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In high-throughput genomics, large-scale designed experiments are be-
coming common, and analysis approaches based on highly multivariate re-
gression and anova concepts are key tools. Shrinkage models of one form or
another can provide comprehensive approaches to the problems of simultane-
ous inference that involve implicit multiple comparisons over the many, many
parameters representing effects of design factors and covariates. We use such
approaches here in a study of cardiovascular genomics. The primary experi-
mental context concerns a carefully designed, and rich, gene expression study
focused on gene-environment interactions, with the goals of identifying genes
implicated in connection with disease states and known risk factors, and in
generating expression signatures as proxies for such risk factors. A coupled
exploratory analysis investigates cross-species extrapolation of gene expres-
sion signatures—how these mouse-model signatures translate to humans. The
latter involves exploration of sparse latent factor analysis of human observa-
tional data and of how it relates to projected risk signatures derived in the
animal models. The study also highlights a range of applied statistical and
genomic data analysis issues, including model specification, computational
questions and model-based correction of experimental artifacts in DNA mi-
croarray data.

1. Introduction. As part of a program of research in the genomics of
atherosclerosis, we have developed studies that involve evaluation of DNA mi-
croarray gene expression data, and other forms of molecular and physiological
data, in both experimental and observational contexts. This paper represents a case
study of experimental data from animal models coupled with human observational
data. The study highlights questions of gene identification related to disease risk
factors, assessment of expression-based signatures of physiological and disease
states based on animal model designed experiments, and evaluation of such signa-
tures in data arising from human observational studies. The analysis is developed
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in a class of multivariate regression and factor models utilizing sparsity priors; the
application is illustrative of the utility of this approach in high-throughput genomic
studies. The paper describes aspects of the modeling framework, including con-
ceptual, practical and computational questions. These are developed throughout
the applied studies in two model contexts: multivariate regression and anova ap-
plied to the designed experiment on mice models, and multivariate factor analysis
of human data. We also highlight the biological relevance and specific methods of
extrapolation of expression signatures derived in controlled experimental condi-
tions to observational settings.

2. Cardiovascular genomics and atherosclerosis. Atherosclerosis—the de-
velopment of hardened, flow-limiting plaque within arterial vessels—is a chronic
human condition with a complex developmental process that is driven by, and re-
sponsive to, many lifestyle and environmental factors overlaying genetic determi-
nants. The gradual build-up of arterial plaque based on blood-borne fats, choles-
terols, collagens, cell proliferation, calcium and other substances narrows the in-
side of the artery and can restrict blood flow. Arterial plaques may also rupture
to cause clots with severe and often deadly results. The process of atherogene-
sis plays roles in coronary artery and cerebrovascular diseases, and is thus central
to the leading causes of chronic illness and death in the Western world. Inherent
and genetic risk factors for development and aggressiveness of the disease include
gender, age and family history of premature cardiovascular disease. Atherosclero-
sis starts in early ages and progresses throughout our lifetime, to greater or lesser
degrees as a function of these and other genetic factors as well as lifestyle activ-
ities. Among controllable environmental risk factors, diet is key. Dietary fats are
fundamental to the drivers of serum cholesterol distribution and triglyceride levels
that are key contributors to disease risk. Improved understanding of the progres-
sion of atherosclerosis, the roles of known risk factors and their interactions with
genetic factors, are needed to improve risk assessment and therapy. Here we are
concerned with questions of profiling disease states and progression using DNA
microarray data as part of this overall enterprise.

Some of our prior work has investigated expression data derived from the inner
walls of human aorta. Using aortic tissues from heart donors, this led to the iden-
tification of signatures predictive of atherosclerotic disease burden. The extent of
disease development within the inner walls of the aorta can be assessed visually for
signs of lesions linked to advanced plaque development, and also staining meth-
ods that are expected to reflect early atherosclerotic plaque development in terms
of fatty streaks [11, 12]. Gene signatures based on clustering and binary regres-
sion tree model analysis to predict “minimal” versus “advanced” disease using
simple binary summaries of staining and lesion were developed in [51]. A chal-
lenge in this area is that of more precise measures of disease extent; the traditional
SudanIV staining methods [11, 12] and the evaluation of relative extent of lesion
development are current gold standards but nevertheless represent very noisy and
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imprecise clinical phenotypes. More advanced clinical diagnostic methods are un-
able to predict clinical outcomes for a given patient, and these traditional physi-
ological determinations remain the state-of-the-art clinical phenotypes related to
disease burden. The existence of advanced raised lesions within the aorta, com-
pared to no such evidence, was central to [51] and we refer to this clinical binary
outcome in our exploratory analysis here.

The starting point of the current paper is new experimental data that explores
genetic and environmental risk factors in atherosclerosis in animal models. Before
genomic data can be widely used to identify patient risk in human populations, we
must first understand which genes and their variants actually reflect and contribute
to disease. More specifically, we must understand which genetic variants interact
with particular environmental risk factors, and need increased efforts to define con-
trolled studies evaluating responses to environmental exposures. Such studies will
naturally continue to heavily require murine (and other) disease models. Some as-
pects of a new and rich data set generated from such a study on mice have already
illuminated the disease process [31]. Some direct comparisons of gene expression
data from subsets of mice in the experiment to be described further below identi-
fied gene subsets and expression signatures predictive of disease state and linked
the results to potential functional associations with the development of arterial re-
pair mechanisms. The current paper develops a broader and detailed study with
an expanded experimental mice data set, aiming to explore the cross-connections
between environmental risk factors that may modify disease susceptibility by af-
fecting gene expression.

3. Profiling atherosclerotic disease risk: A gene-environment interaction
study. Our experimental study involves a cross-classified, multi-factorial design
to generate gene expression from arterial tissues in the main aortas of mice. The
study investigates three key environmental risk factors—Age, Gender and Dietary
fat intake—coupled with a key genetic factor related to the ApoE (Apolipopro-
tein E) gene pathway. ApoE has many known functions linked to fat metabolism
and dietary molecular transport [44]. The ApoE protein forms a component of
cholesterol complexes that play roles in the transport of triglycerides and in choles-
terol distribution among cells. It is further involved in lipid metabolism and the
binding of lipoproteins to the LDL receptors that feed into cellular uptake of
lipoproteins for cholesterol metabolism [36]. It is well known that ApoE deficiency
is a major genetic risk factor for atherosclerosis, causing high serum cholesterol
and triglyceride levels and leading to premature and advanced disease [34]. The
ApoE knockout (ApoE-/-) mouse model closely mimics human atherosclerosis
both in the spontaneous appearance of lesions and in the distribution of lesions
within blood vessels. In contrast, wild type (WT) mice have intrinsic resistance to
atherosclerosis.

Our experimental design provides data on aortic gene expression linked to ag-
ing, diet, gender, the ApoE deletion and the interactions of these factors. We aim
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TABLE 1
Design layout, (0/1) coding of factor levels, β·,· notation for effects, and actual sample sizes (in

parentheses) for the mouse model expression experiment (see also Table 1 of the
supplementary material)

Wild Type (0) ApoE-/- (1)
Chow diet (0) Western diet (1) Chow diet (0) Western diet (1)

6 week (0)
Female (0): βg,1 (5) +βg,5 (5) +βg,2 (6) +βg,8 (4)
Male (1): +βg,4 (5) +βg,11 (5) +βg,7 (8) +βg,14 (5)

12 week (1)
Female (0): βg,3 (5) +βg,10 (6) +βg,6 (3) +βg,13 (9)
Male (1): +βg,9 (5) +βg,15 (5) +βg,12 (3) +βg,16 (11)

to explore whether there are patterns of gene expression that vary with dietary fat
content, with gender, with aging and with the deletion of the ApoE locus, and to
define gene subsets underlying any such patterns for further study, interpretation
and annotation. Wild type and ApoE-/-(C57BL/6J) mice from the Jackson labora-
tories were used, with mice pups weaned at three weeks of age and fed either the
regular chow diet or the high-fat, Western diet and then grown to either 6 weeks
or 12 weeks of age. Aortic tissue was removed at the 6 or 12 week end point (all
mouse work was approved by the Duke University IACUC under protocol A288-
02-09).

The design and numbers of mice are in Table 1. The design is a saturated cross-
classification of ApoE, Age, Gender and Diet, with several replicates in each cell.
This enables study of the impact on aortic gene expression of the risk-related geno-
type (Wild Type versus ApoE-/-), Age (“young” = 6 week old, versus “old” = 12
week old), gender (female versus male) and dietary fat content (standard, low fat
“chow” diet versus high-fat “Western” diet), and all levels of interactions. Roughly
half the mice are ApoE-/-mutants, roughly half are older, roughly half are males
and roughly half are fed the high fat, Western diet. The balance and replication
lead to a well-structured design for the evaluation of expression variation related
to main effects and potential interactions of genetic and environmental factors.

Disease development was studied by staining the aortic tissue to assess the ex-
tent and nature of lesion development [31]. This confirmed intensification of dis-
ease burden with age, diet and ApoE-/- and that disease is markedly increased in
the older, mutant mice on the high fat diet. We therefore refer to these risk factors
as defining disease related states of increasing severity as a function of level of
interaction. Each aorta generated mRNA extraction for microarray analysis at the
Duke University Microarray Core Facility. This involved standard quality analysis
(Agilent Bioanalyzer), then cDNA synthesis and hybridization to the MG-U74Av2
oligonucleotide microarray (Affymetrix). The resulting samples were processed
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using the RMA [26, 27] delivering measures, on a log2 scale, of expression inten-
sities for each of the 12488 gene probe sets on each mouse array.

4. Multivariate sparse anova model.

4.1. Basic model form. Write xg,i for the expression intensity of gene g =
1 :p on sample (mouse) i = 1 :n. For each gene g, a linear anova model is then
defined by the n × k design matrix H of 0/1 entries corresponding to the design
and parameters in Table 1. With the k = 16 βg,· parameters defining the k-vector
of effects βg = (βg,1, . . . , βg,k)

′, we have

xg,i =
k∑

j=1

βg,jhj,i + εg,i = β ′
ghi + εg,i,

where the k-vector hi = (h1,i , . . . , hk,i)
′ is the ith row of H . Our analysis as-

sumes a normal residual distribution, εg,i ∼ N(0,ψg) independently. This repre-
sents the combination of unexplained biological variation in expression of gene g,
model misspecification and contributions from technical and measurement error
that is idiosyncratic to that gene. A major component of variance is technical. With
Affymetrix data analyzed on the log2 RMA scale, prior experience with many data
sets indicates technical variation in the range of about 0.1–0.5, with values around
0.2–0.3 being quite typical, suggesting values of ψg will typically range across
0.01–0.25 or thereabouts.

On each mouse i we then have the p-vector response xi defined by x′
i =

(x1,i , . . . , xp,i) given by

xi = Bhi + εi,(4.1)

where B is the (p × k)-matrix of regression parameters, or design effects, whose
gth row is β ′

g . The residual p-vector εi = (ε1,i , . . . , εp,i)
′ is distributed as εi ∼

N(0,�), independently over i, where � is the p × p diagonal matrix of elements
ψg (g = 1 :p). In full matrix form with p × n response matrix X = [x1, . . . , xn]
and p × n residual matrix E = [ε1, . . . , εn], we have X = BH ′ + E with E ∼
N(0,�, In), the matrix normal distribution with left variance � and right variance
the n × n identity.

4.2. Multivariate analysis and sparsity. A key biological perspective is that,
though some or all of the experimental groups may be associated with significant
changes in gene expression for a number of genes, many genes will be unaffected.
Further, the complexity represented by higher-order interactions of design factors
is unlikely to be realized for many genes. Hence, we expect each βg vector to have
several or all zero elements (apart from the first); the “tall and skinny” matrix of
regression parameters B will be sparse. The sparsity pattern is unknown and to
be estimated—we aim to identify which entries are nonzero with high probability,
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and to account for the fact that with so many genes we need to guard against false
discovery.

Analysis with some form of shrinkage approach is mandated. Shrinkage us-
ing point-mass mixture priors—the workhorse for such problems for some years
now—extends standard regression variable selection methodologies to these prob-
lems of large-scale comparisons. Such approaches have been well-described and
quite widely applied in two sample expression studies [50] and more complex
settings [7, 15, 28, 29]. We use practical extensions of the standard point-mass,
mixture priors from variable selection in regression [10, 17, 43], following devel-
opments in studies of sparse multivariate factor models in [53] that have also been
extended to a comprehensive class of latent factor regression models [9, 35]. These
prior studies have explored sparsity modeling of expression data in biological path-
way studies in cancer; the work here parallels that in the context of atherosclerosis.

4.3. Models of sparsity of design effects. The sparsity model is a standard vari-
able selection construct that utilizes indicators zg,j = 0/1 such that zg,j = 1 if any
only if βg,j �= 0, coupled with priors βg,j ∼ N(·|0, τj ) describing the distribu-
tion of any nonzero effects within design factor j , that is, within column j of B .
This applies to j = 2 :k with nondegenerate models for the effect-inclusion indi-
cators zg,j , while the intercepts βg,1 are treated simply via βg,1 ∼ N(b, τ1) for
some specified prior mean b. The generalization of the standard sparsity models
described in [9, 35] is as follows: for each factor j = 2 :k, the indicators across
variables g are exchangeable, with Bernoulli probabilities πg,j subject to the hier-
archical model

πg,j ∼ (1 − ρj )δ0(πg,j ) + ρj Be
(
πg,j |ajmj , aj (1 − mj)

)
,(4.2)

where Be(·|am,a(1 − m)) is a beta distribution with mean m and precision pa-
rameter a > 0, and the probabilities ρj are modeled as ρj ∼ Be(ρj |sr, s(1 − r)),
independently, where s > 0 is relatively large and r a small probability. The basis
for this model is that: (a) with the ρj likely to be small, the model places a high
probability on many zero values among the πg,j , which in this application is apt
as it emphasizes the biological reality that many genes should have no probabil-
ity of responding to an intervention; and (b) with mj set at relatively high values,
the nonzero πg,j will tend to be high, so that corresponding βg,j are likely to be
nonzero.

Key inferential questions concern the identification of genes (if any) that exhibit
significant design effects, and then inferences on those likely nonzero effects. We
will address this by evaluating sets of posterior probabilities π∗

g,j = Pr(zg,j =
1|X) = Pr(βg,j �= 0|X) and point estimates such as β̂g,j = E(βg,j |X,zg,j = 1),
along with other posterior quantities.
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4.4. Sparse regression components for assay artifact correction. In common
with all microarray assays, Affymetrix array data can exhibit variation that results
from a combination of numerous experimental and assay sources overlaid on the
biologically derived variation of interest. The potential sources include batch ef-
fects, unpredictable changes and fluctuations in experimental controls (hybridiza-
tion temperatures, salinity, etc.), assay reagents, technician practices, equipment
settings and so forth. Such “assay artifacts” [9, 35] are often benign and impact on
only a few genes per sample and perhaps a few samples. They can, however, also
be quite substantial, impacting across an entire sample data set and contributing
systematic biases to the summary expression measures for multiple genes. The ef-
fects can be particularly marked when samples are collected over a longer period
of time, whether or not they are processed at the same laboratory. Some form of the
gene-sample specific normalization method is needed to address this. We use infor-
mation from housekeeping (or “maintenance”) genes to help with this. Affymetrix
microarrays have a number of gene probes designed to show either no expression
at all or to maintain approximately constant levels of expression across diverse bi-
ological conditions. Such genes can serve as normalization controls, and the above
references have demonstrated the ability of these probesets to provide covariate
information capable of capturing some aspects of assay artifact that shows up in
genes of interest. Use of a few of the dominant principle components among the
housekeeping genes has the ability to capture key aspects of nonbiological assay
artifact variation that may selectively impact on gene subsets across samples, and
we use these principal components as candidate “assay artifact correction factors”
in an expanded model for the vector of expression outcomes. Here we used the first
5 (of n = 90) principal components of the selected set of 41 “AFFX” housekeep-
ing probesets on the mouse array. Though these controls may describe significant
artifactual contributions to variation in some genes on some samples, we recog-
nize that many genes will be quite unaffected on some or all samples; hence, the
use of sparsity priors for regression coefficients on these control factors is apt,
providing an ability to develop a parsimonious approach to gene-sample specific,
model-based artifact correction.

The extension of the basic sparse anova model of equation (4.1) is immediate.
We extend the regression vectors hi to include an additional 5 entries—the values
of the assay artifact covariates. The gene specific regression parameter vectors βg

are similarly extended with 5 additional potential regression parameters per gene,
subject to the same form of sparsity prior as used for the anova design effects.

4.5. Complete model specification. To complete the model specification, we
use priors on the remaining model parameters as follows. For each of the πj ,
the required hyperparameters discussed in the previous section are specified as
(r, s) = (0.001,20) and (mj , aj ) = (0.9,10) for each j = 2 :k. A diffuse prior
is specified for the intercepts βg,1 ∼ N(b, τ1) with (b, τ1) = (8,100) (recall we
have data on the log2 Affymetrix scale for which expression values range from
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near zero to 15–16). For j > 1, the τj parameters are variances defining the lev-
els of change in average expression for any genes that do associate with factor
group j . Thus,

√
τ j is on the log2 expression scale and realistic prior expecta-

tions indicate values outside a range of 0.5–5 are unlikely. We adopt relatively
diffuse conditionally conjugate inverse gamma priors τ−1

j ∼ Ga(τ−1
j |5/2,1/2) to

reflect this. The residual variance terms ψg have rather diffuse inverse gamma pri-
ors ψ−1

g ∼ Ga(ψ−1
g |25/2,0.1/2). With Affymetrix data on the log2 RMA expres-

sion, or similar, scale, experience with multiple studies of designed experiments
suggest standard deviation values in the range 0.1–0.3 or thereabouts, and this
prior is consistent with and informed by such experiences.

4.6. Computations. Model fitting uses standard Markov chain Monte Carlo
(MCMC) methods in a relatively routine (though high-dimensional) Gibbs sam-
pling format with some Metropolis–Hastings components. Details appear in [9,
35] for a more general model framework. Software implementing the analysis
is freely available—the BFRM (Bayesian Factor Regression Model) code imple-
ments sparse statistical models for high-dimensional data analysis based on latent
factor models coupled with sparse regression and anova; the analysis here uses
just the latter components. The MCMC was initialized at values consistent with
the prior and data and the simulation run for 10,000 iterations to achieve nominal
burn-in before saving and summarizing samples for a series of 100,000 iterations.

The MCMC analysis generates posterior samples for all model parameters: B ,
the indicators zg,j , the values of the posterior effect probabilities π∗

g,j , the τj , the

residual, idiosyncratic variances in � and the sparsity base rates ρj . These samples
can be summarized to produce (Monte Carlo approximations to) posterior means
and uncertainty evaluations for all quantities.

5. Analysis of murine atherosclerosis gene-environment study.

5.1. Analysis set-up. The analysis was run on RMA expression indices of
p = 5328 Affymetrix probesets (genes) on the mice arrays. The restriction to these
genes was based on the interest in mapping to human samples [discussed further
below (Section 7)] and this involved an initial reduction to 7381 gene probesets
on the mice array that have homologues on the Affymetrix HU95av2 human array
used to assay RNA from human aorta samples in our prior study [51]. Of these
7381, we then removed probesets showing little or no variation above noise lev-
els (absolute change across samples less than 0.25, and median across samples
lower than 5.0, applied to both mouse and human samples separately) to deliver
the consensus 5328 genes for study. Some investigations of aspects of the resulting
posterior distribution over all model parameters are now detailed.
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FIG. 1. Boxplots of the posterior probabilities of nonzero effects π∗
j,j for all g = 1 :p genes within

each of the j = 2–16 design groups (j = 1 represents the intercept), together with those for the four
included assay artifact control covariate factors j = 17–20.

5.2. Significant gene-design factor associations. Examination of the proba-
bilities π∗

g,j of nonzero effects (Figure 1) indicates interest with respect to the
ApoE-/-interactions ApoE.Age (design group j = 6), ApoE.Diet (group j = 8)
and ApoE.Age.Diet (group j = 13), as expected; these are the key risk factor
groups. The extent of the evidence for significant effects for any individual gene

TABLE 2
Numbers of genes with high posterior association probabilities π∗

g,j for those effects/parameters for
which significant associations are identified in the mice models data analysis

#{g :π∗
g,j > q}

j Parameter q = 0.90 q = 0.95 q = 0.99

2 ApoE-/- 49 35 27
3 12wk 68 57 45
4 Male 6 6 5
5 Western diet 27 19 8
6 ApoE-/-, 12wk 49 40 19
8 ApoE-/-, Western diet 173 100 34
9 12wk, Male 5 2 2

10 12wk, Western diet 8 4 0
11 Male, Western diet 45 29 6
13 ApoE-/-, 12wk, Western diet 328 228 111
18 Artifact control factor 2 689 417 119
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FIG. 2. Numbers of significant genes (π∗
g,j > 0.95) in each of three key gene-environment interac-

tion design groups, with indication of the numbers of genes in the intersections of the identified gene
groups.

(Figure 1 and Table 2) indicate also that, beyond genes in these risk categories,
there are small numbers of genes showing evidence of expression changes as a
function of Age, Sex, Diet and (very modestly) their second order interactions.
These are also expected.

In addition, just one of the assay artifact control factors appears to contribute
significantly to expression patterns of a substantial number of genes, while the oth-
ers are of negligible importance. Of the subsets of genes linked to the environmen-
tal factors and their relevance as risk measures within the mouse disease model,
Figure 2 shows how the numbers break down into genes that are unique to the se-
lected subsets on each interaction, and those that overlap either two or all three of
the interaction subsets, based on a purely nominal threshold of π∗

g,j > 0.95. Genes
in the central three-way overlapping group should be of clear biological interest for
further study in relation to known or hypothesized mechanisms of disease devel-
opment and maturation, while the sets in the two-interaction overlap groups bear
additional study. These sets of genes are fully described in a table in the web-based
supplementary material, and aspects of the biological relevance and interpretation
appears in Sections 5.3 and 6 below.

Exploring ranked lists of genes by each factor group provides insights into the
strength and nature of associations with risk factors, and potentially on the biolog-
ical underpinnings based on genes so identified. Selection of genes might include
studying posterior probabilities, odds ratios or methods of false discovery control
including posterior expected false discovery computations [16, 15], in tandem with
estimated effects parameters βg,j . We explore genes ranked by posterior probabil-
ities and then by absolute values of the approximate posterior means of the βg,j ef-
fects. The latter are reported along with the gene identifiers for the intersecting risk
groups noted above. We do not regard this as anything more than an exploratory
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analysis to prioritize subsets of genes for exploration in the biological literature or
for further study. In particular, we do not regard this exploratory analysis summary
as at all linked to a formal decision process, and view much of the statistical liter-
ature on false discovery as overly stylized and of little relevance to summarizing
a data analysis. Ultimately, the posterior probabilities of the nonzero factor effects
(already appropriately “corrected” for the inherent multiplicities through the use of
the hierarchical shrinkage model) are the key summaries, and biological evaluation
the only proper basis for including/excluding any genes with respect to defined sta-
tistical significance. That said, for summary in examples such as this, presentation
of analysis summaries in terms of patterns of gene expression and gene names re-
quires a choice; we threshold at πg,j > 0.95 here for the sake of argument. Genes

FIG. 3. Expression decompositions of selected genes in the mice data analysis. In each frame, the
plots over time are expression data x, fitted model components from design and regression factors
showing significant (π∗

g,j > 0.95) contributions for the specific gene, and residuals. Expression is
effectively the direct sum of the components and residuals plotted. In each frame the data and compo-
nents are plotted on the same vertical scales for comparison. Labels j = 6,8,13 represent the fitted
design effects for the three groups, c2 the fitted effects of the second assay artifact correction factor,
and e the residuals.
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showing high associations with more relaxed thresholding may of course prove to
be of interest and this form of post-analysis study may be repeated.

5.3. Gene-by-factor evaluation. The expression intensities of four genes are
graphed in Figure 3. The data are labeled x, and the frames show fitted components
of the model for those design factors for which π∗

g,j > 0.95 together with the fitted
residuals. This displays the breakdown of expression into significant contributions
from these sources for these genes, each of which is known to be related to the
atherosclerosis. We use these genes as examples of model-based decomposition
and attribution of the patterns of variation in expression to design factors and their
interactions.

Osteopontin (named minpontin in the mouse genome), a major player in car-
diovascular diseases and in atherosclerosis in particular [18], is involved in me-
diating processes of cellular adhesion and migration, activities that are central to
vascular remodeling in plaque formation and development, among other functions.
Here the expression levels of osteopontin are significantly increased with both age
and diet risk factors separately among disease prone mice, as well as substantially
more so for the j = 13 interaction group of very advanced disease, so it plays
a role as a generic disease marker. VCAM1 (vascular adhesion molecule 1) is a
central marker of the disease, being known to play a pivotal role in the initia-
tion of atherosclerosis and to be highly expressed in arterial endothelial cells in
regions predisposed to atherosclerosis and atherosclerotic plaques [13]. VCAM1
is significantly up among older ApoE-/- mice and more so among those on the
Western diet. Thrombospondin is well known to be associated with a variety of
cellular processes relevant to atherosclerosis, including vascular smooth muscle
cell migration, and increased expression levels are markers of advanced disease
states in atherosclerosis as in other diseases [37]. The analysis here reflects this,
identifying practically large increases in expression only in the advanced disease
group—older, Western diet fed ApoE-/- mice—but not due to diet and age alone.
TNFR (tumour necrosis nuclear factor receptor) plays a role in the induction of
expression of adhesion molecules including VCAM1 and promoting inflammation
within vascular endothelial cells [57], and serves as a marker of advanced disease
states. We see this reflected in increased expression levels among older ApoE-/-
mice on the Western diet, but not across the other design groups. TNFR is also an
example of a gene whose expression patterns show significant association with one
of the experimental artifact covariates, and this shows how the correction model
aids in isolating biologically interpretable components of expression fluctuations
from data corrupted with experimental and artifactual noise.

5.4. Metagene signatures of risk groups. Several additional figures display
summaries of the expression data of these key gene subsets in terms of summary
overall measures defining signatures of the subsets. We do this via the factor meta-
gene of any gene set—simply the first principal component (singular factor) of
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the subset of genes. This follows the original introduction of the term “metagene”
[54, 55] and its use in defining a single numerical “signature” of a set of genes in
biological experimental contexts [4–6, 21, 23], as well as in a number of obser-
vational disease studies [20, 22, 41, 45, 51] using gene expression technologies.
Given a set of indices Q ∈ 1 :p with |Q| = q , write XQ for the q × n matrix of
expression values across the n samples. The SVD is XQ = ADF , where A is the
q × r eigenvector matrix with orthonormal columns, D is the r × r diagonal ma-
trix of singular values, F is the r × n orthogonal matrix of singular factors, and
r = min(q, n). If aQ,1 is the first column of AD−1, then f ′

1 = a′
Q,1XQ is the first

row of F and gives the n values of the first singular factor across the samples.
In cases of reduced rank, some elements of D will be zero and A,D and F are
reduced by deleting the corresponding columns, diagonal elements and rows, re-
spectively. The vector aQ,1 represents a signature of the gene subset Q, and the
factor f1 the corresponding metagene evaluated over samples. In cases when Q

represents a set of coherently related genes with a dominant overall pattern, such
as genes whose expression levels tend to be high in one risk category, aQ,1 is a
characterizing signature of that category.

In practice, we apply this construction not to the raw data XQ but to that “cor-
rected” by the fitted model; for each gene, we subtract the contributions from the

FIG. 4. Expression image of genes in the mice ApoE.Age signature (design group j = 6). The older,
ApoE-/- mice are those numbered 65–90 inclusive.
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overall mean and the regression on the artifact control factors (each term of the
form β̂g,jπ

∗
g,j , where β̂g,j is the posterior mean of βg,j ) to produce centred and

artifact-corrected versions of gene expression values.

FIG. 5. Metagene signatures of selected design groups. In each, the graph displays the first prin-
cipal component of the set of genes showing high probability (π∗

g,j > 0.95) of change in expression

with respect to the design group. The color coding simply identifies mice samples in the correspond-
ing group. For example, in the upper-left frame red indicates ApoE-/- while blue indicates wild type;
in the centre-right frame, red indicates older ApoE-/- mice; in the lower-left frame, red indicates
older mice on the Western diet, and so forth (see also the metagene signature image/heat-map in
Figure 1 of the supplementary material).
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As one example, Figure 4 shows expression intensities of the q = 40 genes
characterizing one of the gene-environment interaction groups, the older ApoE-/-
mice (j = 6). This is an overall, visual “signature” of the group, and the extent
of changes in expression among older knockout mice is apparent. The metagene
factor generated is plotted across samples in (the center-right frame of) Figure 5;
it is clear that this single factor provides a clear and distinctive signature of the
risk group. Additional metagenes for other design groups appear in the figure, and
highlight the characterization of several of the genetic and environmental factors
in terms of single expression signatures of relevant genes.

6. Genes identified in key risk groups. The above discussion highlights
three key design groups related to gene-environment interactions; genes character-
izing these groups are of interest in connection with identifying prognostic sum-
maries of gene expression linked to advancing disease state. The discussion named
some such genes that have known functions in the development and progression
of atherosclerosis, and similar features arise with multiple other known genes, es-
pecially subsets related to the immunological and inflammatory responses char-
acteristic of atherogenesis. We now look at the potential to aid further biological
evaluation by perhaps identifying novel candidates linked to the disease process.

The association of age and diet with the development and progression of
atherosclerosis is well accepted. One of the results here is the proposal of genes
that are associated not just with the presence or absence of atherosclerosis but also
at the interaction with age, diet or both. The interaction between atherosclerosis
and age is quite clear. The prevalence of atherosclerosis in subjects over the age of
70 exceeds 50%; in men alone, the prevalence approaches 70% by age 70. This is
not surprising as mechanisms of aging are also mechanisms involved in atheroscle-
rosis. Two major aging mechanisms are the damage caused by oxidative stress and
by the deposition of advanced glycoslyation end products (AGE proteins), both
of which lead to extensive apoptosis. Among the list of genes in the ApoE.Age
risk group are CD53 and galectin 3, neither of which has, to our knowledge, been
directly implicated in the disease process to date.

CD53 is a glycoprotein of the tetraspanin superfamily associated with the re-
cycling enzyme gamma-glutamyl transpeptidase [3]. As such, CD53 plays a role
in redox buffering of cells to provide protection from oxidative stress [33, 39].
CD53 expression is elevated in situations of increased oxidative stress such as
in rheumatoid arthiritis, radiation damage and also aging, and its expression ap-
pears to counter the acceleration of programmed cell death by oxidative damage.
Galectin 3 is a member of the beta-galactoside-binding gene family. In cancer,
galectin 3 contributes to tumor cell adhesion, proliferation, differentiation, angio-
genesis and metastasis [38]. Its primary biological effect appears to be to decrease
cell death by making cells less sensitive to pro-apoptotic pathways. In arterial tis-
sues, galectin 3 appears to play a protective role against the damage caused by
advanced glycosylation end-products (AGE) [42]. In animal models that carry a
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galectin 3 knock-out, there is a substantial increase in damage from AGE deposi-
tion relative to control animals [24, 25]. The activity of AGE-proteins is a mecha-
nism for diabetes associated damage and also age-related vascular damage [56].

The interaction between atherosclerosis and diet, especially cholesterol, is
well established; the mechanism is through deposition of low density lipoprotein
cholesterols into the vascular tissues with development of inflammation and apop-
tosis. Two genes in the ApoE.Diet risk group are Caspase 9 and insulin like growth
factor receptor 1 (ILGFR1).

Caspase 9 is part of a group of proteins that play a central role in programmed
cell death or apoptosis. Some of the most important mechanisms in the develop-
ment of atherosclerosis revolve around the pathways triggered by elevated serum
cholesterol [32, 40]. One specific mechanism is that high levels of cholesterol in-
duce apoptosis in endothelial and smooth muscle cells in the vasculature. Caspase
9 plays a direct role in modulating apoptosis [48, 52]. ILGFR1 mediates the activ-
ity of the insulin like growth factor, and this has a number of mitogenic effects in
the cardiovascular system, some of which are linked to hypercholesterolemic con-
ditions [1, 19]. High levels of serum cholesterol, particularly low density lipopro-
teins (LDL), activate the different components of the arterial wall. The vascular
smooth muscle cells, in response to high LDL levels, undergo proliferation, dif-
ferentiation, as well as apoptosis as a part of atherosclerosis development [1, 2,
47]. One of the mechanisms by which high LDL levels are believed to activate
vascular smooth muscles is through the modulation of insulin like growth fac-
tor receptor expression. The combination of age and cholesterol lends individuals
to an even higher risk for atherosclerosis. Two genes in the ApoE.Age.Diet risk
group, Interleukin 1 receptor antagonist (IL1RN) and Clusterin, participate in all
aspects of damage for both diet and aging—inflammation, apoptosis and oxidative
stress. IL1RN is a naturally occurring antagonist for the inflammatory cytokine
interleukin 1 (IL1). Animals deficient for IL1RN develop significantly higher lev-
els of serum cholesterol and atherosclerosis relative to animals with normal ILRN
levels [14, 30]. These animals also develop uncontrolled inflammation, particu-
larly within the vascular tree. These animals are also particularly susceptible to
the apoptotic effects of elevated cholesterol. In humans, elderly individuals have
been shown to have significantly higher levels of circulating IL1RN relative to
younger individuals [46]. The overproduction of IL1RN is believed to counter the
proinflammatory and proapoptotic effects of age. Clusterin is a glycoprotein that
is widely distributed throughout the body [8]. It has been shown to reduce oxida-
tive stress in a number of different biological contexts, such as cigarette smoke
exposure and animal models of autoimmune disease, and also to play a role in
modulating inflammation [8, 49].

These are a few examples of a larger set of genes showing significant associa-
tion with the key risk groups and for which there are clear and defensible biolog-
ical mechanisms by which they may be implicated in the atherosclerotic disease
process, though to our knowledge no direct evidence has been earlier identified in
the literature.
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7. From mouse to human: Perspective. From our prior studies of expres-
sion from RNA in the inner walls of human aortic tissue [51], we have expression
profiles on n = 122 individuals. This prior data set also includes the (albeit rather
crude) measures of the extent of disease evident within the aortas in terms of per-
cent area affected with raised lesions and also the SudanIV staining measure, as
discussed in Section 2. This data set provides the opportunity for an exploratory
analysis to evaluate: (a) the extent to which genes identified in key risk groups in
the mice models study show evidence of variation in expression in the human sam-
ples; (b) the nature of patterns of variation and covariation of the disease related
mice genes when explored in the human data; and (c) the extent to which disease
risk signatures developed in the mice study relate—if at all—to disease measures
in the human samples.

The first step is to link gene probesets across the two microarray platforms,
matching genes on the mouse U74av2 array to orthologous sequences on the hu-
man U95av2 array. With the current Affymetrix mice and human arrays, this nat-
urally involves cases in which no multiple human gene probe sets are linked to
a single mouse probe set, other cases in which multiple human probes sets are
matched to a single mouse gene, and cases in which one human gene/probe set
is matched to multiple mouse probe sets. In the first case, when no human probe
set exists on the Affymetrix U95av2 chip, we simply ignore that mouse gene. In
the second case, multiple human probe sets identified as orthologous to the gene
represented are evaluated for sequence similarity and a single human gene/probe
set selected based on sequence match, the others being ignored. In the third case,
we focus only on the unique human genes/probe sets identified. The analysis of the
mice experiments described above was in fact performed following such a map-
ping, this preliminary matching playing a role in defining the number of mice array
sequences as mooted earlier. The human U95av2 array has 12588 primary probe-
sets and an additional 67 “AFFX” control probes; the mouse U74av2 array has
12422 primary probesets and an additional 66 control probes. When mapped, the
consensus groups involve 7381 gene probesets and 41 common AFFX controls.
The former was reduced to 5328 as mentioned, and the data on the latter define
assay artifact control covariates.

8. Mice model risk signatures evaluated in human samples. Following the
mapping of a set of mouse genes Q to the corresponding human genes, we can
evaluate the signature defined by the metagene aQ,1 of the mice gene subset (Sec-
tion 5.4) against the human data. If XQ now represents the human data matrix on
this gene subset (genes as rows, samples as columns), then the extrapolated sig-
nature across human samples is simply a′

Q,1XQ. Following the use of metagene
signatures in the mice model analysis, we apply this construction not to the raw
human data XQ but instead to human data corrected for potential artifacts. The
sparse factor model analysis described in the following section incorporates as-
say artifact correction terms completely parallel to those included in the mouse
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FIG. 6. Selected expression signatures of risk-related gene groups evaluated in mice samples and
projected onto human samples (see also Figure 2 of the supplementary material).

model analysis, providing for estimation of the underlying patterns of covariation
in the human expression data in the context of a model able to correct—to some
degree—for experimentally induced noise and artifactual biases.

Figure 6 displays the projected signatures for four selected groups: the three
key gene-environmental risk groups and the older, Western diet-fed, Wild Type
mice for contrast. The mice data appear first in each frame. Signatures plotted in
the first three frames are those of the risk groups as in Figure 5; in contrast to
these, the Age.Diet mice signature in the fourth frame (lower right) indicates very
limited discrimination between the older, Western diet fed Wild Type mice and
the rest. Mice signatures are followed by the projections onto human samples. The
red human cases are positive for raised lesions, while blue cases have no visible
evidence of lesions.

As discussed earlier, the raised lesion measure is a relatively crude indicator of
disease state and progression. Among other questions of its precision as a disease
phenotype, it is clear that some individuals with advanced disease may show no ev-
idence of lesioning on the surface of the inner walls of the aorta at all, lesions may
be missed in inspection due to selection of tissue regions to examine, lesioning may
be evident very locally within a small area of the aorta, and gene expression is de-
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fined on mRNA extracted from one isolated section of aortic tissue. Nevertheless,
as the only available disease state measure, it is of interest to note that the pro-
jected expression signatures of the three key risk groups (ApoeE.Age, ApoE.Diet,
ApoE.Age.Diet) show evidence of some discrimination; from Figure 6, roughly
half of the “diseased” human cases have high signatures corresponding to these
three diseased states in the mice. Though purely exploratory, this does suggest that
disease-risk related expression markers can be extrapolated with value from ani-
mal to human contexts, and that some degree of variation across samples due to
advancing disease is evident in the projection, in spite of the potential shortcom-
ings of the data and the cross-species extrapolation.

9. Sparse factor analysis of human gene expression data.

9.1. Goals and model framework. Among the questions arising in mapping
experimentally derived signatures to observational data are those of just how un-
realistic the underlying, experimentally induced changes in gene expression are
relative to patterns of normal biological variation. This is a question faced in the
current study as in other such studies of cancer related genes [4, 21], for exam-
ple. Some of the genes perturbed in the experimental context may show little or
limited variation at all in normal biological samples, and the extent of expression
change in key experimental signature genes is likely to be dramatic compared to
normal fluctuations. Further, the complexity of interactions of relevant pathways
can be expected to induce more complex patterns of association that are evident in
the human observational samples. To explore these questions, we use latent factor
models to capture aspects of expression covariation in the human data set, focused
on sets of genes that include those identified in the experimental risk signatures.
This is a direct application of a general latent factor regression model approach that
simply extends the sparse multivariate regression model to incorporate regressors
that are uncertain [9]—latent factors reflecting the complexity of purely observa-
tional associations among genes evidenced in the human data set. We can then
ask how estimated factors relate to the signatures projected from the mouse ex-
periments. This provides some opportunity to examine concordance of projected
signatures with key aspects of “normal” patterns underlying gene expression.

We use the same basic notation, now applied to the human gene expression
data rather than the mice. On each human sample i = 1 : 122, the p-vector of gene
expression responses xi is modeled as

xi = Aλi + Bhi + εi.(9.1)

Now B is the design matrix that includes a column of 1’s followed by the values
of the first five assay artifact factors computed on the human array housekeep-
ing genes, so that βg represents the gene-specific intercept and artifact regression
parameters. This is precisely as in the mouse model analysis, though without the
design components, of course. The additional factor model structure involves the
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k-vector of latent factors λi and the corresponding sparse factor loadings matrix A.
The structure and set-up is precisely as described in [9] and also [35]. At a mathe-
matical level the model is just an extension of the multivariate sparse regression in
which the λi vectors are themselves now uncertain. In [9] we describe the use of
nonparametric model components for the distribution of the latent factors, a model
that permits flexibility in evaluation of potentially complicated patterns of interde-
pendencies among genes in xi while adapting to what may be a quite non-Gaussian
structure. The model involves Dirichlet process priors for the latent factor distrib-
ution, and also has the feature of cutting back to Gaussianity if the data suggests
that is reasonable.

The analysis parallels that of the sparse anova regression model in that it delivers
posterior probabilities π∗

g,j for all genes g in the model and all latent factors j =
1 :k, together with the sparse regression components involving the assay artifact
controls. The analysis was initiated with a set of 63 initial genes from the three
key mice risk sets. Aiming to select a small initial core set of genes relevant to
atherosclerosis risk as defined by the mice data analysis, we selected subsets at
the genes for which π∗

g,j > 0.99 in the mice study for these three risk groups
j = 6,8,13, restricting to at most 25 genes from each of the three sets. This yielded
a total of 63 unique genes to initiate the evolutionary factor model search analysis
[9]. Briefly, this analysis iteratively refits the latent factor regression model, at each
iterate based on a “current” set of genes beginning with these 63. Within each step
the model is revised to expand the number k of latent factors fitted and that each
show association with more than a few genes. This is followed by an approximate
computation of the predictive probability of gene-factor loadings for all genes not
currently included; that is, for all genes g not currently in the model, probabilities
analogous to π∗

g,j for all factors j in the current model. This provides a ranking of
nonincluded genes according to how strongly they appear to associate with each of
the latent factors. The model can then be extended by including some such genes,
assuming subsets show relatively high gene-factor associations. Once the gene set
is extended, the factor model is refitted, including possible increase in the number
of latent factors. Here we ran this analysis to allow genes to be included only if
their maximum predicted probability of inclusion exceeded 0.75, and a factor to
be added to increase the dimension of λi only when at least five genes currently
in the model showed π∗

g,j > 0.75. We also restricted the evolutionary expansion
of the model to terminate with at most 150 genes in total and the terminal model
has k = 10 latent factors on 150 genes. At each stage, the MCMC used burn-in of
2000 iterates followed by a Monte Carlo sample of size 8000.

The key concept underlying the evolutionary analysis is to enrich the initial set
of “risk related genes” with genes that share latent factor-based associations within
the human observational data set; the final model is then an enriched representation
of “normal” variation among putatively risk related genes. Full details of the mod-
eling and computational strategy appear in the above reference, and the MCMC
analysis of this class of latent factor regression is implemented and exemplified in
the BFRM software.
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FIG. 7. Expression decompositions across human aorta samples of the four risk-related genes illus-
trated in Figure 3. In each frame, the plots over time are expression data x, fitted model components
from the subset of latent factors and assay artifact controls showing significant (π∗

g,j > 0.95) contri-
butions (if any) for that gene, and residuals. Expression is effectively the direct sum of the components
and residuals plotted, and within each frame the data and components are plotted on the same verti-
cal scales for comparison. Labels f 1, f 2, . . . represent fitted latent factor effects for factors 1, 2, and
so forth, c3 the fitted effects of the third assay artifact correction factor, and e represents residuals.

9.2. Aspects of risk-related factor structure in human data. Figure 7 displays
data for the four example “risk-related” genes identified in the mice data analysis
(Figure 3). As in the mice analysis figure, these represent decompositions of ex-
pression across samples, with each gene decomposed into significant contributions
from the model factors or regressors. The samples are ordered as earlier so that the
last 33 samples are those showing evidence of more advanced disease in terms of
raised lesions.

It appears that each of these genes does indeed tend to show higher levels of
expression in later samples, though with much variation and no clear or really ob-
vious step or ramp-up of levels among the “diseased” cases. Two of these genes
(Thrombospondin and TNFR) are, among others, significantly associated with la-
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tent factor 3; the posterior mean of factor 3 across samples shows a clearer pattern
of higher values among later samples, though again with volatility. Thus, factor 3
seems to be an inherent pattern in the observational data set that relates, to a degree,
to the increased disease risk measured by lesions, and reflects a key contributing
pattern to the overall expression of these known risk marker genes. Among the 150
genes in the analysis, 37 show significant association (π∗

g,j > 0.95) with factor 3,
including a number from the initial risk set but also additional genes that were
identified as part of the evolutionary analysis. This points to the potential for this
form of analysis to take a step-ahead in identifying additional gene candidates for
further study in connection with disease risk processes, and some of these genes
not previously identified as risk related are worth investigating further. Factor 4
also appears to relate to risk, as evidenced in the plot for VCAM1. Factor 4 ap-
pears significantly loaded on a smaller, biologically very cohesive set of genes
that include representative probesets for VCAM1 and others, and as apparent in
the decomposition of VCAM1 in the figure, shows a (weak) relationship with the
more diseased individuals. Thus, the factor analysis has identified two distinct pat-
terns of common association in the normal variation of expression profiles, each
related to risk and potentially reflecting underlying substructure in disease related
pathway activity. Finally, Figure 8 shows the concordance between the estimated
factor 3 and the projection from the mice data analysis of the metagene signature
corresponding to the j = 6 (ApoE-/-, Age) risk factor group. The remarkable con-
cordance indicates that the overall pattern of natural variation in expression that
factor 3 captures and reflects is inherently consistent with that observed in the con-
trolled and artificial experimental context. This gives further credence to the view
that the gene subsets underlying these factors and signatures are indeed likely to

FIG. 8. Left frame: The posterior mean of latent factor f 3 in the human aorta analysis, plotted
across samples. The red cases are those for which there is evidence of raised lesioning within the
inner wall of the aorta, that is, the more advanced disease cases, with lesion index increasing with
sample index number (see Figure 2 of the supplementary material). Right frame: The same estimated
factor 3 scatter-plotted against the projected risk signature from the j = 6 (ApoE-/-, Age) risk factor
group from the mice data analysis.
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be both predictive of disease states in human contexts and suggestive of directions
to investigate for improved biological understanding.

10. Concluding comments. The analysis of the experimental mice data gen-
erates robust patterns of expression that are influenced by the interactions of the
effects of key, known risk factors; these patterns can be characterized by metagene
signatures of the effects and interactions of the gene-environmental factors. When
mapped to human expression data, with all of the issues of data comparability,
cross-species and technological issues that raises, these patterns relate to the key
current measure of extent of atherosclerotic disease burden in observational hu-
man aorta samples. The groups of genes identified clearly link to much of what is
known about the disease process and its development with age and as response to
diet, while also isolating additional genes that are potentially important modifiers
of atherosclerotic risk in the setting of specific risk factors. This application is an
example of an approach to dissecting gene-environment interactions on a genomic
scale in the context of a critical, complex human disease, and one that is being
used in other areas including cancer studies.

The study also serves to illustrate the utility of sparsity modeling in multivari-
ate, high-dimensional anova, regression and latent factor models. Although the
statistical framework and methodology used for these applications are generic and
applicable in other fields, a major motivation in their development has been biolog-
ical pathway and translational studies using gene expression data, and other forms
of high-throughput molecular data in both designed experimental contexts and ob-
servational studies. As high-throughput arrays and related technologies become
desk-top commodities, we can expect to see a major increase in the scale and com-
plexity of designed experiments on multiple factors generating high-dimensional
responses. Factorial designs will become de rigeur within molecular and genome
biology in the way they were in the early 20th century in agricultural research, and
the need for relevant statistical analysis tools will be evermore central. Sparsity
and shrinkage modeling are fundamental and, though the specific forms of models
used here are just examples, the framework is clearly extensible to other similar
contexts. Coupled with that, sparse latent factor models for observational data sets
provide complementary approaches to deconvolution and attribution of complex,
interacting patterns of association in data that may reflect inherent, underlying bi-
ological processes and pathway substructure. As in cancer applications [35, 9],
these methods can play roles in studies to elucidate gene-environment interactions
in critical and challenging biomedical contexts such as atherosclerosis.
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Supplements, code and data. The BFRM software, an implementation of
MCMC analysis of sparse statistical models for multivariate data with latent factor,
regression and ANOVA components, is available for interested researchers. The
software, instructions and examples are available at http://xpress.isds.duke.edu:
8080/bfrm/. Data, parameter input files and output files from the BFRM analyses
summarized here are also available, together with some additional tables and fig-
ures, as supplementary material at http://ftp.stat.duke.edu/WorkingPapers/07-05.
html and also linked to the paper at the journal web site.
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