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ON DEEP LEARNING AS A REMEDY FOR THE CURSE OF
DIMENSIONALITY IN NONPARAMETRIC REGRESSION

BY BENEDIKT BAUER AND MICHAEL KOHLER

Technische Universität Darmstadt

Assuming that a smoothness condition and a suitable restriction on the
structure of the regression function hold, it is shown that least squares esti-
mates based on multilayer feedforward neural networks are able to circum-
vent the curse of dimensionality in nonparametric regression. The proof is
based on new approximation results concerning multilayer feedforward neu-
ral networks with bounded weights and a bounded number of hidden neurons.
The estimates are compared with various other approaches by using simulated
data.

1. Introduction.

1.1. Nonparametric regression. In regression analysis, a random vector (X,Y )

with values in R
d ×R satisfying EY 2 < ∞ is considered, and an estimation of the

relation between X and Y is attempted, that is, it is tried to predict the value of
the response variable Y from the value of the observation vector X. Usually, the
aim is to minimize the mean squared error or L2 risk. Thus, the construction of a
(measurable) function m∗ : Rd →R, which satisfies

E
{∣∣Y − m∗(X)

∣∣2} = min
f :Rd→R

E
{∣∣Y − f (X)

∣∣2}
,

is of interest. In the following, let m : Rd → R, m(x) = E{Y |X = x} denote the
so-called regression function. Since m satisfies

E
{∣∣Y − f (X)

∣∣2} = E
{∣∣Y − m(X)

∣∣2} +
∫ ∣∣f (x) − m(x)

∣∣2PX(dx)

(cf., e.g., Section 1.1 in Györfi et al. (2002)), it is the optimal predictor m∗. More-
over, a good estimate f : Rd → R (in the L2 risk minimization sense) has to keep
the so-called L2 error ∫ ∣∣f (x) − m(x)

∣∣2PX(dx)

small.
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In applications, the distribution of (X,Y ) and m are usually unknown, but a set
of data

Dn = {
(X1, Y1), . . . , (Xn,Yn)

}
can often be observed, where (X,Y ), (X1, Y1), . . . , (Xn,Yn) are independent and
identically distributed random variables. Given this data set, the aim is to construct
regression estimates mn(·) = mn(·,Dn) such that their L2 errors∫ ∣∣mn(x) − m(x)

∣∣2PX(dx)

are small. In contrast to parametric estimation, where a fixed structure of the re-
gression function that depends only on finitely many parameters is assumed, in the
nonparametric approach the regression function is not claimed to be describable
by finitely many parameters and the whole function is estimated from the data.
Györfi et al. (2002) provided a systematic overview of different approaches and
nonparametric regression estimation results.

1.2. Rate of convergence. It is well known (see, e.g., Section 3.1 in Györfi
et al. (2002)) that one has to restrict the class of regression functions that one
considers to obtain nontrivial results for the rate of convergence. For that purpose,
we introduce the following definition of (p,C)-smoothness.

DEFINITION 1. Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function
m : Rd → R is called (p,C)-smooth, if for every α = (α1, . . . , αd) ∈ N

d
0 with∑d

j=1 αj = q the partial derivative ∂qm

∂x
α1
1 ···∂x

αd
d

exists and satisfies

∣∣∣∣ ∂qm

∂x
α1
1 · · · ∂x

αd

d

(x) − ∂qm

∂x
α1
1 · · · ∂x

αd

d

(z)

∣∣∣∣ ≤ C · ‖x − z‖s

for all x, z ∈ R
d , where ‖ · ‖ denotes the Euclidean norm.

Stone (1982) determined the optimal minimax rate of convergence in nonpara-
metric regression for (p,C)-smooth functions. Here, a sequence of (eventually)
positive numbers (an)n∈N is called a lower minimax rate of convergence for the
class of distributions D if

lim inf
n→∞ inf

mn
sup

(X,Y )∈D
E

∫ |mn(x) − m(x)|2PX(dx)

an

= C1 > 0.

The sequence is said to be an achievable rate of convergence for the class of dis-
tributions D if

lim sup
n→∞

sup
(X,Y )∈D

E
∫ |mn(x) − m(x)|2PX(dx)

an

= C2 < ∞.
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The sequence is called an optimal minimax rate of convergence if it is both a lower
minimax and an achievable rate of convergence.

Stone (1982) showed that the optimal minimax rate of convergence for the esti-
mation of a (p,C)-smooth regression function is

n
− 2p

2p+d .

1.3. Curse of dimensionality. Despite the fact that it is optimal, the rate

n
− 2p

2p+d suffers from a characteristic feature in case of high-dimensional functions:
If d is relatively large compared with p, then this rate of convergence can be
extremely slow. This phenomenon is well known and is often called the curse
of dimensionality. Unfortunately, in many applications, the problems are high-
dimensional, and hence very hard to solve. The only way to circumvent this curse
of dimensionality is to impose additional assumptions on the regression function
to derive better rates of convergence.

Stone (1985) assumed an additivity condition for the structure of the regression
function, which said

m
(
x(1), . . . , x(d)) = m1

(
x(1)) + · · · + md

(
x(d)) [

x = (
x(1), . . . , x(d))T ∈R

d]
for (p,C)-smooth univariate functions m1, . . . ,md : R→R. Stone (1985) showed
that in this case n−2p/(2p+1) is the optimal minimax rate of convergence. This
approach has been generalized to so-called interaction models in Stone (1994).
These models impose for some d∗ ∈ {1, . . . , d} the structure

m(x) = ∑
I⊆{1,...,d},|I |=d∗

mI(xI )
[
x = (

x(1), . . . , x(d))T ∈R
d]

on the regression function, where all mI are (p,C)-smooth functions defined
on R

|I | and for I = {i1, . . . , id∗} with 1 ≤ i1 < · · · < id∗ ≤ d the abbreviation
xI = (x(i1), . . . , x(id∗ ))T is used. Then the optimal minimax rate of convergence
becomes n−2p/(2p+d∗).

Another idea involves so-called single index models, in which

m(x) = g
(
aT x

) (
x ∈ R

d)
is assumed to hold, where g : R → R is a univariate function and a ∈ R

d is a d-
dimensional vector (cf., e.g., Härdle, Hall and Ichimura (1993), Härdle and Stoker
(1989), Yu and Ruppert (2002) and Kong and Xia (2007)). This concept is even
extended in the so-called projection pursuit, where the regression function is as-
sumed to be a sum of functions of the above form, that is,

m(x) =
K∑

k=1

gk

(
aT
k x

) (
x ∈ R

d)
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for K ∈ N, gk : R → R and ak ∈ R
d (cf., e.g., Friedman and Stuetzle (1981)). If

we assume that the univariate functions in these postulated structures are (p,C)-
smooth, adequately chosen regression estimates can achieve the above univariate
rates of convergence up to some logarithmic factor (cf., e.g., Chapter 22 in Györfi
et al. (2002)).

Horowitz and Mammen (2007) studied the case of a regression function, which
satisfies

m(x) = g

(
L1∑

l1=1

gl1

(
L2∑

l2=1

gl1,l2

(
· · ·

Lr∑
lr=1

gl1,...,lr

(
xl1,...,lr

))))
,

where g,gl1, . . . , gl1,...,lr are (p,C)-smooth univariate functions and xl1,...,lr are
single components of x ∈ R

d [not necessarily different for two different indices
(l1, . . . , lr )]. With the use of a penalized least squares estimate for smoothing
splines, they proved the rate n−2p/(2p+1).

These estimates achieve good rates of convergence only if the imposed assump-
tions are satisfied. Thus, it is useful to derive rates of convergence for more general
types of functions, with which the regression functions in real applications com-
ply more often (at least approximately) and ideally contain the simpler models as
well. Our research is motivated by applications in connection with complex tech-
nical systems, which are constructed in a modular form. In this case, modeling the
outcome of the system as a function of the results of its modular parts seems rea-
sonable, where each modular part computes a function depending only on a few
of the components of the high-dimensional input. The modularity of the system
can be extremely complex and deep. Thus, a recursive application of the described
relation makes sense and leads to the following assumption about the structure of
m, which was introduced in Kohler and Krzyz̀ak (2017).

DEFINITION 2. Let d ∈ N, d∗ ∈ {1, . . . , d} and m :Rd →R.

(a) We say that m satisfies a generalized hierarchical interaction model of order
d∗ and level 0, if there exist a1, . . . , ad∗ ∈ R

d and f : Rd∗ →R such that

m(x) = f
(
aT

1 x, . . . , aT
d∗x

)
for all x ∈ R

d .

(b) We say that m satisfies a generalized hierarchical interaction model of or-
der d∗ and level l + 1, if there exist K ∈ N, gk : Rd∗ → R (k = 1, . . . ,K) and
f1,k, . . . , fd∗,k : Rd → R (k = 1, . . . ,K) such that f1,k, . . . , fd∗,k (k = 1, . . . ,K)
satisfy a generalized hierarchical interaction model of order d∗ and level l and

m(x) =
K∑

k=1

gk

(
f1,k(x), . . . , fd∗,k(x)

)
for all x ∈ R

d .

(c) We say that the generalized hierarchical interaction model defined above
is (p,C)-smooth, if all functions occurring in its definition are (p,C)-smooth ac-
cording to Definition 1.
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In order to enable the reader to better understand the above definition, we con-
sider the additive model from the begin of this section as an example. Using the
notation id : R → R for the identity function and ei for the ith unit vector, we can
rewrite the additive model as

d∑
i=1

mi

(
x(i)) =

d∑
i=1

mi

(
id

(
eT
i x

)) =
K∑

i=1

gi

(
f1,i

(
aT
i x

))
,

where K = d , gi = mi , f1,i = id and ai = ei . This structure corresponds to the
definition of a generalized hierarchical interaction model of order 1 and level 1.

Moreover, Definition 2 includes all the other types of structures of m mentioned
earlier what can be shown in a similar way. Functions complying with the single
index model belong to the class of generalized hierarchical interaction models of
the order 1 and level 0, the additive model (see above) and projection pursuit cor-
respond to order 1 and level 1. In addition, the interaction model is in conformity
with order d∗ and level 1, whereas the assumptions of Horowitz and Mammen
(2007) are consistent with order 1 and level r + 1.

1.4. Neural networks. For many years, the use of neural networks has been
one of the most promising approaches in connection with applications related to
approximation and estimation of multivariate functions (see, e.g., the monographs
Hertz, Krogh and Palmer (1991), Devroye, Györfi and Lugosi (1996), Anthony and
Bartlett (1999), Györfi et al. (2002), Haykin (2008) and Ripley (2008)). Recently,
the focus is on multilayer neural networks, which use many hidden layers, and the
corresponding techniques are called deep learning (cf., e.g., Schmidhuber (2015)
and the literature cited therein).

Multilayer feedforward neural networks with sigmoidal function σ :R → [0,1]
can be defined recursively as follows: A multilayer feedforward neural network
with l hidden layers, which has K1, . . . ,Kl ∈ N neurons in the first, second,. . . ,
lth hidden layer, respectively, and uses the activation function σ , is a real-valued
function defined on R

d of the form

(1) f (x) =
Kl∑
i=1

c
(l)
i · f (l)

i (x) + c
(l)
0 ,

for some c
(l)
0 , . . . , c

(l)
Kl

∈ R and for f
(l)
i recursively defined by

(2) f
(r)
i (x) = σ

(Kr−1∑
j=1

c
(r−1)
i,j · f (r−1)

j (x) + c
(r−1)
i,0

)

for some c
(r−1)
i,0 , . . . , c

(r−1)
i,Kr−1

∈ R and r = 2, . . . , l and

(3) f
(1)
i (x) = σ

(
d∑

j=1

c
(0)
i,j · x(i) + c

(0)
i,0

)
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for some c
(0)
i,0 , . . . , c

(0)
i,d ∈R. Neural network estimates often use an activation func-

tion σ :R → [0,1] that is nondecreasing and satisfies

lim
z→−∞σ(z) = 0 and lim

z→∞σ(z) = 1,

for example, the so-called sigmoidal or logistic squasher

σ(z) = 1

1 + exp(−z)
(z ∈ R).

Most existing theoretical results concerning neural networks consider neural net-
works using only one hidden layer, that is, functions of the form

(4) f (x) =
K∑

j=1

cj · σ
(

d∑
k=1

cj,k · x(k) + cj,0

)
+ c0.

Consistency of neural network regression estimates has been studied by Mielnic-
zuk and Tyrcha (1993) and Lugosi and Zeger (1995). The rate of convergence
has been analyzed by Barron (1991, 1993, 1994), McCaffrey and Gallant (1994)
and Kohler and Krzyz̀ak (2005, 2017). For the L2 error of a single hidden layer
neural network, Barron (1994) proves a dimensionless rate of n−1/2 (up to some
logarithmic factor), provided the Fourier transform has a finite first moment (which
basically requires that the function becomes smoother with increasing dimension d

of X). McCaffrey and Gallant (1994) showed a rate of n
− 2p

2p+d+5 +ε for the L2 error
of suitably defined single hidden layer neural network estimate for (p,C)-smooth
functions, but their study was restricted to the use of a certain cosine squasher as
the activation function.

The rate of convergence of neural network regression estimates based on two
layer neural networks has been analyzed in Kohler and Krzyz̀ak (2005). Therein,
interaction models were studied, and for (p,C)-smooth interaction models with
p ≤ 1 it was shown that suitable neural network estimates achieve a rate of con-
vergence of n−2p/(2p+d∗) (up to some logarithmic factor), which is again a con-
vergence rate independent of d . In Kohler and Krzyz̀ak (2017), this result was ex-
tended to (p,C)-smooth generalized hierarchical interaction models of the order
d∗. It was shown that for such models suitably defined multilayer neural networks
(in which the number of hidden layers depends on the level of the generalized
interaction model) achieve the rate of convergence n−2p/(2p+d∗) (up to some log-
arithmic factor) in case p ≤ 1. Nevertheless, this result cannot generate extremely
good rates of convergence, because, even in case of p = 1 and a value of d∗ = 5

(for a modular technical system not large), it leads to n− 2
7 .

Given the successful application of multilayer feedforward neural networks, the
current focus in the theoretical analysis of approximation properties of neural net-
works is also on a possible theoretical advantage of multilayer feedforward neural
networks in contrast to neural networks with only one hidden layer (cf., e.g., Eldan
and Shamir (2015) and Mhaskar and Poggio (2016)).
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1.5. Main results in this article. In this article, we analyze the rate of conver-
gence of suitable multilayer neural network regression estimates when the regres-
sion function satisfies a (p,C)-smooth generalized hierarchical interaction model
of given order d∗ and given level l. Here, p > 0 might be arbitrarily large. Thus,
unlike Kohler and Krzyz̀ak (2005, 2017), we also allow the case p > 1; this leads
to far better rates of convergence. We define sets of multilayer feedforward neu-
ral networks that correspond to such a generalized hierarchical interaction model
and define our regression estimates as least squares estimates based on this class
of neural networks. Our main finding is that the L2 errors of these least squares
neural network regression estimates achieve the rate of convergence

n
− 2p

2p+d∗

(up to some logarithmic factor), which does not depend on d . Similar rates have al-
ready been obtained in the literature but with much more stringent assumptions on
the functional class the regression function belongs to. So this article considerably
generalizes previous results in this regard.

In order to achieve the mentioned rate, completely new approximation results
for neural networks with several hidden layers were needed. We present such re-
sults in Theorems 2 and 3 in the proof section and the main result in Theorem 1
relies on them.

Furthermore, by applying our estimate to simulated data we demonstrate that
these estimates outperform other nonparametric regression estimates for a large
d , provided the regression function satisfies a generalized hierarchical interaction
model.

After the original version of this paper, a relating arXiv article was uploaded
by Schmidt-Hieber (2017). Therein a similar result is proven using a particular
unbounded activation function in the neural networks.

1.6. Notation. Throughout the paper, the following notation is used: The sets
of natural numbers, natural numbers including 0 and real numbers are denoted
by N, N0 and R, respectively. For z ∈ R, we denote the smallest integer greater
than or equal to z by 	z
, and �z� denotes the largest integer that is less than or
equal to z. Let D ⊆ R

d and let f : Rd → R be a real-valued function defined on
R

d . We write x = arg minz∈D f (z) if minz∈D f (z) exists and if x satisfies x ∈ D

and f (x) = minz∈D f (z). The Euclidean and the supremum norms of x ∈ R
d are

denoted by ‖x‖ and ‖x‖∞, respectively. For f :Rd →R,

‖f ‖∞ = sup
x∈Rd

∣∣f (x)
∣∣

is its supremum norm, and the supremum norm of f on a set A ⊆ R
d is denoted

by

‖f ‖∞,A = sup
x∈A

∣∣f (x)
∣∣.
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Let A ⊆ R
d , let F be a set of functions f : Rd → R and let ε > 0. A finite col-

lection f1, . . . , fN : Rd → R is called an ε–‖ · ‖∞,A–cover of F if for any f ∈ F
there exists i ∈ {1, . . . ,N} such that

‖f − fi‖∞,A = sup
x∈A

∣∣f (x) − fi(x)
∣∣ < ε.

The ε–‖ · ‖∞,A–covering number of F is the size N of the smallest ε–‖ · ‖∞,A–
cover of F and is denoted by N (ε,F,‖ · ‖∞,A).

If not otherwise stated, then any ci with i ∈ N symbolizes a real nonnegative
constant, which is independent of the sample size n.

1.7. Outline. In Section 2, we present our main result on the rate of conver-
gence of nonparametric regression estimates using special types of multilayer feed-
forward neural networks in the case of generalized hierarchical interaction models.
The finite sample size behavior of these estimates is analyzed by applying the es-
timates to simulated data in Section 3. Section 4 contains the proofs.

2. Nonparametric regression estimation by multilayer feedforward neural
networks. Motivated by the generalized hierarchical interaction models, we de-
fine so-called spaces of hierarchical neural networks with parameters K , M∗, d∗,
d and level l as follows. The parameter M∗ is introduced for technical reasons
and originates from the composition of several smaller networks in the later proof
of our approximation result. It controls the accuracy of the approximation and
its ideal value will depend on certain properties of the estimated function. For
M∗ ∈ N, d ∈ N, d∗ ∈ {1, . . . , d} and α > 0, we denote the set of all functions
f : Rd →R that satisfy

f (x) =
M∗∑
i=1

μi · σ
(4d∗∑

j=1

λi,j · σ
(

d∑
v=1

θi,j,v · x(v) + θi,j,0

)
+ λi,0

)
+ μ0

(x ∈ R
d) for some μi,λi,j , θi,j,v ∈ R, where

|μi | ≤ α, |λi,j | ≤ α, |θi,j,v| ≤ α

for all i ∈ {0,1, . . . ,M∗}, j ∈ {0, . . . ,4d∗}, v ∈ {0, . . . , d}, by F (neural networks)
M∗,d∗,d,α . In

the first and the second hidden layer, we use 4 · d∗ · M∗ and M∗ neurons, respec-
tively. However, the neural network has only

W
(
F (neural networks)

M∗,d∗,d,α

)
= M∗ + 1 + M∗ · (

4d∗ + 1
) + M∗ · 4d∗ · (d + 1)(5)

= M∗ · (
4d∗ · (d + 2) + 2

) + 1

weights, because the first and the second hidden layer of the neural network are
not fully connected. Instead, each neuron in the second hidden layer is connected
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FIG. 1. A not completely connected neural network f : R5 → R from F (neural networks)
3,1,5,α with the

structure f (x) = ∑3
i=1 μi ·σ(

∑4
j=1 λi,j ·σ(

∑5
v=1 θi,j,v ·x(v))) (all weights with an index including

zero neglected for a clear illustration).

with 4d∗ neurons in the first hidden layer, and this is done in such a way that each
neuron in the first hidden layer is connected with exactly one neuron in the second
hidden layer. The exemplary network in Figure 1 gives a good idea of how the
sparse connection works.

For l = 0, we define our space of hierarchical neural networks by

H(0) = F (neural networks)
M∗,d∗,d,α .

For l > 0, we define recursively

H(l) =
{
h :Rd →R : h(x) =

K∑
k=1

gk

(
f1,k(x), . . . , fd∗,k(x)

)

for some gk ∈ F (neural networks)
M∗,d∗,d∗,α and fj,k ∈ H(l−1)

}
.

(6)

The class H(0) is a set of neural networks with two hidden layers and a number
of weights given by (5). From this, one can conclude (again recursively) that for
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FIG. 2. Illustration of the components of a function from H(l).

l > 0 the class H(l) is a set of neural networks with 2 · l + 2 hidden layers. Further-
more, let N(H(l)) denote the number of linked two-layered neural networks from
F (neural networks)

M∗,d∗,d,α that define the functions from H(l). Then the recursion

N
(
H(0)) = 1,

N
(
H(l)) = K + K · d∗ · N(

H(l−1)) (l ∈ N)

holds, which can be easily retraced in Figure 2. The above functions g1, . . . , gK

therein correspond to K networks from F (neural networks)
M∗,d∗,d,α and the K · d∗ inner

functions f1,1, . . . , fd∗,K originate from H(l−1) per definition, which leads to
K · d∗ · N(H(l−1)) additional networks.

This recursive consideration yields the solution

(7) N
(
H(l)) =

l∑
t=1

d∗t−1 · Kt + (
d∗ · K)l

.

Consequently, a function from H(l) has at most

(8) N
(
H(l)) · W (

F (neural networks)
M∗,d∗,d,α

)
variable weights. Although this number of weights is exponential in the number
of layers l, it can be controlled because a typical example of the technical systems
which motivated Definition 2 has only a moderate finite l. As explained after Def-
inition 2, all typical assumptions for the regression function in the literature also
correspond to a small l.

We define m̃n as the least squares estimate

m̃n(·) = arg min
h∈H(l)

1

n

n∑
i=1

∣∣Yi − h(Xi)
∣∣2.(9)
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For our result we need to truncate this estimate. We define the truncation operator
Tβ with level β > 0 as

Tβu =
{
u if |u| ≤ β,

β · sign(u) otherwise.

Regarding the sigmoidal function σ within the neural networks, our results re-
quire a few additional properties, which are satisfied by several common activation
functions [e.g., the sigmoidal squasher, for which they can be straightforwardly
checked with arbitrary N ∈ N0; see Supplement A in Bauer and Kohler (2019)].
We summarize them in the next definition.

DEFINITION 3. A nondecreasing and Lipschitz continous function σ : R →
[0,1] is called N -admissible, if the following three conditions are satisfied:

(i) The function σ is at least N + 1 times continuously differentiable with
bounded derivatives.

(ii) A point tσ ∈ R exists, where all derivatives up to the order N of σ are
different from zero.

(iii) If y > 0, the relation |σ(y) − 1| ≤ 1
y

holds. If y < 0, the relation |σ(y)| ≤
1
|y| holds.

Our main result is the following theorem.

THEOREM 1. Let (X,Y ), (X1, Y1), . . . , (Xn,Yn) be independent and identi-
cally distributed random variables with values in R

d × R such that supp(X) is
bounded and

E exp
(
c1 · Y 2)

< ∞(10)

for some constant c1 > 0. Let m be the corresponding regression function, which
satisfies a (p,C)-smooth generalized hierarchical interaction model of order d∗
and finite level l with p = q + s for some q ∈ N0 and s ∈ (0,1]. Let N ∈ N0 with
N ≥ q . Furthermore, assume that in Definition 2(b) all partial derivatives of order
less than or equal to q of the functions gk , fj,k are bounded, that is, assume that
each such function f satisfies

max
j1,...,jd∈{0,1,...,q},

j1+···+jd≤q

∥∥∥∥ ∂j1+···+jd f

∂j1x(1) · · · ∂jd x(d)

∥∥∥∥∞
≤ c2,(11)

and let all functions gk be Lipschitz continuous with Lipschitz constant L > 0
[which follows from (11) if q > 0]. Let H(l) be defined as in (6) with K , d , d∗ as in

the definition of m, M∗ = 	c56 · n d∗
2p+d∗ 
, α = nc57 for sufficiently large constants

c56, c57 > 0 and using an N -admissible σ : R → [0,1] according to Definition 3.
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Let m̃n be the least squares estimate defined by (9) and define mn = Tc3·log(n)m̃n.
Then

E
∫ ∣∣mn(x) − m(x)

∣∣2PX(dx) ≤ c4 · log(n)3 · n− 2p

2p+d∗

holds for sufficiently large n.

REMARK 1. For p ≥ 1 and C ≥ 1, the class of (p,C)-smooth generalized
hierarchical interaction models of order d∗ satisfying the assumptions of Theo-
rem 1 contains all (p,C)-smooth functions, which depend at the most on d∗ of
its input components. This is because in the definition of generalized hierarchi-
cal interaction models all functions that occur in Definition 2 might be chosen as
projections. Consequently, the rate of convergence in Theorem 1 is optimal up to
some logarithmic factor according to Stone (1982).

REMARK 2. Some parameters of the estimate mn considered in Theorem 1
(like l, K or d∗) can be unknown in practice. Then they have to be chosen in a
data-dependent way. Several adaptive choices of parameters and their effects have
been studied in the literature. We refer to Chapters 7 and 8 in Györfi et al. (2002),
for example.

REMARK 3. Condition (10) in Theorem 1 prevents heavy tails and ensures
that the distribution of Y is sufficiently concentrated in order to allow good esti-
mates. It is satisfied by many common distributions like the normal distribution.

COROLLARY 1. Let (X,Y ), (X1, Y1), . . . , (Xn,Yn) be independent and iden-
tically distributed random variables with values in R

d × R such that supp(X) is
bounded and E exp(c1 · Y 2) < ∞ for some constant c1 > 0. Let m be the corre-
sponding regression function, which satisfies a (2,C)-smooth generalized hierar-
chical interaction model of order 2 and finite level 0. Furthermore, assume that in
Definition 2(b) all partial derivatives of order less than or equal to 1 of the func-
tions gk , fj,k are bounded. Let H(0) = F (neural networks)

M∗,2,d,α be defined as before with

M∗ = 	c56 ·n 1
3 
, α = nc57 , and using σ(z) = 1

1+exp(−z)
(z ∈R). Let m̃n be the least

squares estimate defined by (9) and define mn = Tc3·log(n)m̃n. Then

E
∫ ∣∣mn(x) − m(x)

∣∣2PX(dx) ≤ c4 · log(n)3 · n− 2
3

holds for sufficiently large n.

PROOF. Using the notation from Theorem 1, we can choose N = q = 1 and
the sigmoidal squasher σ is 1-admissible (see Supplement A in Bauer and Kohler
(2019) for an explanation). Then the application of Theorem 1 implies the corol-
lary. �
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3. Application to simulated data. To illustrate how the introduced nonpara-
metric regression estimate based on our special type of multilayer feedforward
neural networks behaves in case of finite sample sizes, we apply it to simulated data
and compare the results with conventional estimates using the software MATLAB.
Particularly, in connection with small sample sizes, the number of different ap-
proaches for the estimation of high-dimensional functions is rather limited. All
the examined approaches, including ours, contain some parameters (specified sub-
sequently) that have an influence on their behavior. In the following, we choose
these parameters in a data-dependent way by splitting of the sample. This means
that ntrain = 	4

5 · n
 realizations are used to train the estimate several times with
different choices for the parameters each time, whereas ntest = n − ntrain realiza-
tions are used to test by comparison of the empirical L2 risk on this set, which
parameter assignment leads to the best estimate according to this criterion.

The first alternative approach we consider is a simple nearest neighbor estimate
(neighbor). This means that the function value at a given point x is approximated
by the average of the values Y1, . . . , Ykn observed for the data points X1, . . . ,Xkn ,
which are closest to x with respect to the Euclidean norm (choosing the smallest
index in case of ties). The parameter kn ∈N, which denotes the number of involved
neighbors, is chosen adaptively from {1,2,3} ∪ {4,8,12,16, . . . ,4 · �ntrain

4 �} in our
simulations.

The second competitive approach we examine is interpolation with radial ba-
sis functions (RBF). With regard to the variety of modifications of this approach
known in the literature, we focus on the version in Lazzaro and Montefusco (2002),
where Wendland’s compactly supported radial basis function φ(r) = (1 − r)6+ ·
(35r2 + 18r + 3) is used. The radius that scales the basis functions is also selected
adaptively from the set {0.1,0.5,1,5,30,60,100} in our implementation, because
doing so improved the RBF approach in the simulations.

The parameters l, K , d∗, M∗ of our neural network estimate (neural-x) defined
in Theorem 1 are chosen in a data-dependent way as well. The selected values
of these parameters to be tested were {0,1,2} for l, {1, . . . ,5} for K , {1, . . . , d}
for d∗, and {1, . . . ,5,6,11,16,21, . . . ,46} for M∗, although the set of possible
choices is reduced for some settings if several test runs show that the whole range
of choices is not needed. To solve the least squares problem in (9), we use the
quasi-Newton method of the function fminunc in MATLAB to approximate its so-
lution.

Furthermore, we compare our neural network estimate, which is characterized
by the data-dependent choice of its structure and not completely connected neu-
rons, to more ordinary fully connected neural networks with predefined numbers of
layers but adaptively chosen numbers of neurons per layer. In this context, we ex-
amine structures with one hidden layer that consists of 5, 10, 25, 50 or 75 neurons
(neural-1), three hidden layers that consist of 3, 6, 9, 12 or 15 neurons (neural-3),
and six hidden layers that consist of 2, 4, 6, 8 or 10 neurons (neural-6).
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The functions we use in the illustrative simulated settings to compare the differ-
ent approaches are listed below:

m1(x) = cot
(

π

1 + exp(x2
1 + 2 · x2 + sin(6 · x3

4) − 3)

)

+ exp(3 · x3 + 2 · x4 − 5 · x5 + √
x6 + 0.9 · x7 + 0.1)

(
x ∈ [0,1]7)

,

m2(x) = 2

x1 + 0.008
+ 3 · log

(
x7

2 · x3 + 0.1
) · x4

(
x ∈ [0,1]7)

,

m3(x) = 2 · log
(
x1 · x2 + 4 · x3 + ∣∣tan(x4)

∣∣ + 0.1
)

+ x4
3 · x2

5 · x6 − x4 · x7 + (
3 · x2

8 + x9 + 2
)0.1+4·x2

10
(
x ∈ [0,1]10)

,

m4(x) = x1 + tan(x2) + x3
3 + log(x4 + 0.1) + 3 · x5

+ x6 + √
x7 + 0.1

(
x ∈ [0,1]7)

,

m5(x) = exp
(‖x‖) (

x ∈ [0,1]7)
,

m6(x) = m1

(
1

2
· |O| · x

) (
x ∈ [0,1]7)

.

The examples m1, m2 and m3 represent some ordinary general hierarchical inter-
action models (cf. Definition 2), whereas m4, m5 and m6 carry the definition to
the extremes, such that m4 is just an additive model, that is, d∗ = 1, and m5 is
an interaction model with d∗ = d . Function m6 was added due to the interest of
a referee in a modified and “less sparse” version of our existing examples. The
matrix O ∈ [−1,1]7×7 therein is a randomly generated (but fixed) dense orthogo-
nal matrix (see Supplement B in Bauer and Kohler (2019) for details) which also
corresponds to d∗ = d .

The n observations (for n ∈ {100,200}) of the type (X,Y ), which are available
for all estimates, are generated by

Y = mi(X) + σj · λi · ε (
i ∈ {1,2,3,4,5,6}, j ∈ {1,2})

for σj ≥ 0 and λi ≥ 0, where X is uniformly distributed on [0,1]d (here an addi-
tional index i at d , X, and Y is neglected) and ε is standard normally distributed
and independent of X. For reasons of comparability, we choose λi in a way that
respects the range covered by mi in the most common situations based on the
distribution of X. This range is determined empirically as the interquartile range
of 105 independent realizations of mi(X) (and stabilized by taking the median
of a hundred repetitions of this procedure), which leads to λ1 = 9.11, λ2 = 5.68,
λ3 = 13.97, λ4 = 1.77, λ5 = 1.64 and λ6 = 2.47 (rounded to two decimal places).
The parameters scaling the noise are fixed as σ1 = 5% and σ2 = 20%.

To examine the quality of an estimate mn,i for a correct function mi in one of
the above settings, we consider an empirical L2 error, which is motivated by the
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desired properties of a regression estimate from Section 1.1 and Theorem 1. We
define it as

εL2,N̄
(mn,i) = 1

N̄

N̄∑
k=1

(
mn,i(Xk) − mi(Xk)

)2
,

where X1,X2, . . . ,XN̄ are completely new independent realizations of the random
variable X (different from the first n given data points for the estimate). Here, we
choose N̄ = 105. Since this error strongly depends on the behavior of the correct
function mi , we consider it in relation to the error of the simplest estimate for mi

we can think of, a completely constant function (whose value is the average of
the observed data according to the least squares approach). Thus, the scaled error
measure we use for evaluation of the estimates is εL2,N̄

(mn,i)/ε̄L2,N̄
(avg), where

ε̄L2,N̄
(avg) is the median of 50 independent realizations of the value you obtain

if you plug the average of n observations into εL2,N̄
(·). To a certain extent, this

quotient can be interpreted as the relative part of the error of the constant estimate
that is still contained in the more sophisticated approaches.

In view of the fact that simulation results depend on the randomly cho-
sen data points, we compute the estimates 50 times for repeatedly generated
realizations of X and examine the median (plus interquartile range IQR) of
εL2,N̄

(mn,i)/ε̄L2,N̄
(avg). The results can be found in Tables 1 and 2.

In these simulations, the occurring chosen values for the parameters of our es-
timate vary between 0 and 2 for l, between 1 and 2 for K and d∗ and between 1
and 46 for M∗. For the latter one the average occurring value in the simulations is
reported in Table 3.

We observe that our estimate outperforms the other approaches in the three typ-
ical examples for generalized hierarchical interaction models m1, m2, and m3. Es-
pecially in the nested case with the highest dimension, m3, the error of our estimate
is roughly six to seven times smaller than the error of the second best approach for
n = 200. A remarkable fact is that in these cases, the relative improvement of our
estimate with an increasing sample size is often much larger than the improve-
ment of the other approaches. This result is a plausible indicator of a better rate of
convergence.

With regard to the extreme cases of m4, m5 and m6, our approach is not always
the best although it surprisingly performs well even here in some situations. How-
ever, neither the additive model m4 nor the function m5, which is rather densely
connected in the sense of interaction models because all components interact in
only one function, are perfectly imitated by our sparsely connected neural network
estimate. In case of m6, we can observe that our estimate very often performs just
as well as the best other approach or provides the best results itself.

Furthermore, it makes sense that in some of the examined test settings where
our estimate leads to good approximations, one of the fully connected neural net-
work approaches is reasonably good as well. This happens because some of our
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TABLE 1
Median and IQR of the scaled empirical L2 error of estimates for m1, m2 and m3

m1

Noise 5% 20%

Sample size n = 100 n = 200 n = 100 n = 200
ε̄L2,N̄

(avg) 596.52 597.61 596.51 597.63
Approach Median (IQR) Median (IQR) Median (IQR) Median (IQR)

neural-1 0.2622 (2.7248) 0.1064 (0.3507) 0.3004 (2.1813) 0.1709 (3.8163)
neural-3 0.1981 (0.4732) 0.0609 (0.1507) 0.2784 (0.4962) 0.0848 (0.1239
neural-6 0.2953 (0.9293) 0.1207 (0.1672) 0.2663 (0.5703 0.1106 (0.2412)
neural-x 0.0497 (0.2838) 0.0376 (0.2387) 0.0596 (0.2460) 0.0200 (0.1914)
RBF 0.3095 (0.4696) 0.1423 (0.0473) 0.3182 (0.5628) 0.1644 (0.0639)
neighbor 0.6243 (0.1529) 0.5398 (0.1469) 0.6303 (0.1014) 0.5455 (0.1562)

m2

Noise 5% 20%

Sample size n = 100 n = 200 n = 100 n = 200
ε̄L2,N̄

(avg) 407.56 408.34 407.45 408.47
Approach Median (IQR) Median (IQR) Median (IQR) Median (IQR)

neural-1 0.9135 (4.6170) 0.3644 (1.4536) 0.7563 (0.9990) 0.6935 (2.8923)
neural-3 0.7010 (0.8556) 0.1000 (0.1471) 0.6871 (0.6646) 0.3456 (0.4573)
neural-6 0.5809 (1.0208) 0.1468 (0.5747) 0.8678 (1.2043) 0.3128 (0.4199)
neural-x 0.4838 (1.0463) 0.1049 (0.1574) 0.5271 (1.4364) 0.1682 (0.2816)
RBF 0.9993 (0.1301) 0.9232 (0.2180) 0.9823 (0.2503) 0.8873 (0.2316)
neighbor 0.8681 (0.0646) 0.8299 (0.0640) 0.8807 (0.0682) 0.8519 (0.0611)

m3

Noise 5% 20%

Sample size n = 100 n = 200 n = 100 n = 200
ε̄L2,N̄

(avg) 5492.87 5461.66 5477.62 5476.46
Approach Median (IQR) Median (IQR) Median (IQR) Median (IQR)

neural-1 0.5300 (0.2200) 0.2390 (0.1890) 0.6370 (0.2580) 0.2460 (0.1320)
neural-3 0.7180 (0.1340) 0.4280 (0.0940) 0.7190 (0.0910) 0.3980 (0.1100)
neural-6 0.9520 (0.1120) 0.5470 (0.0960) 0.9670 (0.1020) 0.5620 (0.1220)
neural-x 0.1277 (0.2609) 0.0336 (0.0728) 0.1616 (0.9936) 0.0420 (0.2148)
RBF 0.8249 (0.3896) 0.6661 (0.4597) 1.0020 (0.3357) 0.6676 (0.4433)
neighbor 0.8772 (0.0936) 0.7935 (0.0903) 0.8675 (0.0920) 0.8237 (0.0967)
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TABLE 2
Median and IQR of the scaled empirical L2 error of estimates for m4, m5 and m6

m4

Noise 5% 20%

Sample size n = 100 n = 200 n = 100 n = 200
ε̄L2,N̄

(avg) 1.60 1.59 1.61 1.61
Approach Median (IQR) Median (IQR) Median (IQR) Median (IQR)

neural-1 0.0140 (0.0040) 0.0050 (0.0020) 0.0370 (0.0150) 0.0240 (0.0090)
neural-3 0.0160 (0.0060) 0.0080 (0.0020) 0.0450 (0.0110) 0.0240 (0.0050)
neural-6 0.0210 (0.0080) 0.0090 (0.0030) 0.0530 (0.0130) 0.0290 (0.0090)
neural-x 0.0311 (0.1026) 0.0085 (0.0205) 0.2623 (1.5689) 0.1042 (0.2296)
RBF 0.0188 (0.0084) 0.0148 (0.0030) 0.1594 (0.0589) 0.1386 (0.0299)
neighbor 0.3024 (0.07565) 0.2033 (0.0321) 0.2868 (0.0952) 0.2211 (0.0355)

m5

Noise 5% 20%

Sample size n = 100 n = 200 n = 100 n = 200
ε̄L2,N̄

(avg) 1.49 1.49 1.49 1.49
Approach Median (IQR) Median (IQR) Median (IQR) Median (IQR)

neural-1 0.7246 (9.3962) 0.0648 (0.0879) 2.0865 (75.4682) 0.6659 (26.0015)
neural-3 0.3954 (0.9887) 0.1087 (0.1909) 1.5671 (7.0394) 0.2370 (1.4065)
neural-6 0.1023 (0.3572) 0.0716 (0.0760) 0.2482 (0.6611) 0.0836 (0.1646)
neural-x 0.1386 (0.4205) 0.0637 (0.0499) 0.3699 (1.3039) 0.1854 (0.3660)
RBF 0.0127 (0.0044) 0.0112 (0.0033) 0.1445 (0.0671) 0.1352 (0.0298)
neighbor 0.3263 (0.0842) 0.2471 (0.0381) 0.3360 (0.0707) 0.2620 (0.0464)

m6

Noise 5% 20%

Sample size n = 100 n = 200 n = 100 n = 200
ε̄L2,N̄

(avg) 4.43 4.41 4.42 4.41
Approach Median (IQR) Median (IQR) Median (IQR) Median (IQR)

neural-1 1.7664 (379.8016) 0.0556 (24.5402) 0.4763 (39.8014) 18.6135 (462.5238)
neural-3 0.0374 (0.1204) 0.0161 (0.0317) 0.8293 (6.3857) 0.1421 (0.8679)
neural-6 0.0656 (0.1071) 0.0165 (0.0596) 0.1870 (0.5070) 0.0585 (0.0851)
neural-x 0.0275 (0.1406) 0.0388 (0.1488) 0.1212 (0.2715) 0.0719 (0.4423)
RBF 0.0240 (0.0090) 0.0123 (0.0038) 0.1271 (0.0376) 0.1045 (0.0233)
neighbor 0.3343 (0.0675) 0.2328 (0.0587) 0.3466 (0.0818) 0.2467 (0.0519)
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TABLE 3
Average occurring value in the simulations for M∗

Noise 5% 20%

Sample size n = 100 n = 200 n = 100 n = 200

m1 4.24 4.00 2.88 4.46
m2 4.68 4.62 3.66 5.00
m3 3.38 2.56 2.60 2.96
m4 4.62 4.36 3.28 5.42
m5 4.22 12.9 4.08 11.06
m6 3.38 2.80 3.38 3.40

sparse networks can be expressed by fully connected networks (e.g., by fixing the
weights of unnecessary connections to zero), but the data-dependent adjustment of
a smaller number of weights, as in the case of our estimate, is statistically easier.

As remarked by one of our referees, many practitioners prefer nonsmooth acti-
vation functions like σ(z) = max{0, z} instead of the sigmoid squasher for compu-
tational reasons. Therefore, we tested all neural networks estimates using such an
activation function again. The results, which can be found in Supplement B (Bauer
and Kohler (2019)), are quite good in some settings but almost always significantly
worse than the results of our estimate with the sigmoid function.

As pointed out by the associate editor and by one of our referees, it could be
helpful to consider the decrease of the estimation error for an increasing sample
size in detail. Therefore, we computed the estimates from the simulation section
once for each n ∈ {100,120,140, . . . ,560} in case of m1. These errors are plotted
in Figure 3 using logarithmically scaled axes and adding a regression line. Table 4
provides the exact coefficients of these lines. Our new estimate shows the steepest
negative slope, which at least suggests the best rate of convergence because the
slope in a logarithmically scaled representation corresponds to the exponent of n

in the usual error term. Surprisingly, we get a rate of convergence faster than 1
n

for the sample sizes which we consider. We believe that this is due to the fact that
finite sample sizes do not always show the asymptotic behavior of the error.

4. Proofs.

4.1. Outline of the proof of Theorem 1. In the proof of Theorem 1, we will use
the following bound on the expected L2 error of least squares estimates.

LEMMA 1. Let βn = c5 · log(n) for some constant c5 > 0. Assume that the
distribution of (X,Y ) satisfies

E
(
ec6·|Y |2) < ∞(12)
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FIG. 3. Empirical L2 error of different estimation approaches for an increasing sample size in case
of m1.

TABLE 4
Coefficients of the regression lines corresponding to Figure 3

Approach Intercept Slope

neural-1 10.711546 −1.1691606
neural-3 8.892746 −1.0294270
neural-6 7.822762 −0.7930447
neural-x 9.614176 −1.2765884
RBF 10.332239 −1.0974016
neighbor 7.138497 −0.2545437
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for some constant c6 > 0 and that the regression function m is bounded in absolute
value. Let m̃n be the least squares estimate

m̃n(·) = arg min
f ∈Fn

1

n

n∑
i=1

∣∣Yi − f (Xi)
∣∣2

based on some function space Fn and define mn = Tβnm̃n using the truncation
operator defined prior to Theorem 1. Then mn satisfies

E
∫ ∣∣mn(x) − m(x)

∣∣2μ(dx)

≤ c7 · log(n)2 · (log(N ( 1
n·βn

,Fn,‖ · ‖∞,supp(X))) + 1)

n

+ 2 · inf
f ∈Fn

∫ ∣∣f (x) − m(x)
∣∣2PX(dx)

for n > 1 and some constant c7 > 0, which does not depend on n, βn or the pa-
rameters of the estimate.

PROOF. This lemma follows in a straightforward way from the proof of The-
orem 1 in Bagirov, Clausen and Kohler (2009). A complete version of the proof
can be found in Supplement A (Bauer and Kohler (2019)). �

From Lemma 1, we see that we need to bound the covering number

N
(

1

n · βn

,H(l),‖ · ‖∞,supp(X)

)

and the approximation error

(13) inf
f ∈H(l)

∫ ∣∣f (x) − m(x)
∣∣2PX(dx)

for our class of hierarchical neural networks H(l). Given that we assume that our
sigmoidal function is Lipschitz continuous, deriving a bound on the covering num-
ber is easy. The next lemma summarizes the result.

LEMMA 2. Let εn ≥ 1
nc8 and let H(l) be defined as in (6) with max{an,α,

M∗} ≤ nc9 for large n and certain constants c8, c9 > 0. Then

log
(
N

(
εn,H(l),‖ · ‖∞,[−an,an]d

)) ≤ c10 · log(n) · M∗

holds for sufficiently large n and a constant c10 > 0 independent of n.

PROOF. The assertion follows by a straightforward modification of the proof
of Lemma 8 in Kohler and Krzyz̀ak (2017). A complete proof can be found in
Supplement A (Bauer and Kohler (2019)). �
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The main difficulty in the proof is to bound the approximation error (13). Here,
we will show that under the assumptions of Theorem 1 we have

inf
f ∈H(l)

∫ ∣∣f (x) − m(x)
∣∣2PX(dx) ≤ c11 · log(n)3 · n− 2p

2p+d∗ .

For this purpose, we derive a new result concerning the approximation of (p,C)-
smooth functions by multilayer feedforward neural networks with two hidden lay-
ers in Theorem 2 below.

4.2. Approximation of smooth functions by multilayer feedforward neural net-
works. The aim of this subsection is to present the following result concerning
the approximation of (p,C)-smooth function by multilayer feedforward neural
networks with two hidden layers.

THEOREM 2. Let a ≥ 1 and p = q + s for some q ∈ N0 and s ∈ (0,1], and let
C > 0. Let m :Rd →R be a (p,C)-smooth function, which satisfies

max
j1,...,jd∈{0,1,...,q},

j1+···+jd≤q

∥∥∥∥ ∂j1+···+jd m

∂j1x(1) · · · ∂jd x(d)

∥∥∥∥∞,[−2a,2a]d
≤ c12.(14)

Let ν be an arbitrary probability measure on R
d . Let N ∈ N0 be chosen such that

N ≥ q and let σ :R → [0,1] be N -admissible according to Definition 3. Then, for
any η ∈ (0,1) and M ∈ N sufficiently large (independent of the size of a and η, but
a ≤ M must hold), a neural network of the type

t (x) =
(d+N

d )·(N+1)·(M+1)d∑
i=1

μi · σ
( 4d∑

l=1

λi,l · σ
(

d∑
v=1

θi,l,v · x(v)(15)

+ θi,l,0

)
+ λi,0

)

exists such that ∣∣t (x) − m(x)
∣∣ ≤ c13 · aN+q+3 · M−p

holds for all x ∈ [−a, a]d up to a set of ν-measure less than or equal to η. The
coefficients of t (x) can be bounded by

|μi | ≤ c14 · aq · MN ·p,

|λi,l| ≤ Md+p·(N+2),

|θi,l,v| ≤ 6 · d · 1

η
· Md+p·(2N+3)+1

for all i ∈ {1, . . . ,
(d+N

d

) · (N + 1) · (M + 1)d}, l ∈ {0, . . . ,4d}, and v ∈ {0, . . . , d}.
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PROOF. The overall idea of this proof is not complicated. It is based on two
fundamental properties of our neural networks, which we show in several lemmas.
On the one hand, neural networks with adequately chosen weights can roughly
behave like multivariate polynomials. On the other hand, it is possible that neural
networks almost vanish outside of a polytope. Then the constructive proof works
as follows: The considered area, where the function m shall be estimated, is di-
vided into a grid of equally large cubes. For each of these cubes, a small neural
network is constructed, which roughly behaves like the taylor polynomial of m

around the center of that cube and vanishes outside of it. The sum of all such
networks forms a larger neural network, which leads to a good approximation on
the whole considered area. Unfortunately, there are certain transition zones on the
boundary of these cubes, where the required properties cannot be guaranteed. Fi-
nally, a shifting argument for the whole grid of cubes leads to the conclusion that
this exception set can be bounded. Despite this easily comprehensible idea, the
technical details require many laborious lemmas. Therefore, the detailed proof is
outsourced to Supplement A in Bauer and Kohler (2019). �

4.3. Approximation of smooth generalized hierarchical interaction models by
multilayer feedforward neural networks. In this subsection, we use Theorem 2 to
derive the following result concerning the approximation of (p,C)-smooth gener-
alized hierarchical interaction models by multilayer feedforward neural networks.

THEOREM 3. Let X be a R
d -valued random variable and let m : Rd → R

satisfy a (p,C)-smooth generalized hierarchical interaction model of order d∗
and finite level l with p = q + s, where q ∈ N0 and s ∈ (0,1]. Let N ∈ N0 with
N ≥ q . Assume that in Definition 2(b), all partial derivatives of the order less than
or equal to q of the functions gk , fj,k are bounded, that is, let us assume that each
such function f satisfies

max
j1,...,jd∈{0,1,...,q},

j1+···+jd≤q

∥∥∥∥ ∂j1+···+jd f

∂j1x(1) · · · ∂jd x(d)

∥∥∥∥∞
≤ c28,(16)

and let all functions gk be Lipschitz continuous with Lipschitz constant L > 0
[which follows from (16) if q > 0]. Let Mn ∈ N and let 1 ≤ an ≤ Mn be increasing
such that a

N+q+3
n ≤ M

p
n is satisfied for n sufficiently large. Let ηn ∈ (0,1]. Let H(l)

be defined as in (6) with K , d , d∗ as in the definition of m, M∗ = (d∗+N
d∗

) · (N +1) ·
(Mn +1)d

∗
, α = log(n) · M

d∗+p·(2N+3)+1
n

ηn
, and using an N -admissible σ :R → [0,1]

according to Definition 3. Then, for arbitrary c > 0 and all n greater than a certain
n0(c) ∈ N, t ∈ H(l) exists such that outside of a set of PX-measure less than or
equal to c · ηn we have∣∣t (x) − m(x)

∣∣ ≤ c29 · aN+q+3
n · M−p

n
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for all x ∈ [−an, an]d and with c29 independent of the other factors on the right-
hand side (that are variable by n), but depending on fixed values (like c, d , d∗).
Furthermore, this t can be chosen in such a way, that∣∣t (x)

∣∣ ≤ c30 · aq
n · Md∗+N ·p

n

holds for all x ∈R
d .

PROOF. This theorem follows by induction from Theorem 2. A complete
proof can be found in Supplement A (Bauer and Kohler (2019)). �

4.4. Proof of Theorem 1. Let an = log(n)
3

2·(N+q+3) . For a sufficiently large n,
the relation supp(X) ⊆ [−an, an]d holds, which implies N (δ,G,‖ · ‖∞,supp(X)) ≤
N (δ,G,‖·‖∞,[−an,an]d ) for an arbitrary function space G and δ > 0. Then applying
Lemma 1 leads to

E
∫ ∣∣mn(x) − m(x)

∣∣2PX(dx)

≤ c7 · log(n)2 · (log(N ( 1
n·c3·log(n)

,H(l),‖ · ‖∞,[−an,an]d )) + 1)

n

+ 2 · inf
h∈H(l)

∫ ∣∣h(x) − m(x)
∣∣2PX(dx).

Due to the fact that 1
n·c3·log(n)

≥ 1
nc8 and max{an,α,M∗} ≤ nc9 hold for certain

constants c8, c9 > 0, Lemma 2 allows us to bound the first summand by

c7 · log(n)2 · c10 · log(n) · M∗

n
≤ c35 · log(n)3 · n− 2p

2p+d∗

for a sufficiently large n.
Regarding the second summand, we would like to use Theorem 3. Therefore, we

set Mn = 	n 1
2p+d∗ 
 and ηn = log(n)

3·(N+3)
N+q+3 ·n− 2·(N+1)·p+2d∗

2p+d∗ . The resulting values for
M∗ and α therein (which are defined depending on Mn and ηn) are consistent with

the specifications M∗ = 	c56 · n d∗
2p+d∗ 
 and α = nc57 in Theorem 1 for sufficiently

large constants c56, c57 > 0. Even if the specification α = nc57 in Theorem 1 leads
to a larger value than in Theorem 3, the corresponding version of H(l) contains
the approximation from Theorem 3 all the more. If we choose a h∗ ∈ H(l) such
that it satisfies the approximation properties of Theorem 3 using the above an and
Mn, and denote the exception set with measure ηn therein by Dn, we can bound
infh∈H(l)

∫ |h(x) − m(x)|2PX(dx) by∫ ∣∣h∗(x) − m(x)
∣∣2 · 1DC

n
PX(dx) +

∫ ∣∣h∗(x) − m(x)
∣∣2 · 1DnPX(dx)

≤ (
c29 · a(N+q+3)

n · M−p
n

)2 + (
2 · c30 · aq

n · Md∗+N ·p
n

)2 · ηn
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≤ c36 · log(n)3 · n− 2p
2p+d∗

+ c37 · log(n)
3q

N+q+3 · n 2d∗+2N ·p
2p+d∗ · log(n)

3·(N+3)
N+q+3 · n− 2·(N+1)·p+2d∗

2p+d∗

≤ c11 · log(n)3 · n− 2p
2p+d∗ ,

where we assumed m(x) ≤ c30 · aq
n · Md∗+N ·p

n on supp(X) in the second integral,
which is true for a sufficiently large n because of the assumptions of the theorem.
This proves the theorem.
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SUPPLEMENTARY MATERIAL

Supplement A: Further proofs (DOI: 10.1214/18-AOS1747SUPPA; .pdf).
This supplementary file contains the rather technical proofs of several lemmas and
assertions in this article.

Supplement B: Further simulation results (DOI: 10.1214/18-
AOS1747SUPPB; .pdf). This file contains the results of some experiments with
another activation function in the neural network estimates.
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