application, an infor-
mal Empirical Bayes approach which uses summary statistics of the data, like the
maximum and the sum of the observations, to get reasonable values.

The mean of a GSM random variable with distribution (2.1) is

μ = E[Y |π1, . . . , πJ , θ ] =
J∑

j=1

πj

j

θ
,(2.6)

http://www.r-project.org
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so the scale parameter θ can be expressed as

θ = 1

μ

J∑
j=1

πjj,(2.7)

that is, a weighted average of the J shape parameters divided by the mean. Also,
the expected value of the full conditional distribution of θ is

E[θ |y,x] = α + ∑n
i=1 xi

β + ∑n
i=1 yi

= β

β + ∑n
i=1 yi

· α

β
+

∑n
i=1 yi

β + ∑n
i=1 yi

·
∑n

i=1 xi∑n
i=1 yi

(2.8)

= ω · α

β
+ (1 − ω) · x̄

ȳ
.

Equation (2.8) indicates that the posterior mean of θ is a weighted average of α/β ,
the prior mean of θ , and x̄/ȳ. When both α → 0 and β → 0 the prior becomes
improper. Then, for a given value of J , a strategy for choosing α and β is as
follows:

1. Compute θ̃ = J/max(y1, . . . , yn) and check that 1/θ̃ ≤ min(y1, . . . , yn); the
idea is that, on average, θ should take values that allow the set of gamma dis-
tributions in (2.1) to completely span the range of observed values (the last
gamma distribution should have a mean not smaller than the maximum obser-
vation and the first gamma distribution a mean not greater than the minimum
observation). θ̃ is hence a candidate for the prior mean α/β .

2. Choose a value for the weight of the prior information ω in (2.8). Values be-
tween 0.2 and 0.5 are usually reasonable choices. Fix β to (ω · ∑n

i=1 yi)/

(1 − ω).
3. Set α by rounding to the closest integer the quantity θ̃ · β . The rounding is

needed because of the assumption used to get (2.5).

Concerning the choice of J , the goodness of fit of the GSM is the result of the
interplay among the grids of mth order moments(∏m

�=1 �

θm
,

∏m
�=1 (� + 1)

θm
, . . . ,

∏m
�=1 (� + J − 2)

θm
,

∏m
�=1 (� + J − 1)

θm

)
,

and the ordered sequence of observations. These grids should contain sufficient
elements to fit the data, therefore, J should be calibrated to the specific set of data
under examination. Generally speaking, a small value of J can create a severe lim-
itation to the model, as the set of densities available in the class being mixed may
not be sufficiently rich with elements that have a large mean. On the other hand,
a too large value does not cause serious difficulties as the fit is often robust when
there are several gamma distributions in the class that can serve as building blocks
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for a particular mixture component. However, large J can cause numerical prob-
lems. Sometimes a transformation of the data (like a log or a root) can be useful
to handle these numerical issues. In practice, the choice of J may require more
than one iteration. Inspection of the predictive density is a practical diagnostic to
identify misspecification of J .

3. Results. In this section we carry out a simulation study to assess the predic-
tive performance of the gamma mixture model in a controlled situation in which
a large test set is available to serve as the gold standard. Our simulation reflects
closely the estimation of the right tail of the medical expenditures distribution for
smoking attributable diseases (CHD and LC) from the MCBS. We compare our
model with other popular methods in health services research. The results show
that these standard approaches are less effective in real life situations. In addition,
we apply our methods to the MCBS data for estimating the risk for persons af-
fected by smoking attributable diseases to exceed a given medical costs threshold
in a single hospitalization.

3.1. Simulation design. From the complete MCBS data for the period 1999–
2002, we extract expenditure data on hospitalizations in which the first diagnosis
has been CHD, LC, or both, for a total of 7,615 hospitalizations. Tables 1 and 2
report a brief summary of the dataset. From this population, we drew 500 sub-
samples, the training sets, of size equal to 10% of the original sample. For each
draw, the remaining 90% constitute the test set.

On each training set we estimate the tail probability p̂ = P(y∗ > k|y) using the
following four approaches:

EDF The empirical proportion of cases exceeding the threshold, or the empirical
distribution function (EDF), which provides a straightforward model-free
estimate;

LN The area to the right of k in a log-normal distribution (LN) whose parame-
ters are estimated by maximum likelihood [see Aitchison and Shen (1980),
Zellner (1971)]; this method is commonly used in health economics and
provides a benchmark to assess the gains provided by our approach com-
pared to standard practice;

TABLE 1
Summary of the MCBS dataset: high-order quantiles of medical expenditures of first hospitalization

for LC, CHD or both

Quantile order 75 90 95 97.5 99 99.9

Quantile ($) 8,187.5 15,457.2 22,485.6 29,009.4 40,955.9 115,060.6
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TABLE 2
Summary of the MCBS dataset: number of hospitalizations with a cost above a specified threshold

Threshold ($) 10,000 15,000 20,000 30,000 50,000 80,000 100,000

Count 1,468 799 503 179 48 24 9
Proportion 0.1928 0.1049 0.0661 0.0235 0.0063 0.0032 0.0012

MN The area to the right of k in a mixture of normal distributions (MN), es-
timated assuming an unknown number of components using the mclust
package in R [see Fraley and Raftery (2002, 2006)]; this is a flexible and
commonly used mixture model and provides a benchmark to assess the
gains provided by our novel mixture approach compared to existing mix-
ture approaches;

GSM The gamma shape mixture distribution (GSM) estimator proposed here.

For the GSM, the estimator of the tail probability is defined as

P(y∗ > k|y) =
∫

P(y∗ > k|y, θ,π)f (θ,π |y) dθ dπ .(3.1)

This predictive probability can be estimated from Gibbs sampling realizations by
the Rao–Blackwellized estimator:

P̂(y∗ > k|y) = 1

M

M∑
m=1

P
(
y∗ > k|θ(m),π (m))

= 1

M

M∑
m=1

J∑
j=1

π
(m)
j

[
1 − Fj

(
k|θ(m))],

where Fj (·|θ) is the distribution function of a Ga(j, θ) random variable. In this
analysis the hyperparameters for the GSM are J = 200, α = 12,380, β = 3,420,
and have been chosen following the indications provided in Section 2.3. We run
the chain for 5,000 iterations (1,000 of which for burn-in).

On each test set we compute the proportion pTRUE of expenditures exceeding k,
and use it as the gold standard. We repeat the entire analysis for the following val-
ues of the medical cost threshold k: $10,000, $15,000, $20,000, $30,000, $50,000
and $80,000 (higher threshold values are too rare to be worth including in the
analysis, see Table 2).

The data are transformed using the cubic root to control numerical overflow.
The population parameter of interest remains unchanged by this transformation.
Figure 2 reports graphical summaries for both the untransformed and transformed
MCBS data.
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FIG. 2. Histograms and boxplots of positive Medicare expenditures for hospitalizations regard-
ing smoking attributable diseases (lung cancer and coronary heart disease) from the 1999–2002
Medicare Current Beneficiaries Survey (for clarity of exposition, the histogram of the original ex-
penditures has been truncated at the top).

3.2. Simulation results. Figure 3 summarizes the results of our simulation,
for each estimation method and each k. In panel (a) we present the relative mean
squared errors, defined by (mseEDF − msep̂)/mseEDF, where msep̂ indicates the
mean squared error for the tail probability P(y∗ > k|y) estimated using tail prob-
ability estimator p̂—either LN, MN or GSM. The relative mean square errors
are obtained as the ratios of the averaged mean squared errors over the 500 sub-
samples. In panel (b) we present the relative bias (E(p̂) − pTRUE)/pTRUE. Both
ratios are multiplied by 100. Negative values of the relative mean squared error
imply that the EDF estimator is preferred to p̂, while positive values imply that the
tail probability estimator p̂ is preferred to the EDF.

For almost all medical expenditure thresholds, the GSM is more efficient than
the estimator based on the empirical distribution function. As expected, we ob-
serve a trend for the relative efficiency to increase with the threshold, up to a 27%
improvement for the highest threshold.

The tail probability estimator based on the log-normal distribution performs
poorly. Its mean squared error relative to the EDF estimator is below −100% for
all the thresholds, with the worst performance corresponding to hospitalization
costs above $20,000. This result is important practically since many models in
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FIG. 3. Simulation study. (a) For different threshold values, the percent mean squared error relative
to the EDF estimator, that is, [(mseEDF − msep̂)/mseEDF] × 100. (b) For different threshold values,
the percent bias relative pTRUE, that is, [(E(p̂) − pTRUE)/pTRUE] × 100. In both panels, circles
indicate GSM, diamonds MN and squares LN.

health services research and health economics are based on the assumption that
the medical expenditures can be handled using log-normal distributions.

Also, the estimator based on the mixture of normal distributions performs worse
than the EDF, and the performance worsens as the threshold increases. This find-
ing suggests that normal mixtures, while flexible, are not completely adequate for
heavily skewed data when the focus of the investigation is a small tail probability.

Figure 3(b) reports the relative biases, showing that for large k the mixture of
gamma distributions is slightly biased, but less so than the other methods. Once
again, the estimator based on the log-normal distribution is more biased than the
alternatives, and it almost always underestimates the tail probability for the ref-
erence population. The bias increases systematically (in absolute value) with the
thresholds, indicating that the log-normal distribution is not sufficiently heavy-
tailed to mimic the right tail of these data.

Figure 4 allows a further comparison of the GSM with the other models. In each
panel we show scatterplots of the performance of GSM versus that of the other
estimation methods for three thresholds: $10,000, $30,000 and $80,000. A point
in these graphs represents a single sub-sample of the simulation study. Within each
panel, the x-axis is the absolute value of the difference between the estimated tail
probability on the training set using the GSM and the gold standard; the y-axis is
computed in the same fashion, but for the alternative method indicated on top of the
panel. These graphs suggest that the GSM performs better than the other estimation
methods from a predictive point of view, since in every panel the majority of points
are above the diagonal. The higher the threshold, the more pronounced the result.
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FIG. 4. Simulation study: pairwise comparison of predictive performances. Each point represents
a sub-sample of the simulation study. The coordinates of each point are given by the absolute value
of the difference between the estimated tail probability on the training and the gold standard, for
the GSM estimator (on the horizontal axes) and for an alternative estimator (on the vertical axes),
as indicated on top of each plot. Graphs on different rows refer to different medical expenditure
thresholds. The shading shows the density of the points. Also indicated are the percentages of points
above and below the 45 degrees line.

Moreover, even if slightly biased, most of the times1 the GSM performs better than
the estimator based on the empirical distribution function.

3.3. Analysis of MCBS medical costs data. In this section we present a data
analysis of the MCBS dataset. The goals of the analysis are to provide estimates of
the density function and of the risk of exceeding a given medical cost threshold k in
a single hospitalization, with associated probability intervals. As in the simulation
study, we restrict the analysis to hospitalizations in which the first diagnosis has

1In Figure 4 only the graphs for some of the available thresholds are shown to avoid cluttering.
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FIG. 5. MCBS data analysis. Fit of the GSM model to the MCBS medical costs related to smok-
ing attributable diseases (n = 7,615 hospitalizations). (a) Histogram of the cubic root transformed
medical costs together with the posterior mean of the model density (solid line). (b) QQ-plot of the
estimated model cumulative probabilities versus the empirical ones.

been for a smoking attributable disease, CHD or LC. The size of the sample is
n = 7,615.

The hyperparameters for the GSM have been set to J = 200, α = 124,960,
β = 34,520. The data have been transformed using a cubic root transformation.
We used 6,000 sampling iterations (1,000 of which as burn-in).

Figure 5 shows the fit of the GSM model to the MCBS data. Panel (a) presents
the data histogram together with the fitted model density, estimated as the aver-
age over the posterior distribution of the model parameters π and θ of the mixture
density evaluated at a grid of points. Panel (b) reports the QQ-plot of the model
cumulative probabilities, evaluated at the posterior mean of the mixture weights
and scale parameter, versus the empirical cumulative probabilities pi = i/(n + 1),
i = 1, . . . , n. As it is clear from these graphs, the GSM provides a very good rep-
resentation of the data.

Figure 6 contains additional results that provide important insight on how the
model works. Even though J = 200 components were available, the estimation
procedure selects, at every iteration, only a small subset, sufficient to fit the data.
Panel (a) shows that, a posteriori, the number of selected components is between
9 and 20, with mode at 14. Panel (b) shows the posterior means of the mix-
ture weights: only few components have a posterior mean weight that is substan-
tially greater than zero. This suggests that despite the availability of J parameters,
the posterior concentrates on a much smaller subspace. If desired, a simple hard
thresholding of the posterior probabilities could produce a parsimonious represen-
tation of the model based on few mixture components. Panels (c) and (d) report the
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FIG. 6. MCBS data analysis. (a) Distribution of the number of mixture components represented in
the sample at each iteration of the chain; (b) Posterior mean of the mixture weights; (c) Posterior
distribution of the model mean [see (2.6)]. The vertical dashed line is the sample mean and the solid
line is the kernel density estimator; (d) Posterior distribution of the model variance. The vertical
dashed line indicates the data sample variance, while the over-imposed solid line is the kernel density
estimator. The last two panels are useful checks of whether the key quantities α, β and J have been
chosen appropriately.

histograms of the model mean and variance evaluated at each Gibbs sampler iter-
ation. The vertical dashed lines indicate the empirical sample mean and variance.
These plots are useful to qualitatively assess whether hyperparameters α, β and J

are appropriate for the sample at hand.
Figure 7 displays the estimates of the tail probability for different threshold

values. In other words, this graph presents the “risk” of exceeding a given med-
ical costs threshold in a single hospitalization for people affected by smoking at-
tributable diseases. The 95% credible intervals for each threshold estimate are also
shown.



770 S. VENTURINI, F. DOMINICI AND G. PARMIGIANI

FIG. 7. MCBS data analysis. Risk to exceed a given medical costs threshold in a single hospital-
ization. Each point corresponds to the estimate of the predictive posterior probability P̂(y∗ > k|y)

obtained with the GSM model on the MCBS data. Shading represents the 95% credible intervals.

We also performed a set of sensitivity analyses to prior hyperparameters, by
varying ω = β/(β + ∑n

i=1 yi) in the range 0.2–0.5 and found that the results are
not significantly affected.

4. Discussion. In this paper we introduced a Bayesian mixture model for den-
sity and tail probability estimation of very skewed distributions. Our approach is
based on a mixture of gamma distributions over the shape parameter, or GSM. This
family of distributions includes components whose means and variances increase
together, offering a convenient way of representing populations in which a small
fraction of individuals has an outlying behavior that is difficult to predict.

We also develop a computationally efficient algorithm which is a modification
of the standard Gibbs sampler used in the Bayesian literature on mixture distri-
butions [Robert (1996)]. In our approach we integrate out the scale parameter θ ,
thus making computations more efficient [Liu (1994)]). Convergence of our al-
gorithm is, in our experience so far, fast and reliable. No tuning parameters are
required. Our implementation is available as an R package called GSM, which can
be obtained from the Comprehensive R Archive Network (www.r-project.org).

Our approach was motivated by the estimation of the proportion of subjects af-
fected by smoking attributable diseases, specifically CHD and LC, that, in a single
hospitalization, have a medical bill exceeding a given threshold. In particular, we
used data from MCBS, a multipurpose survey of a nationally representative sam-
ple of Medicare beneficiaries in the U.S. However, in different contexts, one may
consider taking into account the actual survey weights to get more representative
estimates of the medical expenditures extreme percentiles. The appropriate utiliza-

http://www.r-project.org
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tion of such adjustment is still debated in the literature [see, e.g., Gelman (2007),
Lohr (1999) and Pfeffermann (1993)].

The large survey considered in our article allowed us to perform a rigorous
cross-validation experiment in which very large test sets provide a reliable gold
standard. In this context we demonstrated that GSM offer a far more accurate pre-
diction than that provided by the log-normal model, commonly utilized in health
economics and health services research. We conclude that for highly skewed data
the log-normal model is unlikely to be appropriate and unchecked use can lead
to seriously biased and inefficient estimates of tail probability, especially for high
thresholds. The simulation shows that GSM is also competitive compared to flex-
ible alternatives such as normal mixture models and model-free estimators. Addi-
tionally, being a complete probabilistic specification of the data generation process,
it can be used for any other inferential purpose.

Fitting a GSM model requires selecting the maximum number of mixture com-
ponents J . A possible generalization is to incorporate the model into a reversible
jump approach, as proposed by Richardson and Green (1997), in which the num-
ber of components is random. This would come at the cost of a substantial increase
in the computing time, length of the required chains, and convergence monitoring
efforts. However, because of the limited loss in specifying a large J , the tool we
described is likely to be very useful as currently proposed. In our model, J does
not have to fit the data: it only has to be large enough to contain all the necessary
components to fit the data. In this sense, choosing J is more similar to choosing
a model space than a model. Also, not having to implement and monitor an RJ-
MCMC makes our approach more suitable for off-the-shelf use of the associated
software.

Our presentation considered a relatively simple context in which all subjects
belong to the same group and are measured once. The logic of our approach lends
itself to generalizations to more complex scenarios. First, it may be useful to model
the scale parameter as a function of covariates of interest. This extension would al-
low to get a general and robust regression model for skewed data. Second, in med-
ical cost data, there may be availability of multiple hospitalizations records for
some subjects in the survey. Including this dependence in the model would allow
for more precise individual-level predictions. Finally, one may need to incorporate
censoring. In cost data, censoring can be present because of caps in reimbursement
[see, e.g., Lipscomb et al. (1998)]. Also, if cost was not defined for a single hos-
pitalization but referred to an extended period, traditional time-to-event censoring
would come into play as well.

APPENDIX: COMPUTATIONAL DETAILS

A.1. Gibbs sampler for mixture estimation with θ integrated out. The
posterior distribution of (π1, . . . , πJ , θ), given the sample (y1, . . . , yn), can be



772 S. VENTURINI, F. DOMINICI AND G. PARMIGIANI

written as

p(π1, . . . , πJ , θ |y1, . . . , yn)

∝
(

J∏
j=1

π
(1/J )−1
j

)
θα−1e−βθ

n∏
i=1

(
J∑

j=1

πj

θj

�(j)
y

j−1
i e−θyi

)
.

The standard algorithm to implement the posterior simulation is reported in the
next subsection. However, to increase efficiency, in our estimation approach we
integrate out the scale parameter θ [Liu (1994), MacEachern (1994), MacEachern,
Clyde and Liu (1999)]. Then (2.3) becomes

p(y1, . . . , yn|x1, . . . , xn)

=
∫ ∞

0

θ
∑n

i=1 xi∏n
i=1 �(xi)

(
n∏

i=1

y
xi−1
i

)
e−θ

∑n
i=1 yi

βα

�(α)
θα−1e−βθ dθ

(A.1)

= βα

�(α)

∏n
i=1 y

xi−1
i∏n

i=1 �(xi)

∫ ∞
0

θ α+(
∑n

i=1 xi)−1e−(β+∑n
i=1 yi) θ dθ

= βα

�(α)

∏n
i=1 y

xi−1
i∏n

i=1 �(xi)

�(α + ∑n
i=1 xi)

(β + ∑n
i=1 yi)

α+(
∑n

i=1 xi)
.

Note that the observed data, conditionally on the nonobserved ones, are no longer
independent. The interpretation of this fact is that θ was a parameter shared by all
the (yi, xi) pairs, i = 1, . . . , n. Removing θ has introduced dependence among the
data.

The full conditional of the mixture weights is hence given by

p(π1, . . . , πJ |y1, . . . , yn, x1, . . . , xn) ∝
J∏

j=1

π
(1/J )+nj−1
j ,

while, to get the full conditional of the missing data, we decompose it into the
individual full conditionals

p(xi |y1, . . . , yn, x1, . . . , xi−1, xi+1, . . . , xn,π1, . . . , πJ ),

i ∈ {1, . . . , n}. Note that

p
(
xi |y,x(−i),π

) =
J∑

j=1

p(xi,x(−i)|y,π)∑J
k=1 p(k,x(−i)|y,π)

I(xi = j)

=
J∑

j=1

p(y|xi,x(−i)) · p(xi,x(−i)|π)∑J
k=1 p(y|k,x(−i)) · p(k,x(−i)|π)

I(xi = j),

for i ∈ {1, . . . , n} and where x(−i) denotes the x = (x1, . . . , xn) vector with the
ith element deleted. The second equality follows from p(x|y,π) · p(y|π) =
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p(y|x,π) · p(x|π) and from the conditional independence of y from π , given the
missing data x. Substituting (A.1), we obtain

p
(
xi |y,x(−i),π

) =
J∑

j=1

πj
y

j−1
i

�(j)

�(α+∑
(−i) xr+j)

(β+∑n
r=1 yr )j∑J

k=1 πk
yk−1
i

�(k)

�(α+∑
(−i) xr+k)

(β+∑n
r=1 yr )k

I(xi = j),(A.2)

where the
∑

(−i) xr denotes the sum of all the component labels apart from the ith
one. If one further assumes that α ∈ N, then (A.2) can be further simplified to

p
(
xi |y,x(−i),π

) =
J∑

j=1

πj
y

j−1
i

�(j)

(α+∑
(−i) xr )j

(β+∑n
r=1 yr ) j∑J

k=1 πk
yk−1
i

�(k)

(α+∑
(−i) xr )k

(β+∑n
r=1 yr )k

I(xi = j),(A.3)

where (n)k = n(n+1) · · · (n+k −1) is the Pochhammer symbol [see Abramowitz
and Stegun (1972)]. We refer to the whole fraction inside the leftmost summation
as κij . In principle, α could be any positive real number, but constraining it to be an
integer allows us to simplify large quantities from the numerator and denominator
of (A.2) and, hence, to easily prevent overflow errors during the calculations.

The steps to implement this simulation algorithm are then summarized below:

• Simulate

π |y,x ∼ DJ

(
1

J
+ n1, . . . ,

1

J
+ nJ

)
,

where nj = ∑n
i=1 I(xi = j), j = 1, . . . , J .

• Simulate, for every i = 1, . . . , n,

p(xi |y1, . . . , yn, x1, . . . , xi−1, xi+1, . . . , xn,π1, . . . , πJ ) =
J∑

j=1

κij I(xi = j),

with κij as defined above, j = 1, . . . , J .
• Update nj , j = 1, . . . , J .

A.2. Standard Gibbs sampler for mixture estimation. The implementation
of the standard Gibbs sampling is straightforward and involves the iterative simu-
lation from (2.4), for the parameters of the model, and from

p(x1, . . . , xn|π1, . . . , πJ , θ, y1, . . . , yn),

for the missing data. The steps for the algorithm are [see, e.g., Robert (1996)]:

• Simulate

θ |y,x,π ∼ Ga

(
α +

n∑
i=1

xi, β +
n∑

i=1

yi

)
,

π |y,x, θ ∼ DJ

(
1

J
+ n1, . . . ,

1

J
+ nJ

)
,
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where nj = ∑n
i=1 I(xi = j), j = 1, . . . , J .

• Simulate, for every i = 1, . . . , n,

p(xi |yi,π1, . . . , πJ , θ) =
J∑

j=1

πij I(xi = j),

where

πij = πjfj (yi |θ)∑J
k=1 πkfk(yi |θ)

, j = 1, . . . , J.

• Update nj , j = 1, . . . , J .
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SUPPLEMENTARY MATERIAL

Gamma shape mixture (doi: 10.1214/08-AOAS156SUPP). This package im-
plements a Bayesian approach for estimation of a mixture of gamma distributions
in which the mixing occurs over the shape parameter. This family provides a flex-
ible and novel approach for modeling heavy-tailed distributions, it is computa-
tionally efficient, and it only requires to specify a prior distribution for a single
parameter.
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