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HYPOTHESIS SETTING AND ORDER STATISTIC FOR
ROBUST GENOMIC META-ANALYSIS1

BY CHI SONG AND GEORGE C. TSENG

University of Pittsburgh

Meta-analysis techniques have been widely developed and applied in ge-
nomic applications, especially for combining multiple transcriptomic studies.
In this paper we propose an order statistic of p-values (rth ordered p-value,
rOP) across combined studies as the test statistic. We illustrate different hy-
pothesis settings that detect gene markers differentially expressed (DE) “in all
studies,” “in the majority of studies” or “in one or more studies,” and specify
rOP as a suitable method for detecting DE genes “in the majority of studies.”
We develop methods to estimate the parameter r in rOP for real applications.
Statistical properties such as its asymptotic behavior and a one-sided test-
ing correction for detecting markers of concordant expression changes are
explored. Power calculation and simulation show better performance of rOP
compared to classical Fisher’s method, Stouffer’s method, minimum p-value
method and maximum p-value method under the focused hypothesis setting.
Theoretically, rOP is found connected to the naïve vote counting method and
can be viewed as a generalized form of vote counting with better statistical
properties. The method is applied to three microarray meta-analysis exam-
ples including major depressive disorder, brain cancer and diabetes. The re-
sults demonstrate rOP as a more generalizable, robust and sensitive statistical
framework to detect disease-related markers.

1. Introduction. With the advances in high-throughput experimental tech-
nology in the past decade, the production of genomic data has become afford-
able and thus prevalent in biomedical research. Accumulation of experimental
data in the public domain has grown rapidly, particularly of microarray data for
gene expression analysis and single nucleotide polymorphism (SNP) genotyping
data for genome-wide association studies (GWAS). For example, the Gene Expres-
sion Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) from the National Center
for Biotechnology Information (NCBI) and the Gene Expression Atlas (http://
www.ebi.ac.uk/gxa/) from the European Bioinformatics Institute (EBI) are the two
largest public depository websites for gene expression data and the database of
Genotypes and Phenotypes (dbGaP, http://www.ncbi.nlm.nih.gov/gap/) has the
largest collection of genotype data. Because individual studies usually contain lim-
ited numbers of samples and the reproducibility of genomic studies is relatively
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low, the generalizability of their conclusions is often criticized. Therefore, com-
bining multiple studies to improve statistical power and to provide validated con-
clusions has emerged as a common practice [see recent review papers by Tseng,
Ghosh and Feingold (2012) and Begum et al. (2012)]. Such genomic meta-analysis
is particularly useful in microarray analysis and GWAS. In this paper we focus on
microarray meta-analysis while the proposed methodology can be applied to the
traditional “univariate” meta-analysis or other types of genomic meta-analysis.

Microarray experiments measure transcriptional activities of thousands of genes
simultaneously. One commonly seen application of microarray data is to detect
differentially expressed (DE) genes in samples labeled with two conditions (e.g.,
tumor recurrence versus nonrecurrence), multiple conditions (e.g., multiple tu-
mor subtypes), survival information or time series. In the literature, microarray
meta-analysis usually refers to combining multiple studies of related hypotheses
or conditions to better detect DE genes (also called candidate biomarkers). For this
problem, two major types of statistical procedures have been used: combining ef-
fect sizes or combining p-values. Generally speaking, no single method performs
uniformly better than the others in all data sets for various biological objectives,
both from a theoretical point of view [Littell and Folks (1971, 1973)] and from em-
pirical experiences. In combining effect sizes, the fixed effects model and the ran-
dom effects model are the most popular methods [Cooper, Hedges and Valentine
(2009)]. These methods are usually more straightforward and powerful to directly
synthesize information of the effect size estimates, compared to p-value combina-
tion methods. They are, however, only applicable to samples with two conditions
when the effect sizes can be defined and combined. On the other hand, methods
combining p-values provide better flexibility for various outcome conditions as
long as p-values can be assessed for integration. Fisher’s method is among the ear-
liest p-value methods applied to microarray meta-analysis [Rhodes et al. (2002)].
It sums the log-transformed p-values to aggregate statistical significance across
studies. Under the null hypothesis, assuming that the studies are independent and
the hypothesis testing procedure correctly fits the observed data, Fisher’s statistic
follows a chi-squared distribution with degrees of freedom 2K , where K is the
number of studies combined. Other methods such as Stouffer’s method [Stouffer
et al. (1949)], the minP method [Tippett (1931)] and the maxP method [Wilkinson
(1951)] have also been widely used in microarray meta-analysis. It can be shown
that these test statistics have simple analytical forms of null distributions and, thus,
they are easy to apply to the genomic settings. The assumptions and hypothesis set-
tings behind these methods are, however, very different and have not been carefully
considered in most microarray meta-analysis applications so far. In Fisher, Stouf-
fer and minP, the methods detect markers that are differentially expressed in “one
or more” studies (see the definition of HSB in Section 2.1). In other words, an ex-
tremely small p-value in one study is usually enough to impact the meta-analysis
and cause statistical significance. On the contrary, methods like maxP tend to de-
tect markers that are differentially expressed in “all” studies (called HSA in Sec-
tion 2.1) since maxP requires that all combined p-values are small for a marker
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to be detected. In this paper, we begin in Section 2.1 to elucidate the hypothesis
settings and biological implications behind these methods. In many meta-analysis
applications, detecting markers differentially expressed in all studies is more ap-
pealing. The requirement of DE in “all” studies, however, is too stringent when
K is large and in light of the fact that experimental data are peppered with noisy
measurements from probe design, sample collection, data generation and analysis.
Thus, we describe in Section 2.1 a robust hypothesis setting (called HSr ) that de-
tects biomarkers differentially expressed “in the majority of” studies (e.g., >70%
of the studies) and we propose a robust order statistic, the r th ordered p-value
(rOP), for this hypothesis setting.

The remainder of this paper is structured as follows to develop the rOP method.
In Section 2.2 the rationale and algorithm of rOP are outlined, and the methods for
parameter estimation are described in Section 2.3. Section 2.4 extends rOP with
a one-sided test correction to avoid detection of DE genes with discordant fold
change directions across studies. Section 3 demonstrates applications of rOP to
three examples in brain cancer, major depressive disorder (MDD) and diabetes,
and compares the result with other classical meta-analysis methods. We further
explore power calculation and asymptotic properties of rOP in Section 4.1, and
evaluate rOP in genomic settings by simulation in Section 4.2. We also establish an
unexpected but insightful connection of rOP with the classical naïve vote counting
method in Section 4.3. Section 5 contains final conclusions and discussions.

2. rth ordered p-value (rOP).

2.1. Hypothesis settings and motivation. We consider the situation when K

transcriptomic studies are combined for a meta-analysis where each study con-
tains G genes for information integration. Denote by θgk the underlying true effect
size for gene g and study k (1 ≤ g ≤ G, 1 ≤ k ≤ K). For a given gene g, we fol-
low the convention of Birnbaum (1954) and Li and Tseng (2011) to consider two
complementary hypothesis settings, depending on the pursuit of different types of
targeted markers:

HSA :
{
H0 :

⋂
k

{θgk = 0} versus H(A)
a :

⋂
k

{θgk �= 0}
}
,

HSB :
{
H0 :

⋂
k

{θgk = 0} versus H(B)
a :

⋃
k

{θgk �= 0}
}
.

In HSA, the targeted biomarkers are those differentially expressed in all studies
(i.e., the alternative hypothesis is the intersection event that effect sizes of all K

studies are nonzero), while HSB pursues biomarkers differentially expressed in
one or more studies (the alternative hypothesis is the union event instead of the
intersection in HSA). Biologically speaking, HSA is more stringent and more de-
sirable to identify consistent biomarkers across all studies if the studies are homo-
geneous. HSB , however, is useful when heterogeneity is expected. For example, if
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studies analyzing different tissues are combined (e.g., study 1 uses epithelial tis-
sues and study 2 uses blood samples), it is reasonable to identify tissue-specific
biomarkers detected by HSB . We note that HSB is identical to the classical union-
intersection test (UIT) [Roy (1953)] but HSA is different from the intersection-
union test (IUT) [Berger (1982), Berger and Hsu (1996)]. In IUT, the statistical
hypothesis is in a complementary form between the null and alternative hypotheses
{H0 :

⋃
k{θgk = 0} versus H

(A)
a :

⋂
k{θgk �= 0}}. Solutions for IUT require a more

sophisticated mixture or Bayesian modeling to accommodate the composite null
hypothesis and are not the focus of this paper [for more details, see Erickson, Kim
and Allison (2009)].

As discussed in Tseng, Ghosh and Feingold (2012), most existing genomic
meta-analysis methods target on HSB . Popular methods include classical Fisher’s
method [sum of minus log-transformed p-values; Fisher (1925)], Stouffer’s
method [sum of inverse-normal-transformed p-values; Stouffer et al. (1949)],
minP [minimum of combined p-values; Tippett (1931)] and a recently proposed
adaptively weighted (AW) Fisher’s method [Li and Tseng (2011)]. The random
effects model targets on a slight variation of HSA, where the effect sizes in the
alternative hypothesis are random effects drawn from a Gaussian distribution
centered away from zero (but are not guaranteed to be all nonzero). The maxi-
mum p-value method (maxP) is probably the only method available to specifi-
cally target on HSA so far. By taking the maximum of p-values from combined
studies as the test statistic, the method requires that all p-values be small for
a gene to be detected. Assuming independence across studies and that the in-
ferences to generate p-values in single studies are correctly specified, p-values
(pk as the p-value of study k) are i.i.d. uniformly distributed in [0,1]. Fisher’s
statistic (SFisher = −2

∑
logpk) follows a chi-squared distribution with degree

of freedom 2K [i.e., SFisher ∼ χ2(2K)] under null hypothesis H0; Stouffer’s
statistic [SStouffer = ∑

�−1(1 − pk), where �−1(·) is the quantile function of
a standard normal distribution] follows a normal distribution with variance K

[i.e., SStouffer ∼ N(0,K)]; minP statistic (SminP = min{pk}) follows a Beta dis-
tribution with parameters 1 and K [i.e., SminP ∼ Beta(1,K)]; and maxP statistic
(SmaxP = max{pk}) follows a Beta distribution with parameters K and 1 [i.e.,
SmaxP ∼ Beta(K,1)].

The HSA hypothesis setting and maxP method are obviously too stringent in
light of the generally noisy nature of microarray experiments. When K is large,
HSA is not robust and inevitably detects very few genes. Instead of requiring dif-
ferential expression in all studies, biologists are more interested in, for example,
“biomarkers that are differentially expressed in more than 70% of the combined
studies.” Denote by �h = {∑K

k=1 I (θgk �= 0) = h} the situation that exactly h out
of K studies are differentially expressed. The new robust hypothesis setting be-
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comes

HSr :

{
H0 :

⋂
k

{θgk = 0} versus H(r)
a :

K⋃
h=r

�h

}
,

where r = �p · K�, �x� is the smallest integer no less than x and p (0 < p ≤ 1)
is the minimal percentage of studies required to call differential expression (e.g.,
p = 70%). We note that HSA and HSB are both special cases of the extended
HSr class (i.e., HSA = HSK and HSB = HS1), but we will focus on large r (i.e.,
p > 50%) in this paper and view HSr as a relaxed and robust form of HSA.

In the literature, maxP has been used for HSA and minP has been used for HSB .
An intuitive extension of these two methods for HSr is to use the r th ordered
p-value (rOP). Before introducing the algorithm and properties of rOP, we illus-
trate the motivation of it by the following example. Suppose we consider four
genes in five studies: gene A has marginally significant p-values (p = 0.1) in all
five studies; gene B has a strong p-value in study 1 (p = 1e–20) but p = 0.9 in
the other four studies; gene C is similar to gene A but has much weaker statis-
tical significance (p = 0.25 in all five studies); gene D differs from gene C in
that studies 1–4 have small p-values (p = 0.15) but study 5 has a large p-value
(p = 0.9). Table 1 shows the resulting p-values from five meta-analysis methods
that are derived from classical parametric inference in Section 1. Comparing Fisher
and minP in HSB , minP is sensitive to a study that has a very small p-value (see
gene B) while Fisher, as an evidence aggregation method, is more sensitive when
all or most studies are marginally statistically significant (e.g., gene A). Stouffer
behaves similarly to Fisher except that it is less sensitive to the extremely small
p-value in gene B. When we turn our attention to HSA, gene C and gene D can-
not be detected by all three of the Fisher, Stouffer and minP methods. Gene C can

TABLE 1
Four hypothetical genes to compare different meta-analysis methods

and to illustrate the motivation of rOP

Gene A Gene B Gene C Gene D

Study 1 0.1 1e–20∗ 0.25 0.15
Study 2 0.1 0.9 0.25 0.15
Study 3 0.1 0.9 0.25 0.15
Study 4 0.1 0.9 0.25 0.15
Study 5 0.1 0.9 0.25 0.9
Fisher (HSB ) 0.01∗ 1e–15∗ 0.18 0.12
Stouffer (HSB ) 0.002∗ 0.03∗ 0.07 0.10
minP (HSB ) 0.41 5e–20∗ 0.76 0.56
maxP (HSA) 1e–5∗ 0.59 0.001∗ 0.59
rOP (r = 4) (HSr ) 5e–4∗ 0.92 0.015∗ 0.002∗

∗p-values smaller than 0.05.
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be detected by both maxP and rOP as expected (p = 0.001 and 0.015, resp.). For
gene D, it cannot be identified by the maxP method (p = 0.59) but can be detected
by rOP at r = 4 (p = 0.002). Gene D gives a good motivating example that maxP
may be too stringent when many studies are combined and rOP provides additional
robustness when one or a small portion of studies are not statistically significant.
In genomic meta-analysis, genes similar to gene D are common due to the noisy
nature of high-throughput genomic experiments or when a low-quality study is
accidentally included in the meta-analysis. Although the types of desired markers
(under HSA, HSB or HSr ) depend on the biological goal of a specific application,
genes A, C and D are normally desirable marker candidates that researchers wish
to detect in most situations while gene B is not (unless study-specific markers are
expected as mentioned in Section 1). This toy example motivates the development
of a robust order statistic of rOP below.

2.2. The rOP method. Below is the algorithm for rOP when the parameter
r is fixed. For a given gene g, without loss of generality, we ignore the sub-
script g and denote by Sr = p(r), where p(r) is the r th order statistic of p-values
{p1,p2, . . . , pK}. Under the null hypothesis H0, Sr follows a beta distribution with
shape parameters r and K − r + 1, assuming that the model to generate p-values
under the null hypothesis is correctly specified and all studies are independent.
To implement rOP, one may apply this parametric null distribution to calculate
the p-values for all genes and perform a Benjamini–Hochberg (BH) correction
[Benjamini and Hochberg (1995)] to control the false discovery rate (FDR) under
the general dependence structure. The Benjamini–Hochberg procedure can control
the FDR at the nominal level or less when the multiple comparisons are indepen-
dent or positively dependent. Although the Benjamini–Yekutieli (BY) procedure
can be applied to a more general dependence structure of the comparisons, it is of-
ten too conservative and unnecessary [Benjamini and Yekutieli (2001)], especially
in gene expression analysis where the comparisons are more likely to be positively
dependent and the effect sizes are usually small to moderate (also see Section 4.2
for simulation results). As a result, we will not consider the BY procedure in this
paper. The parametric BH approach has the advantage of fast computation, but in
many situations the parametric beta null distribution may be violated because the
assumptions to obtain p-values from each single study are not met and the null
distributions of p-values are not uniformly distributed. When such violations of
assumptions are suspected, we alternatively recommend a conventional permuta-
tion analysis (PA) instead. Class labels of the samples in each study are randomly
permuted and the entire DE and meta-analysis procedures are followed. The per-
mutation is repeated for B times (B = 500 in this paper) to simulate the null dis-
tribution and assess the p-values and q-values. The permutation analysis is used
for all meta-analysis methods (including rOP, Fisher, Stouffer, minP and maxP) in
this paper unless otherwise stated.
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We note that both minP and maxP are special cases of rOP, but in this paper we
mainly consider properties of rOP as a robust form of maxP (specifically, K/2 ≤
r ≤ K).

2.3. Selection of r in an application. The best selection of r should depend
on the biological interests. Ideally, r is a tuning parameter that is selected by the
biologists based on the biological questions asked and the experimental designs
of the studies. However, in many cases, biologists may not have a strong prior
knowledge for the selection of r and data-driven methods for estimating r may
provide additional guidance in applications. The purpose of selecting r < K is to
tolerate potentially outlying studies and noises in the data. The noises may come
from experimental limitations (e.g., failure in probe design, erroneous gene an-
notation or bias from experimental protocol) or heterogeneous patient cohorts in
different studies. Another extreme case may come from inappropriate inclusion
of a low-quality study into the genomic meta-analysis. Below we introduce two
complementary guidelines to help select r for rOP. The first method comes from
the adjusted number of detected DE genes and the second is based on pathway
association (a.k.a. gene set analysis), incorporating external biological knowledge.

2.3.1. Evaluation based on the number of detected DE genes. In the first
method, we use a heuristic criterion to find the best r such that the number of
detected DE genes is the largest. The dashed line in Figure 1(a) shows the number
of detected DE genes using different r in rOP in a brain cancer application. The re-
sult shows a general decreasing trend in the number of detected DE genes when r

increases. However, when we randomly permute the p-values across genes within
each study, the detected number of DE genes also shows a bias toward small r’s
(dotted line). It shows that a large number of DE genes can be detected by a small r

(e.g., r = 1 or 2) simply by chance. To eliminate this artifact, we apply a detrend-
ing method by subtracting the dotted permuted baseline from the dashed line. The
resulting adjusted number of DE genes (solid line) is then used to seek the maxi-
mum that correspond to the suggested r . This detrend adjustment is similar to what
was used in the GAP statistic [Tibshirani, Walther and Hastie (2001)] when esti-
mating the number of clusters in cluster analysis. In such a scenario, the curve of
number of clusters (on x-axis) versus sum of squared within-cluster dispersions is
used to estimate the number of clusters. The curve always has a decreasing trend
even in random data sets and the goal is usually to find an “elbow-like” turning
point. The GAP statistic permutes the data to generate a baseline curve and sub-
tract it from the observed curve. The problem becomes finding the maximum point
in the detrended curve, a setting very similar to ours.

Below we describe the algorithm for the first criterion. Using the original K

studies, the number of DE genes detected by rOP using different r (1 ≤ r ≤ K)
is first calculated as Nr [under the certain false discovery rate threshold, e.g.,
FDR = 5%; see dashed line in Figure 1(a)]. We then randomly permute p-values
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FIG. 1. Results of brain cancer data set applying rOP. (a) Adjusted and unadjusted number of
detected DE genes using different r . (b) Boxplots of − log(p) for the biological association evalua-
tion. p-values for Wilcoxon signed-rank tests are shown on the top. Black filled rectangles represent
a p-value smaller than 0.05. (c) Heatmap to show effective studies of rOP in each gene. Effective
studies are shown in black and noneffective ones are in light gray.

in each study independently and recalculate the number of DE genes as N
(b)
r in

the bth permutation. The permutation is repeated for B times (B = 100 in this
paper) and the adjusted number of detected DE genes is defined as N ′

r = Nr −∑B
b=1 N

(b)
r /B [see solid line in Figure 1(a)]. In other words, the adjusted number

of DE genes is detrended so that it is purely contributed by the consistent DE in-
formation among studies. The parameter r is selected so that N ′

r is maximized (or
we manually select r as large as possible when N ′

r reaches among the largest).

REMARK 1. Note that N ′
r could sometimes be negative. This happens mostly

when the signal in a single study is strong and r is small. However, since we
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usually apply rOP for relatively large K and r , the negative value is usually not
an issue. We also note that, unlike the GAP statistic, the criterion to choose r

with the maximal adjusted number of detected DE genes is heuristic and has no
theoretical guarantee. In simulations and real applications to be shown later, this
method performs well and provides results consistent with the second criterion
described below.

2.3.2. Evaluation based on biological association. Pathway analysis (a.k.a.
gene set analysis) is a statistical tool to infer the correlation of differential ex-
pression evidence in the data with pathway knowledge (usually sets of genes with
known common biological function or interactions) from established databases.
In this approach, we hypothesize that the best selection of r will produce a DE
analysis result that generates the strongest statistical association with “important”
(i.e., disease-related) pathways. Such pathways can be provided by biologists or
obtained from pathway databases. However, it is well recognized that our under-
standing of biological and disease-related pathways are relatively poor and subject
to change every few years. This is especially true for many complex diseases,
such as cancers, psychiatric disorders and diabetes. In this case, it is more practi-
cal to use computational methods to generate “pseudo” disease-related pathways
that are further reviewed by biologists before being utilized to estimate r . Below,
we develop a computational procedure for selecting disease-related pathways. We
perform pathway analysis using a large pathway database (e.g., GO, KEGG or
BioCarta) and select pathways that are top ranked by aggregated committee deci-
sion of different r from rOP. The detailed algorithm is as follows:

STEP I. Identification of disease-related pathways (committee decision by
[K/2] + 1 ≤ r ≤ K):

1. Apply rOP method to combine studies and generate p-values for each gene.
Run through different r , [K/2] + 1 ≤ r ≤ K .

2. For a given pathway m, apply Kolmogorov–Smirnov test to compare the
p-values of genes in the pathway and those outside the pathway. The path-
way enrichment p-values are generated as pr,m. Its rank among all pathways
for a given r is calculated as Rr,m = rankm(pr,m). Small ranks suggest strong
pathway enrichment for pathway m.

3. The sums of ranks of different r are calculated as Sm = ∑K
r=[K/2]+1 Rr,m. The

top U = 100 pathways with the smallest Sm scores are selected and denoted
as M . We treat M as the “pseudo” disease-related pathway set.

STEP II. Sequential testing of improved pathway enrichment significance:

1. We perform sequential hypothesis testing that starts from r ′ = K since concep-
tually we would like to pick r as large as possible. We first perform a Wilcoxon
signed-rank test to test for difference of pathway enrichment significance for
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r ′ = K and r ′ = K − 1. In other words, we perform a two-sample test on the
paired vectors of (pK,m;m ∈ M) and (pK−1,m;m ∈ M) and record the p-value
as p̃K,K−1.

2. If the test is rejected (using the conventional type I error of 0.05), it indicates
that reducing from r = K to r = K − 1 can generate a DE gene list that pro-
duce more significant pathway enrichment in M . We will continue to reduce
r ′ by one (i.e., r ′ = K − 1) and repeat the test between (pr ′,m;m ∈ M) and
(pr ′−1,m;m ∈ M). Similarly, the resulting p-values are recorded as p̃r ′,r ′−1.
The procedure is repeated until the test from r ′ is not rejected. The final r ′ is
selected for rOP.

REMARK 2. Note that for simplicity and since this evaluation should be exam-
ined together with the first criterion in Section 2.3.1, we will not perform p-value
correction for multiple comparison or sequentially dependent hypothesis testings
here. Practically, we suggest to select r based on the diagnostic plots of the two
criteria simultaneously. Examples of the selection will be shown in Section 3.

REMARK 3. We have tested different U in real applications. As can be ex-
pected, the selection of U did not affect the result much. In supplement Figure 7
[Song and Tseng (2014d)], we show that the ranks for rOP with different selection
of r as well as other methods become stable enough when U = 100 for all our
applications.

2.4. One-sided test modification to avoid discordant effect sizes. Methods
combining effect sizes (e.g., random or fixed effects models) are suitable to com-
bine studies with binary outcome, in which case the effect sizes are well defined
as the standardized mean differences or odds ratios. Methods combining p-values,
however, have advantages in combining studies with nonbinary outcomes (e.g.,
multi-class, continuous or censored data), in which case the F-test, simple linear
regression or the Cox proportional hazard model can be used to generate p-values
for integration. On the other hand, p-value combination methods usually com-
bine two-sided p-values in binary outcome data. A gene may be found statistically
significant with up-regulation in one study and down-regulation in another study.
Such a confusing discordance, although sometimes a reflection of the biological
truth, is often undesirable in most applications. Therefore, we make a one-sided
test modification to the rOP method similar to the modification that Owen (2009)
and Pearson (1934) applied on Fisher’s method. The modified rOP statistic is de-
fined as the minimum of the two rOP statistics combining the one-sided tests of
both tails. Details of this test statistic can be found in the supplementary material
[Song and Tseng (2014a)].

3. Applications. We applied rOP as well as other meta-analysis methods to
three microarray meta-analysis applications with different strengths of DE signal
and different degrees of heterogeneity. Supplement Table 1A–C [Song and Tseng
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(2014c)] list the detailed information on seven brain cancer studies, nine major de-
pressive disorder (MDD) studies and 16 diabetes studies for meta-analysis. Data
were preprocessed and normalized by standard procedures in each array platform.
Affymetrix data sets were processed by the RMA method and Illumina data sets
were processed by manufacturer’s software with quantile normalization for probe
analysis. Probes were matched to the same gene symbols. When multiple probes
(or probe sets) matched to one gene symbol, the probe that contained the largest
variability (i.e., inter-quartile range) was used to represent the gene. After gene
matching and filtering, 5836, 7577 and 6645 genes remained in the brain can-
cer, MDD and diabetes data sets, respectively. The brain cancer studies were col-
lected from the GEO database. The MDD studies were obtained from Dr. Etienne
Sibille’s lab. A random intercept model adjusted for potential confounders was ap-
plied to each MDD study to obtain p-values [Wang et al. (2012a)]. Preprocessed
data of 16 diabetes studies described by Park et al. (2009) were obtained from
the authors. For studies with multiple groups, we followed the procedure of Park
et al. by taking the minimum p-value of all the pairwise comparisons and adjusted
for multiple tests. All the pathways used in this paper were downloaded from the
Molecular Signatures Database [MSigDB, Subramanian et al. (2005)]. Pathway
collections c2, c3 and c5 were used for the r selection purpose.

3.1. Application of rOP. In all three applications, we demonstrate the estima-
tion of r for rOP using the two evaluation criteria in Section 2.3. In the first data
set, two important subtypes of brain tumors—anaplastic astrocytoma (AA) and
glioblastoma multiforme (GBM)—were compared in seven microarray studies. To
estimate an adequate r for the rOP application, we calculated the unadjusted num-
ber, the baseline number from permutation and the adjusted number of detected
DE genes using 1 ≤ r ≤ 7 under FDR = 5% [Figure 1(a)]. The result showed a
peak at r = 5. For the second estimation method by pathway analysis, boxplots of
− log10(p) (p-values calculated from association of DE gene list with top path-
ways) versus r were plotted [Figure 1(b)]. The Wilcoxon signed-rank tests showed
that the result from r = 6 is significantly more associated with pathways than that
from r = 7 (p = 2.7e–11) and similarly for r = 5 versus r = 6 (p = 4.4e–9).
Combining the results from Figure 1(a) and (b), we decided to choose r = 5 for
this application. Figure 1(c) shows the heatmap of studies effective in rOP (when
r = 5) for each detected DE gene (a total of 1469 DE genes on the rows and
seven studies on the columns). For example, if p-values for the seven studies are
(0.13,0.11,0.03,0.001,0.4,0.7,0.15), the test statistic for rOP is SrOP = 0.15 and
the five effective studies that contribute to rOP are indicated as (1,1,1,1,0,0,1).
In the heatmap, effective studies were indicated by black color and noneffective
studies were in light gray. As shown in Figure 1(c), Paugh and Yamanaka were
noneffective studies in almost all detected DE genes, suggesting that the two stud-
ies did not contribute to the meta-analysis and may potentially be problematic
studies. This finding agrees with a recent MetaQC assessment result using the
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same seven studies [Kang et al. (2012)]. In our application, AA and GBM pa-
tients were compared in all seven studies. We expected to detect biomarkers that
have consistent fold-change direction across studies and the one-sided corrected
rOP method was more preferable. Supplement Figure 1 [Song and Tseng (2014d)]
showed plots similar to Figure 1 for one-sided corrected rOP. The result similarly
concluded that r = 5 was the most suitable choice for this application.

For the second application, nine microarray studies used different areas of post-
mortem brain tissues from MDD patients and control samples (supplement Ta-
ble 1B [Song and Tseng (2014c)]). MDD is a complex genetic disease with largely
unknown disease mechanism and gene regulatory networks. The postmortem brain
tissues usually result in weak signals, compared to blood or tumor tissues, which
makes meta-analysis an appealing approach. In supplement Figure 2(a) [Song and
Tseng (2014d)], the maximizer of adjusted DE gene detection was at r = 6 (r = 7
or 8 is also a good choice). For supplement Figure 2(b), the statistical signifi-
cance improved “from r = 9 to r = 8” (p = 5.6e–14), “from r = 8 to r = 7”
(p = 8.7e–7) and “from r = 7 to r = 6” (p = 0.045). We also obtained 98 path-
ways that were potentially related to MDD from Dr. Etienne Sibille. As shown
in supplement Figure 2(c), the statistical significance improved “from r = 8 to
r = 7” using the 98 expert selected pathways. Combining the results, we decided
to choose r = 7 (since r = 6 only provided marginal improvement in both criteria
and we preferred r as large as possible) for the rOP method in this application.
Supplement Figure 2(d) showed the heatmap of effective studies in rOP. No obvi-
ous problematic study was observed. The one-sided rOP was also applied (results
not shown); good selection of r appeared to be between 5 and 7.

In the last application, 16 diabetes microarray studies were combined. These 16
studies were very heterogeneous in terms of the organisms, tissues and experimen-
tal design (supplement Table 1C [Song and Tseng (2014c)]). Supplement Figure 7
[Song and Tseng (2014d)] showed diagnostic plots to estimate r . Although the
number of studies and heterogeneity across data sets were relatively larger than
the previous two examples, we could still observe similar trends in supplement
Figure 7. Specifically, for supplement Figure 3(a), it was shown that r = 7–12 de-
tected a higher adjusted number of DE genes. For pathway analysis, results from
r = 12 were more associated with the top pathways. As a result, we decided to
use r = 12 in this application. It was noticeable that the r selection in this diabetes
example was relatively vague compared to the previous examples. Supplement
Figure 3(c) showed the heatmap of effective studies in rOP. Two to four studies
(s01, s05, s08 and s14) appeared to be candidates of problematic studies, but the
evidence was not as clear as the brain cancer example in Figure 1(c). It should
be noted that the results of supplement Figure 3 used the beta null distribution
inference and Benjamini–Hochberg correction. Permutation analysis generated a
relatively unstable result (supplement Figure 4), although it suggested a similar
selection of r . This was possibly due to the unusual ad hoc DE analysis from min-
imum p-values of all possible pairs of comparisons [procedures that were used in
the original paper Park et al. (2009)].
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Next, we explored the robustness of rOP by mixing a randomly chosen MDD
study into seven brain cancer studies as an outlier. The results in supplement Fig-
ure 5 [Song and Tseng (2014d)] showed that r = 5 or 6 may be a good choice
[supplement Figure 5(a) and (b)]. We used r = 6 in rOP for this application. Sup-
plement Figure 5(c) interestingly showed that the mixed MDD study, together
with the Paugh and Yamanaka studies, was a potentially problematic study in the
rOP meta-analysis. This result verified our intuition that rOP is robust to outlying
studies and the p-values of the outlying studies minimally contribute to the rOP
statistic.

3.2. Comparison of rOP with other meta-analysis methods. We performed
rOP using r determined from Section 3.1 in four applications (brain cancer, MDD,
diabetes and brain cancer + 1 random MDD) and compared to Fisher’s method,
Stouffer’s method, minP, maxP and vote counting. The vote counting method will
be discussed in greater detail in Section 4.3. Two quantitative measures were used
to compare the methods. The first measure compared the number of detected DE
genes from each method as a surrogate of sensitivity (although the true list of
DE genes is unknown and sensitivity cannot be calculated). The second approach
was by pathway analysis, very similar to the method we introduced to select pa-
rameter r . However, in order to avoid bias in top pathway selection, single study
analysis results were used as the committee to select disease-related pathways.
KEGG, BioCarta, Reactome and GO pathways were used in the pathway analysis.
The Wilcoxon signed-rank test was then used to test if two methods detected DE
genes with differential association with disease-related pathways.

Table 2 showed the number of detected DE genes under FDR = 5%. We can im-
mediately observe that Fisher and Stouffer generally detected many more biomark-
ers because they targeted on HSB (genes differentially expressed in one or more
studies). Although minP also targeted on HSB , it sometimes detected extremely
small numbers of DE genes in weak-signal data such as the MDD and diabetes

TABLE 2
Number of DE genes detected by different methods under FDR = 5%

rOP

Two-sided One-sided Fisher Stouffer minP maxP VC

Brain cancer 1469 (r = 5) 1625 (r = 5) 2918 2449 2380 273 328
Overlap = 1139

MDD 617 (r = 7) 86 (r = 7) 1124 1423 0 310 0
Overlap = 48

Diabetes 636 (r = 12) Not applicable 1698 1492 1 85 0
Brain + 1 MDD 751 (r = 6) Not applicable 2081 1773 1648 132 64
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examples. This is reasonable because minP has very weak power to detect con-
sistent but weak signals across studies [e.g., p-values = (0.1,0.1, . . . ,0.1)]. The
stringent maxP method detected few numbers of DE genes in general. Vote count-
ing detected very few genes especially when the effect sizes were moderate (in the
MDD and diabetes examples). rOP detected more DE genes than maxP because
of its relaxed HSr hypothesis setting. It identified about 50–65% fewer DE genes
than Fisher’s and Stouffer’s methods, but guaranteed that the genes detected were
differentially expressed in the majority of the studies. We also performed the one-
sided corrected rOP for comparison. This method detected similar numbers of DE
genes compared to two-sided rOP, and the majority of detected DE genes in two-
sided and one-sided rOP were overlapped in the brain cancer example. The result
showed that almost all DE genes detected by two-sided rOP had a consistent fold-
change direction across studies. In MDD, the one-sided rOP detected much fewer
genes than the two-sided method. This implied that many genes related to MDD
acted differently in different brain regions and in different cohorts.

Figure 2 showed the results of biological association from pathway analysis
that were similarly shown in Figure 1(b). The result showed that the DE gene lists

FIG. 2. Comparison of different meta-analysis methods using pathway analysis. (a) Brain cancer.
(b) MDD. (c) Diabetes. (d) Brain cancer and 1 random MDD.
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generated by Fisher and Stouffer were more associated with biological pathways.
The rOP method generally performed better than maxP and minP and had similar
biological association performance to Fisher’s and Stouffer’s methods.

4. Statistical properties of rOP.

4.1. Power calculation of rOP and asymptotic properties. When K studies are
combined, suppose r0 of the K studies have equal nonzero effect sizes and the rest
of the (K − r0) studies have zero effect sizes. That is,

H0 : θ1 = · · · = θK = 0,

Ha : θ1 = · · · = θr0 = θ �= 0, θr0+1 = · · · = θK = 0.

For a single study, the power function given effect size θ is known as Pr(pi ≤
α0|θ). We will derive the statistical power of rOP under this simplified hypoth-
esis setting when r0 and r for rOP are given. Under H0, the rejection threshold
for the rOP statistic is β = Bα(r,K − r + 1) (the α quantile of a beta distribu-
tion with shape parameters r and K − r + 1), where the significance level of the
meta-analysis is set at α. The power of rejection threshold β under Ha is Pr(p(r) ≤
β|Ha) = Pr(

∑K
i=1 I (pi ≤ β) ≥ r|Ha). By definition, Pr(pi ≤ β|θi = 0) = β and

we further denote β ′ = Pr(pi ≤ β|θi = θ). The power calculation of interest is
equivalent to finding the probabilities of having at least r successes in K indepen-
dent Bernoulli trials, among which r0 have success probabilities β ′, and K − r0
have success probabilities β:

Pr(p(r) ≤ β|Ha) =
K∑

i=r

min(i,r0)∑
j=max(0,i−K+r0)

(
r0
j

)
β ′j (

1 − β ′)r0−j

×
(

K − r0
i − j

)
βi−j (1 − β)K−r0−i+j .

REMARK 4. We note that the assumption of r0 equal nonzero effect sizes can
be relaxed. When the nonzero effects are not equal, the power calculation can be
done in polynomial time using dynamic programming.

Below we demonstrate some asymptotic properties of rOP.

THEOREM 4.1. Assume r0 is fixed. When the effect size θ and K are fixed and
the sample size of study k Nk → ∞, Pr(p(r) ≤ β|Ha) → 1 if r ≤ r0. When r > r0,
Pr(p(r) ≤ β|Ha) → c(r) < 1 and c(r) is a decreasing function in r .

PROOF. When Nk → ∞, β ′ → 1. The theorem easily follows from the power
calculation formulae. �
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FIG. 3. Power of rOP method when Nk → ∞, K = 10. (a) r0 = 6, r = 1–10. (b) r = 6, r0 = 0–10.

Theorem 4.1 states that, asymptotically, if the parameter r in rOP is specified
less or equal to the true r0, the statistical power converges to 1 as intuitively
expected. When specifying r greater than r0, the statistical power is weakened
with increasing r . Particularly, maxP will have weak power. In contrast to Theo-
rem 4.1, for methods designed for HSB (e.g., Fisher’s method, Stouffer’s method
and minP), the power always converges to 1 if Nk → ∞ and r0 > 0. Figure 3(a)
shows the power curve of rOP for different r when K = 10, r0 = 6 and Nk → ∞.

LEMMA 4.1. Assume the parameter r used in rOP is fixed. When the effect
size θ and K are fixed and the sample sizes Nk → ∞, Pr(p(r) ≤ β|Ha) → 1 if
r0 ≥ r . When r0 < r , Pr(p(r) ≤ β|Ha) → c(r0) < 1 and c(r0) is an increasing
function in r0.

Lemma 4.1 takes a different angle from Theorem 4.1. When the parameter r

used in rOP is fixed, it asymptotically has perfect power to detect all genes that are
differentially expressed in r or more studies. It then does not have strong power
to detect genes that are differentially expressed in less than r studies. Figure 3(b)
shows a power curve of rOP for K = 10, r = 6 and Nk → ∞ (solid line). We note
that the dashed line [f (r) = 0 when 0 ≤ r0 < 6 and f (r) = 1 when 6 ≤ r0 ≤ 10]
is the ideal power curve for HSr (i.e., it detects all genes that are differentially
expressed in r or more studies but does not detect any genes that are differen-
tially expressed in less than r studies). Methods like Fisher, Stouffer and minP
target on HSB and their power is always 1 asymptotically when r0 > 0. The maxP
method has perfect asymptotic power when r0 = K = 10 but has relatively weak
power when r0 < K . The rOP method lies between maxP and the methods de-
signed for HSB . The power of rOP for r0 ≥ 6 converges to 1, and for r0 ≤ 5, the
power is always smaller than 1 as the sample sizes in single studies go to infinity.
Although the asymptotic powers of rOP for r0 = 4 and r0 = 5 are not too small,
we are less concerned about these genes because they are still very likely to be
important biomarkers.
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4.2. Power comparison in simulated studies. To evaluate the performance of
rOP in the genomic setting, we simulated a data set using the following procedure.

STEP I. Sample 200 gene clusters, with 20 genes in each and another 6000
genes that do not belong to any cluster. Denote Cg ∈ {0,1,2, . . . ,200} as the clus-
ter membership of gene g, where Cg = 0 means that gene g is not in a gene cluster.

STEP II. Sample the covariance matrix �ck for genes in cluster c and in
study k, where 1 ≤ c ≤ 200 and 1 ≤ k ≤ 10. First, sample �′

ck ∼ W−1(	,60),
where 	 = 0.5I20×20 + 0.5J20×20, W−1 denotes the inverse Wishart distribution,
I is the identity matrix and J is the matrix with all the elements equal 1. Then �ck

is calculated by standardizing �′
ck such that the diagonal elements are all 1’s.

STEP III. Denote gc1, . . . , gc20 as the indices for the 20 genes in cluster c,
that is, Cgcj

= c, where 1 ≤ c ≤ 200 and 1 ≤ j ≤ 20. Assuming the effect sizes
are all zeros, sample gene expression levels of genes in cluster c for sample n

as (X′
gc1nk, . . . ,X

′
gc20nk)

T ∼ MVN(0,�ck), where 1 ≤ n ≤ 100 and 1 ≤ k ≤ 10,
and sample expression level for gene g which is not in a cluster (i.e., Cg = 0) for
sample n as X′

gnk ∼ N(0,1), where 1 ≤ n ≤ 100 and 1 ≤ k ≤ 10.

STEP IV. Sample the true number of studies that gene g is DE, tg , from a dis-
crete uniform distribution that takes values on 1,2, . . . ,10, for 1 ≤ g ≤ 1000; and
set tg = 0 for 1001 ≤ g ≤ 10,000.

STEP V. Sample δgk , which indicates whether gene g is DE in study k, from
a discrete uniform distribution that takes values on 0 or 1 and with the constraint
that

∑
k δgk = tg , where 1 ≤ g ≤ 1000 and 1 ≤ k ≤ 10. For 1001 ≤ g ≤ 10,000 and

1 ≤ k ≤ 10, set δgk = 0.

STEP VI. Sample the effect size μgk uniformly from [−1,−0.5] ∪ [0.5,1].
For control samples, set the expression levels as Xgnk = X′

gnk; for case samples,
set the expression levels as Ygnk = X′

g(n+50)k + μgk · δgk , for 1 ≤ g ≤ 10,000,
1 ≤ n ≤ 50 and 1 ≤ k ≤ 10.

In the simulated data set, 10 studies with 10,000 genes were simulated. Within
each study, there were 50 cases and 50 controls. The first 1000 genes were DE
in 1 to 10 studies with equal probabilities; and the rest of the 9000 genes were DE
in none of the studies. We denoted tg as the true number of studies where gene
g was DE. To mimic the gene dependencies in a real gene expression data set,
within the 10,000 genes, we drew 200 gene clusters with 20 genes in each. We
sampled the data such that the genes within the same cluster were correlated. The
correlation matrices for different studies and different gene clusters were sampled
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TABLE 3
Mean FDRs for different methods in HSr with r = 6 by simulation analysis with correlated genes.

The standard deviations of the FDRs in using 100 simulations are shown in the parentheses

FDR1 FDR2 # of detected genes

rOP (r = 6, PA) 0.0439 (± 0.0106) 0.1818 (± 0.0179) 620.16
rOP (r = 6, BH) 0.0472 (± 0.0094) 0.2029 (± 0.0184) 617.53
rOP (r = 6, BY) 0.0043 (± 0.0031) 0.1044 (± 0.0139) 539.85
Fisher 0.0441 (± 0.0090) 0.4186 (± 0.0212) 934.91
Stouffer 0.0440 (± 0.0089) 0.3623 (± 0.0217) 858.86
minP 0.0466 (± 0.0103) 0.4567 (± 0.0207) 958.26
maxP 0.0459 (± 0.0199) 0.0729 (± 0.0251) 201.02
Vote counting 0.0000 (± 0.0000) 0.0003 (± 0.0016) 234.43

from an inverse Wishart distribution. Suppose the goal of the meta-analysis was
to obtain biomarkers differentially expressed in at least 60% (6 out of 10) of the
studies (i.e., HSr with r = 6). We performed two sample t-tests in each study and
combined the p-values using rOP with r = 6. FDR ≤ 5% was controlled using the
permutation analysis. To compare rOP with other methods in the HSr setting, we
defined two FDR criteria as follows. Note that FDR1 targets on H0 : tg = 0 and
FDR2 targets on H0 : tg < r :

FDR1 =
∑

g I (tg = 0 and gene g is detected)

#{genes detected} ,

FDR2 =
∑

g I (tg < r and gene g is detected)

#{genes detected} .

Table 3 listed the average FDR1 and FDR2 for different methods calculated us-
ing 100 simulations. We can see that although FDR1 was well controlled, all the
methods were anti-conservative in terms of FDR2, since the inference of the five
methods was based on H0 : tg = 0 while genes with 1 ≤ tg ≤ 5 existed and were
calculated toward FDR2. To compare different FDR control methods, we also
included the results of the Benjamini–Hochberg and Benjamini–Yekutieli proce-
dures. According to the simulation, the Benjamini–Hochberg procedure controlled
FDR similarly to the permutation test. The Benjamini–Yekutieli procedure, on the
other hand, was too conservative that the FDR1 was controlled at about 1/10 of
the nominal FDR level. Figure 4 showed the number of detected DE genes and the
statistical power of different methods for genes with tg from 1 to 10. From Fig-
ure 4(a), we noticed that Fisher, Stouffer and minP methods detected many genes
with 1 ≤ tg ≤ 5, which violated our targeted HSr with r = 6. MaxP detected very
few genes and missed many targeted markers with 6 ≤ tg ≤ 9. Only rOP generated
the result most compatible with HSr (r = 6). Most genes with 6 ≤ tg ≤ 10 were
detected. The high FDR2 = 18.2% mostly came from genes with 4 ≤ tg ≤ 5, genes
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FIG. 4. Simulation results for rOP and other methods with correlated genes. (a) Number of genes
detected by difference methods. The detected genes are binned according to their tg ’s. (b) Power of
different methods for genes with r0 nonzero effect sizes.

that were very likely important markers and were minor mistakes. Vote counting
detected genes with tg ≥ 6 but was less powerful. The relationship of vote counting
and rOP will be further discussed in Section 4.3. We also performed rOP (r = 5)
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and rOP (r = 7) to compare the robustness of slightly different selections of r .
Among the 620.16 DE genes (averaged over 100 simulations) detected by rOP
(r = 6), 594.15 (95.8%) of them were also detected by rOP (r = 5) and 516.28
(83.3%) of them were also detected by rOP (r = 7). The result of Figure 4(b) was
consistent with the theoretical power calculation as shown in Figure 3(b).

We also performed the simulation without correlated genes. The results were
shown in the supplement Table 2 [Song and Tseng (2014c)] and supplement Fig-
ure 6 [Song and Tseng (2014d)]. We noticed that the FDRs were controlled well in
both correlated and uncorrelated cases. However, the standard deviations of FDRs
with correlated genes were higher than the FDRs with only independent genes,
which indicated some instability of the FDR control with correlated genes reported
by Qiu, Yakovlev et al. (2006).

4.3. Connection with vote counting. Vote counting has been used in many
meta-analysis applications due to its simplicity, while it has been criticized as
being problematic and statistically inefficient. Hedges and Olkin (1980) showed
that the power of vote counting converges to 0 when many studies of moderate
effect sizes are combined (see supplement Theorem 1 [Song and Tseng (2014b)]).
We, however, surprisingly found that rOP has a close connection with vote count-
ing, and rOP can be viewed as a generalized vote counting with better statistical
properties. There are many variations of vote counting in the literature. One pop-
ular approach is to count the number of studies that have p-values smaller than a
prespecified threshold, α. We define this quantity as

r = f (α) =
K∑

k=1

I {pk < α}(1)

and define its related proportion as π = E(r)/K . The test hypothesis is{
H0 :π = π0,

Ha :π > π0,

where π0 = 0.5 is often used in the applications. Under the null hypothesis,
r ∼ BIN(K,α) and π = α, so the rejection region can be established. In the vote
counting procedure, α and π0 are two preset parameters and the inference is made
on the test statistic r .

In the rOP method, we view equation (1) from another direction. We can eas-
ily show that if we solve equation (1) to obtain α = f −1(r), the solution will be
α ∈ [p(r),p(r+1)), and one may choose α = p(r) as the solution. In other words,
rOP presets r as a given parameter, and the inference is based on the test statistic
α = p(r).

It is widely criticized that vote counting is powerless because when the effect
sizes are moderate and the power of single studies is lower than π0, as K increases,
the percentage of significant studies will converge to the single study power. How-
ever, in the rOP method, because the r th quantile is used, tests of the top r studies
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are combined, which helps the rejection probability of rOP achieve 1 as K → ∞.
It should be noted that the major difference between rOP and vote counting is that
the test statistic α = p(r) in rOP increases as K and r = K ·c increase, which keeps
information of the r smallest p-values. On the contrary, for vote counting, α is of-
ten chosen small and fixed when K increases. In supplement Theorem 1 [Song and
Tseng (2014b)], the power of vote counting converges to 0 as K → ∞, while the
power of rOP converges to 1 asymptotically as proved in supplement Theorem 2
[Song and Tseng (2014b)].

5. Conclusion. In this paper we proposed a general class of order statistics of
p-values, called r th ordered p-value (rOP), for genomic meta-analysis. This fam-
ily of statistics included the traditional maximum p-value (maxP) and minimum
p-value (minP) statistics that target on DE genes in “all studies” (HSA) or “one or
more studies” (HSB ). We extended HSA to a robust form that detected DE genes
“in the majority of studies” (HSr ) and developed the rOP method for this purpose.
The new robust hypothesis setting has an intuitive interpretation and is more ad-
equate in genomic applications where unexpected noise is common in the data.
We developed the algorithm of rOP for microarray meta-analysis and proposed
two methods to estimate r in real applications. Under “two-class” comparisons,
we proposed a one-sided corrected form of rOP to avoid detection of discordant
expression change across studies (i.e., significant up-regulation in some studies
but down-regulation in other studies). Finally, we performed power analysis and
examined asymptotic properties of rOP to demonstrate appropriateness of rOP for
HSr over existing methods such as Fisher, Stouffer, minP and maxP. We further
showed a surprising connection between vote counting and rOP that rOP can be
viewed as a generalized vote counting with better statistical property. Applications
of rOP to three examples of brain cancer, major depressive disorder (MDD) and
diabetes showed better performance of rOP over maxP in terms of detection power
(number of detected markers) and biological association by pathway analysis.

There are two major limitations of rOP. First, rOP is for HSr , but the null and al-
ternative hypotheses are not complementary (see Section 2.1). Thus, it has weaker
ability to exclude markers that are differentially expressed in “less than r” studies
since the null of HSr is “differentially expressed in none of the studies.” One so-
lution to improve the anti-conservative inference (which is also our future work)
is by Bayesian modeling of p-values with a family of beta distributions [Erickson,
Kim and Allison (2009)]. Second, selection of r may not always be conclusive
from the two methods we proposed; the external pathway information may espe-
cially be prone to errors and may not be informative to the data. But since choosing
slightly different r usually gives similar results, this is not a severe problem in most
applications. We have tested a different approach by adaptively choosing the best
gene-specific r that generates the best p-value. The result is, however, not stable
and the gene-specific parameter r is hard to interpret in applications.
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Although many meta-analysis methods have been proposed and applied to mi-
croarray applications, it is still not clear which method enjoys better performance
under what condition. The selection of an adequate (or best) method heavily de-
pends on the biological goal (as illustrated by the hypothesis settings in this paper)
and the data structure. In this paper, we stated a robust hypothesis setting (HSr )
that is commonly targeted in biological applications (i.e., identify markers statisti-
cally significant in the majority of studies) and developed an order statistic method
(rOP) as a solution. The three applications covered “cleaner” data (brain cancer) to
“noisier” data (complex genetics in MDD and diabetes), and rOP performed well
in all three examples. We expect that the robust hypothesis setting and the order
statistic methodology will find many more applications in genomic research and
traditional univariate meta-analysis in the future.

For multiple comparison control, we propose to either apply the parametric beta
null distribution to assess the p-value and perform the Benjamini–Hochberg (BH)
procedure for p-value adjustment or conduct a conventional permutation analysis
by permuting class labels in each study. The former approach is easy to implement,
and the latter approach better preserves the gene correlation structure in the infer-
ence. Instead of the BH procedure, we also tested the Benjamini–Yekutieli (BY)
procedure which is applicable to the general dependence structure but found that
it is overly conservative for genomic applications. The problem of FDR control
under general high-dimensional dependence structures is beyond the scope of this
paper but is critical in applications and deserves future research.

Implementation of rOP is available in the “MetaDE” package in R together with
over 12 microarray meta-analysis methods in the package. MetaDE has been inte-
grated with other quality control methods [“MetaQC” package, Kang et al. (2012)]
and pathway enrichment analysis methods [“MetaPath” package, Shen and Tseng
(2010)]. The future plan is to integrate the three packages with other genomic
meta-analysis tools into a “MetaOmics” software suite [Wang et al. (2012b)].
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