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Multivariate State Hidden Markov Models
for Mark-Recapture Data
Devin S. Johnson, Jeff L. Laake, Sharon R. Melin and Robert L. DeLong

Abstract. State-based Cormack–Jolly–Seber (CJS) models have become an
often used method for assessing states or conditions of free-ranging animals
through time. Although originally envisioned to account for differences in
survival and observation processes when animals are moving though various
geographical strata, the model has evolved to model vital rates in different
life-history or diseased states. We further extend this useful class of models
to the case of multivariate state data. Researchers can record values of sev-
eral different states of interest, for example, geographic location and repro-
ductive state. Traditionally, these would be aggregated into one state with a
single probability of state uncertainty. However, by modeling states as a mul-
tivariate vector, one can account for partial knowledge of the vector as well
as dependence between the state variables in a parsimonious way. A hidden
Markov model (HMM) formulation allows straightforward maximum likeli-
hood inference. The proposed HMM models are demonstrated with a case
study using data from a California sea lion vital rates study.

Key words and phrases: Capture-recapture, Cormack–Jolly–Seber, hidden
Markov model, multivariate, partial observation, state uncertainty.

1. INTRODUCTION

The seminal papers by Cormack (1964), Jolly (1965)
and Seber (1965) initiated 50 years of active develop-
ment of capture-recapture theory and application. The
Cormack–Jolly–Seber (CJS) model for survival esti-
mation and the Jolly–Seber model for survival and
abundance estimation and their extensions are still the
most widely used capture-recapture models. They have
been implemented in the computer software MARK
(White and Burnham, 1999), POPAN (Arnason and
Schwarz, 1999), SURGE (Lebreton et al., 1992), M-
SURGE (Choquet et al., 2004), E-SURGE (Choquet,
Rouan and Pradel, 2009) and, more recently, marked
(Laake, Johnson and Conn, 2013) and multimark
(McClintock, 2015).
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Expansion of CJS models to account for movement
between areas (multistate) was initiated by Darroch
(1958) and Arnason (1973) and further developed
by Hilborn (1990), Hestbeck, Nichols and Malecki
(1991), Schwarz, Schweigert and Arnason (1993) and
Brownie et al. (1993). Nichols et al. (1992) used the
multistate model to describe survival with state tran-
sitions based on mass and this has been followed by
numerous other examples using the multistate model
(Lebreton and Pradel, 2002; Nichols and Kendall,
1995; White, Kendall and Barker, 2006). An impor-
tant advance to the multistate CJS generalization was
made by Kendall et al. (2004) who considered mod-
els with state uncertainty (unknown state) and Pradel
(2005) who cast a multistate model with state uncer-
tainty as a hidden Markov model (Zucchini and Mac-
Donald, 2009). The state uncertainty models are often
termed multievent models. In a further step, Kendall
et al. (2012) combined a robust design with a multi-
state hidden Markov model to improve precision in the
face of state uncertainty. We use the general term state-
based to refer to all of these types of CJS models.

For traditional CJS analysis, the detection portion of
the model is often considered to be a nuisance with
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little scientific interest and often determined largely
by the resampling methods used by researchers to re-
sight individuals. The achievement made by the devel-
opment of the original CJS model was that it permit-
ted estimation of survival even when individuals were
not observed on every occasion. The state-based exten-
sions allowed survival inference to account for time-
varying heterogeneity or deviations from CJS model
assumptions induced by states as well as to make in-
ference to the state process itself (Lebreton and Pradel,
2002). With the recently developed extensions, one can
often find state-based CJS analyses where survival is
also considered a nuisance process and primary sci-
entific interest lies with the transitions between states.
See Gourlay-Larour et al. (2014) for a recent exam-
ple. With this in mind, practicing ecologists are us-
ing the state-based CJS framework and the associated
HMM formulation to analyze complex state transi-
tions such as the combination of geographic location
and reproductive or disease status. This presents the
problem that a state may be only partially observed
when an individual is resighted. For example, location
will be known but reproductive status may not be ob-
served. To further generalize the state-based CJS mod-
els, King and McCrea (2014) developed a closed-form
likelihood expression to handle partial knowledge of
the state of an individual. However, a general frame-
work for parametrizing complex state-based CJS mod-
els is not examined. Laake et al. (2014) made initial
strides into multivariate state CJS models by propos-
ing a bivariate state model to account for dependence
in double-mark loss. Here we seek to augment the work
of King and McCrea (2014) and Laake et al. (2014) to
provide a general method to construct complex state-
based CJS models.

In this paper we propose a general modeling frame-
work for multivariate state-based CJS models in which
the state is defined by one or more discrete categorical
variables and each variable may be unknown when the
animal is resighted. The modeling framework extends
the state-based models in MARK by allowing any or all
of the state variables to be uncertain rather than just a
single uncertain state. We have implemented the model
in the marked package (Laake, Johnson and Conn,
2013) for the R statistical environment (R Develop-
ment Core Team, 2015) using a hidden Markov model
(HMM) formulation for maximum likelihood estima-
tion of the parameters. General multivariate HMMs
have been proposed in the past (Ghahramani and Jor-
dan, 1997, Brand, Oliver and Pentland, 1997), but here
we model the state vector in a log-linear framework

(Christensen, 1997) to easily allow all levels of depen-
dence among state variables. The proposed model is
illustrated with a case study using 18 years of annual
resighting data collected on a single cohort of Califor-
nia sea lion (Zalophus californianus) pups that were
both branded and double tagged on their flippers in
1996 at San Miguel Island near Santa Barbara, Cali-
fornia (Melin et al., 2011). The animal’s state was de-
fined based on location (San Miguel or Año Nuevo Is-
lands), which was always known when the animal was
resighted and the, possibly unknown, states of the two
flipper tags (present or absent due to tag loss).

2. METHODS

To begin the description of multivariate state mod-
eling of mark-recapture data, we must begin with the
state and data structure. The general structure is based
on the capture histories of individuals, indexed i =
1, . . . , I , over capture occasions, indexed j = 1, . . . , J .
The state of an individual on a particular occasion
is determined by the cross-classification of that indi-
vidual to a cell in a multiway table where the mar-
gins represent state variables of interest. Specifically,
the state s = (s1, . . . , sK) is a vector where the en-
tries correspond to K classification criteria, for ex-
ample, location, reproductive status or disease pres-
ence. Each state variable has a set of possible values
sk ∈ Sk = {1, . . . ,mk}, k = 1, . . . ,K . The space of the
state vector, s, is thus S = S1 × · · · × SK . The num-
ber of possible states is denoted M = |S| = ∏

k mk .
We also need to augment the state-space, S , with a
“death” state, such that the individual can transition
between all s ∈ S as well as death. We represent the
death state with s = 0, so the augmented state space
is S† = S ∪ {0}. The observed data for an individ-
ual on a particular (re)capture occasion is denoted as
c = (c1, . . . , cK). The observed state can differ from
the true state in two ways. First, an individual may
not be observed (detected) on a particular capture oc-
casion. Second, it is possible, and highly probable in
many situations, that even if an individual is physically
observed, state specification may not be completely de-
termined by the researcher. Thus, the space of the ob-
servation vector is augmented with two additional lev-
els corresponding to “not observed” and “unknown,”
that is, ck ∈ {0,1, . . . ,mk,mk + 1}, where 0 is for un-
detected individuals and mk + 1 is associated with an
unknown level for that state variable. In heuristic de-
scriptions we will use ck = u to be clear we are re-
ferring to the unknown state. In addition, we take the
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convention that if ck = 0 for any k, it is assumed that
all ck = 0. We use cij to denote the observed state of
individual i on occasion j . Table A.1 of Supplement A
(Johnson et al., 2016a) provides a glossary of the nota-
tion used in this paper.

2.1 Two-State Variable Model

Specifying a model for a general multivariate dis-
crete state is notationally cumbersome due to the com-
plex dependence structure. Therefore, we begin with
a description for a bivariate state model, and then fol-
low up in the next section with a general model for-
mulation for >2 state variables with additional covari-
ates. The general parameter types are the same as in
any state-based CJS model: survival (φ), detection (p),
and state transition (ψ) from one occasion to the next.
In addition, we have parameters associated with the
inability to fully assess the state of an individual (δ)
and the probability that an individual is in a particu-
lar state at first capture (π ). Typically, each of these
parameter types depends on the state of the individ-
ual; for example, survival of individual i from occa-
sion j to occasion j + 1 depends on the state of the
individual on occasion j . Each multivariate state vari-
able may contribute independently to survival, or may
interact at various levels to further enhance or degrade
survival. Thus, models for these parameters must ac-
commodate this interaction (dependence) when mod-
eling state transition. We take a log-linear approach
(Christensen, 1997) for modeling multiway contin-
gency tables which allows for all levels of dependence
between state variables.

We begin with modeling state transitions from one
occasion to the next. Suppose individual i is alive
on occasion j < J , then the probability of a transi-
tion from state r = (r1, r2) ∈ S on occasion j to state
s = (s1, s2) ∈ S on occasion j + 1 is given by the con-
ditional log-linear model,

ψ(s; r) ∝ exp
{
β(1)(s1; r) + β(2)(s2; r)

(2.1)
+ β(1,2)(s1, s2, r)

}
,

where, for each r ∈ S , β(1)(s1; r), β(2)(s2; r) and
β(1,2)(s1, s2; r) are parameters which depend on the
previous state, r, and are indexed by the values of
s1, s2 and the double index of (s1, s2), respectively.
For example, the collection of β(1) parameters is
{β(1)(1; r), . . . , β(1)(m1; r)}. If we denote � to be the
transition matrix describing the probability of tran-
sitioning from any state on occasion j to any other
state on occasion j + 1, equation (2.1) evaluated for

all s ∈ S would form the rows associated with each
possible current state r. There are m1 + m2 + m1m2
parameters for each r. Thus, there are m1m2 × (m1 +
m2 + m1m2) β parameters within the m1m2 × m1m2
transition matrix � . Hence, the model is overparam-
eterized. To alleviate this problem, it is customary to
pick a reference cell, say, s∗ ∈ S , and fix all β pa-
rameters to 0 when s1 = s∗

1 or s2 = s∗
2 . For exam-

ple, if s∗ = (r1, r2) (the current state), β(1)(r1; r) ≡ 0,
β(2)(r2; r) ≡ 0, β(1,2)(s1, r2; r) ≡ 0 for any s1 value,
and β(1,2)(r1, s2; r) ≡ 0 for any s2 value. Of course, it
is not necessary to use the current state as the reference
state, but it has some advantages, namely, the β pa-
rameters are interpreted as controlling movement away
from the current state and the current state is usually
an acceptable possibility for a realization at the next
occasion (i.e., nonzero probability of occurring). This
may not be the case if you define a fixed state as the
reference. See Table 1 for an example of ψ(s; r) spec-
ification with the reference cell constraint.

Markovian dependence in time is explicitly included
by allowing the β parameters to depend on the previous
state. In addition, dependence between state variables
is accommodated via the β(1,2) interaction parameters.
If β(1,2)(s1, s2; r) = 0 for all values of s1 and s2, then
this is a necessary and sufficient condition for s1 and
s2 to be independent given the previous state r. Suf-
ficiency is easily observed by the fact that under that
assumption

ψ(s; r) ∝ exp
{
β(1)(s1; r) + β(2)(s2; r)

}
(2.2)

∝ ψ(1)(s1; r) × ψ(2)(s2; r).

Thus, the probability of transition to state s is the
product of independent transitions from r1 → s1 and
r2 → s2. Proof of necessity is quite cumbersome and
beyond the scope of this paper. See Lauritzen (1996)
for more theoretical details of log-linear modeling. One
caveat of these independence results is that they as-
sume there are no structural zeros (impossible state
transitions). If there are, one should check that inde-
pendence still holds if it is a desirable property. Other-
wise, zero-valued interaction terms can just be used for
parsimonious modeling.

The next set of parameters of scientific interest is sur-
vival. Given that individual i is in state s on occasion
j , the probability of survival from occasion j to j + 1
is described by

φ(s) = �−1{
η∅ + η(1)(s1) + η(2)(s2)

(2.3)
+ η(1,2)(s1, s2)

}
,
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TABLE 1
Example transition probabilities, ψ(s; r), for a hypothetical bivariate state s

composed of state variables s1 ∈ {1,2,3} and s2 ∈ {1,2}. Here we use the
reference cell s∗ = (1,1). The ψ probabilities are presented in their unnormalized
form as in equation (2.1). The necessary normalizing constant is the sum over all

the table entries

s2

1 2

s1 1 1 exp{β(2)(2; r)}
2 exp{β(1)(2; r)} exp{β(1)(2; r) + β(2)(2; r) + β(1,2)(2,2; r)}
3 exp{β(1)(3; r)} exp{β(1)(3; r) + β(2)(2; r) + β(1,2)(3,2; r)}

where � is a link function such as logit or probit, and
the η parameters are functions of (indexed by) the cur-
rent state, s. The η parameters have the same structure
and reference cell constraints as the β parameters in
the ψ model. Readers should also observe that there is
a η∅ parameter. This term is not indexed by the state
and represents baseline survival. Even though the no-
tation may appear different for some readers, it should
be noted that this φ model is identical to a model with
s1 and s2 being thought of as known categorical covari-
ates with interaction effects included. So, as far as the
survival model is concerned, s1 and s2 are equivalent
to (individual × occasion) indexed factor covariates.

We now move to the observation and detection por-
tion of the model. Given that individual i is in state s
on occasion j , the probability that the individual is de-
tected (i.e., recaptured or resighted) by the researcher
is given by

p(s) = �−1{
ζ∅ + ζ (1)(s1) + ζ (2)(s2)

(2.4)
+ ζ (1,2)(s1, s2)

}
.

As with the survival model, the state variables can be
considered as factor variables for the purposes of con-
ceptualizing the model. There is one more set of pa-
rameters working in concert with p; these are related
to the ability of the researcher to jointly classify a de-
tected individual according to all of the state variables.
If an individual i is detected on occasion j , then the
joint probability of the state observation, c = (c1, c2)

′,
conditioned on the true state is modeled via

δ(c; s) ∝ exp
{
α(1)(c1; s) + α(2)(c2; s)

(2.5)
+ α(1,2)(c1, c2; s)

}
, c 	= 0.

Note that we do not consider misidentification of
states; a state variable is either observed correctly

(ck = sk) or it is not observed and the value is un-
known (ck = mk + 1 or u). As with the multivari-
ate transition model, ψ , a reference cell, say c∗, is
necessary for parameter identifiability. One could use
c∗ = (m1 + 1,m2 + 1), the completely unknown state,
to be consistent with previous univariate state uncer-
tainty models (e.g., Laake, 2013, Kendall et al., 2012),
but it is not necessary and may be undesirable if the
completely unknown state is not observable, for exam-
ple, double-tag studies where no third permanent mark
is available. We suggest using the current state, c∗ = s,
as the reference. As with the ψ models, one can in-
corporate dependence in recording the level of each
state variable. That dependence implies, for example,
that if the researcher is able to record the level for one
state variable, the researcher is more (less) likely to
record the level of the other. There may be some state
variables which are always recorded with certainty, for
example, location. In that situation, one can simply re-
move any c that contains an unknown observation for
those variables, or equivalently set the corresponding
δ value to zero. As with the state transition probabili-
ties, ψ , if these structural zeros exist, then the depen-
dence interpretation needs to be investigated because
conditional dependence can be induced by the zeros.

Finally, the last set of parameters is associated with
the initial capture of the individual. We are considering
only CJS type models here, thus, we are still condi-
tioning the model on the occasion when an individual
is first observed. When an individual is first captured
(marked), however, the researcher may not be able to
observe all state variables. Therefore, we need to model
the probability that individual i, who is first marked on
occasion j , is in state s. So, we describe this probabil-
ity via

π(s) ∝ exp
{
λ(1)(s1) + λ(2)(s2)

(2.6)
+ λ(1,2)(s1, s2)

}
.
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Here, there is no previous cell from which to form the
reference cell. Therefore, the researcher will have to
decide on the most appropriate state to serve as the
reference. The π model parameters, however, may not
necessarily have to be estimated. For example, if it is
certain that all state variables will be observed at first
marking, then it can be fixed to π(s) = 1, where s is the
state individual i was in when it was first marked, and
π(r) = 0 for all r 	= s (see Section 3). Or, a researcher
might specify, say, π(s) = 1/M , where M is the num-
ber of cells in S . The π probabilities can be interpreted
as a prior distribution, in the Bayesian sense, on the
state of a newly marked individual, thus, 1/M would
be a uniform prior over the state-space.

2.2 General Multivariate State Model

In this section we generalize the bivariate state mod-
els presented in the previous section. Here, researchers
can consider state specifications that index a cell in a
general K-dimensional hypercube and models can de-
pend on covariates as well. To accomplish this, we in-
troduce the notation V = {1, . . . ,K} to be the set which
indexes the collection of K state variables and v ⊆ V
is a subset. The partial state s(v) represents only those
elements of s whose indexes are contained in v ⊆ V .
The state subspace S(v) denotes the set of all possible
values of s(v).

Now, the fully specified model describing the tran-
sition of individual i in state r = (r1, . . . , rK) on oc-
casion j to state s = (s1, . . . , sK) on occasion j + 1 is
given by

ψij (s; r) ∝ exp
{∑

v⊆V
x(v)
ij · β(v)

ij (s; r)
}
,(2.7)

where x(v)
ij is a vector of covariates, the notation “x ·β”

represents the dot product x′β , and β
(v)
ij (s; r) is a co-

efficient vector that depends on the state, s ∈ S , only
through the value of the substate s(v) ∈ S(v) and r ∈
S . As with the bivariate model in the previous sec-
tion, we must satisfy the reference cell constraint to
have an identifiable set of parameters. Therefore, all
β(v)(s; r) ≡ 0 if any element of the substate s(v) is
equal to the corresponding elements of the reference
cell, s∗. Independence of state variables is more com-
plex than described in the previous section due to a
number of possible interactions between different sets
of variables. To provide a generalization, let v1, v2 and
v3 be subsets of state variables that partition V . Then
s(v1) and s(v3) are conditionally independent given s(v2)

(and r) if and only if β(v)(s; r) = 0 for all s, where v

contains elements of both v1 and v3 (i.e., v ∩ v1 	= ∅

and v∩v3 	=∅) (Frydenberg, 1990). For example, sup-
pose V = {1,2,3}, then s1 is conditionally independent
of s3 given s2 (and r) if β(1,3)(s; r) = β(1,2,3)(s; r) = 0
for all s. Further, if we assume that β(1,2)(s; r) = 0,
then s(1) = s1 is independent (given r) of s(2,3) =
(s2, s3). In that case, we can follow the example in (2.2)
and write

ψij (s; r) = ψ
(1)
ij

(
s; r(1))ψ(2,3)

ij

(
s; r(2,3)).(2.8)

This independence factorization can extend to more
than two groups using the Gibbs factorization theo-
rem (see Frydenberg, 1990). Again, independence the-
orems are based on the absence of structural zeros.

We can progress through the other parameter groups
in a similar fashion to produce a general multivariate
state model. The survival portion of the model can be
generalized to

φij (s) = �−1
{∑

v⊆V
x(v)
ij · η(v)

ij (s)
}
,(2.9)

where the covariate vector x(v)
ij need not be the same

as that shown in equation (2.7); we use the same nota-
tion simply to avoid extra clutter. Cycling through the
remaining parameters, we have

pij (s) = �−1
{∑

v⊆V
x(v)
ij · ζ (v)

ij (s)
}
, s 	= 0,(2.10)

δij (c; s) ∝ exp
{∑

v⊆V
x(v)
ij · α(v)

ij (c; s)
}
,

(2.11)
c 	= 0 and s 	= 0,

where we suggest the reference cell c∗ = s. In general,
there will be 2d possible values of c associated with
each s, where d is the number of state variables for
which a u can be recorded. Finally, the probability dis-
tribution of states upon first capture is

πij (s) ∝ exp
{∑

v⊆V
x(v)
ij · λ(v)

ij (s)
}
.(2.12)

This completes the general model for a K-dimensional
state vector. In the next section we focus on methods
for efficient parameter estimation and inference. Simi-
lar to the ψ models, the δ and π parameters can be fac-
tored into independent products as well. This will facil-
itate easier overall model construction if certain state
variables can be assumed to be independent, making it
easier to parameterize dependence over a small subset
of variables.
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2.3 Statistical Inference

Statistical inference for multistage mark-recapture
models can be challenging (McCrea and Morgan,
2014). We take the approach described by Laake
(2013) who uses a hidden Markov model (HMM) for-
mulation. By framing a state-based CJS model as a
specific HMM, the efficient forward algorithm can be
used to maximize the likelihood (Zucchini and Mac-
Donald, 2009). Laake (2013) provides a detailed de-
scription of HMM formulated mark-recapture models
and likelihood calculation, but we briefly revisit it here
to place the forward algorithm in the context of multi-
variate state CJS models.

To begin the description of the forward algorithm
in the multivariate state CJS model case, we must de-
fine three matrices. The transition probability matrix
for movement within S† is given by

�ij =

⎡
⎢⎢⎢⎢⎣

φij (r1)ψij (s1; r1) · · ·
...

φij (rM)ψij (s1; rM) · · ·
0 0

(2.13)
φij (r1)ψij (sM ; r1) 1 − φij (r1)

...
...

φij (rM)ψij (sM ; rM) 1 − φij (rM)

· · · 1

⎤
⎥⎥⎥⎥⎦ ,

where M is the size of the state-space (recall M =∏
k mk), rm, m = 1, . . . ,M , refers to the current state

on occasion j , sm refers to the state to which the an-
imal is transitioning on occasion j + 1, and the last
column (row) is associated with transition to (from)
the death state. In addition to the state-space augmen-
tation, we define the observation probability matrix
which describes the probability of observing state cn,
n = 0, . . . ,N , for animal i on occasion j (rows) given
it was actually in state s ∈ S† (columns):

Dij =

⎡
⎢⎢⎢⎢⎣

pij (s1)δij (c1; s1) · · ·
...

...

pij (s1)δij (cN ; s1) · · ·
1 − pij (s1) · · ·

(2.14)
pij (sM)δij (c1; sM) 0

...

pij (sM)δij (cN ; sM) 0
1 − pij (sM) 1

⎤
⎥⎥⎥⎥⎦ ,

where observed state c0 = (0, . . . ,0), the undetected
state, is represented by the last row. For use in the

forward algorithm, we also define the K × K matrix,
P(cij ), to be a diagonal matrix with the row of Dij as-
sociated with the observed state for individual i on oc-
casion j as the diagonal entries.

Using the �ij and P(cij ) matrices, we can describe
the forward algorithm specific to maximum likeli-
hood estimation in the multivariate state MR model.
The algorithm proceeds as follows for individual i =
1, . . . , I :

1. Initial conditions:

• Set wifi
= π ′

ifi
P(cifi

)1, where fi = 1, . . . , J −
1 is the occasion on which individual i was
first captured/marked, π ifi

= (πifi
(s1), . . . ,

πifi
(sM))′, and 1 is a vector of all 1’s.

• Set μ′
ifi

= π ifi
P(cifi

)/wifi
.

• Set Li = logwifi
.

2. For j = fi + 1, . . . , J :

• Set wij = μ′
i,j−1�ij P(cij )1.

• Set μ′
ij = μi,j−1�ij P(cij )/wij .

• Set Li = Li + logwij .

The forward probabilities μij represent the conditional
probability distribution of the state of individual i on
occasion j , given the observed states up to and includ-
ing occasion j and the parameters. After the algorithm
has been run for every individual, the log-likelihood is
given by

L =
I∑

i=1

Li.(2.15)

The log-likelihood can be maximized to provide pa-
rameter estimates and biological inference. In the next
section we will provide a real-world example where
multivariate states are collected in a mark-resight study
of California sea lions.

3. EXAMPLE: MOVEMENT, SURVIVAL AND MARK
LOSS IN CALIFORNIA SEA LIONS

3.1 Data and Model Description

As an example of a multivariate state CJS analysis
we use 18 years of annual resighting data collected on
a single cohort of California sea lion (Zalophus cal-
ifornianus) pups. In 1996, a total of 485 4–5 month
old pups born on San Miguel Island (SMI), off the
west coast near Santa Barbara, California (Melin et al.,
2011) were herded into a pen over a total period of five
days. The sex and weight of each pup was recorded and
a unique permanent number was applied as hot brand to
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their left side. In addition, a uniquely numbered yellow
roto-tag was applied to each of their foreflippers. Pups
were resighted by their brand during a three month pe-
riod from 15 May to 15 August each year at SMI and
Año Nuevo Island (ANI). SMI is a breeding rookery,
whereas ANI is a haul out where animals rest and only
a few pups are born and raised. When the animal was
resighted, the presence (+) or absence (−) of each tag
was noted. In many cases, however, the status was not
recorded for one or both of the tags. Although the flip-
per tags were not directly relevant to the resighting ef-
fort, their presence allowed a rare opportunity to assess
loss and dependence for other pinniped studies that rely
solely on flipper tags for marking (e.g., Testa et al.,
2013).

From the sea lion data, a capture history was con-
structed with annual occasions and each entry was
composed of 3 characters, with the first for the area,
the second for the left tag and the third for the right
tag. There were 8 different possible states for a live an-
imal (a ++, a −+, a +−, a −−, s ++, s −+, s +−
and s − −). Here we are using symbolic representa-
tion of the states for ease of discussion. In terms of the
notation presented in the previous sections, s1 is the lo-
cation state (s1 = 1 for “a” and 2 for “s”), and s2 and
s3 are the left and right tag status variables (sk = 1 for
“+” and 2 for “−”; k = 2,3).

To begin the model specification used to analyze
these data, we will start with the observation portions
of the model (p and δ). The possible capture history
values were 0 if not seen, the 8 possible states if seen
and each tag status was recorded, and an additional
10 observations with unknown tag status (a + u, au+,
a − u, au−, auu, s + u, su+, s − u, su−, suu). For
these data, location is always known with certainty
when the animal is detected but each tag status could be
unknown. For the δ model we used the fully known tag
status as the reference cell, which implies that the pa-
rameters can be interpreted as controlling whether tag
status was not obtained (i.e., unknown). The following
formulation was used:

δij (c; s) = δ(2,3)(c(2,3), s
)

for c1 = s1,
(3.1)

∝ exp
{
α(2)(c) + α(3)(c) + α(2,3)(c)

}
.

Table A.2 in Supplement A (Johnson et al., 2016a) il-
lustrates the observation model parameters. For detec-
tion, we used the occasion × area model

logit pij (s) = ζ0 + ζj + ζ (1)(s) + ζ
(1)
j (s),(3.2)

where ζj is an occasion effect, ζ (1)(s) is an area effect,

and ζ
(1)
j (s) is an occasion × area interaction. Resight-

ing of animals was based on the permanent brand mark,
thus, tag status was not included in the model.

Now, we describe the more scientifically relevant,
process portions of the model. First, all animals started
on SMI with two tags [i.e., si1 = (s + +)] on the first
release occasion. Thus, for this example πi1(s) = 1 for
s = (s + +). The survival model was formulated with
sex, age and area-specific effects,

logit φij (s) = xij · η
∅

+ Bsex(i),j + η(1)(s),(3.3)

where xij = (1,wij ), where wij is the mass anomaly
(difference from sex-specific mean) if j = 1, zero else-
wise (i.e., only pup survival is influenced by mass),
Bsex(i),j is a sex-specific b-spline smooth (df = 3;
Hastie, 1992) over age, and η(1)(s) is an area effect.
Here, mass anomaly was used as a proxy for body con-
dition. Males tend to be heavier on average and we did
not want sex differences due to other factors to be hid-
den within an absolute mass effect. For the state tran-
sitions we used the previous state as the reference state
for the following occasion, that is, s∗ = r for transitions
from r → s. Thus, the parameters control movement
away from the current area (s1) and loss of flipper tags
(s2, s3). The state transitions were modeled by

ψij (r, s) ∝ exp
{
B

(1)
sex(i),j (s; r) + xj · β(2)(s; r)

(3.4)
+ xj · β(3)(s; r) + β(2,3)(s; r)

}
,

where B
(1)
sex(i),j (s; r) is a sex- and area-specific b-spline

(df = 3) over age, xj = (1,agej ), and β(2,3)(s; r) is an
interaction term between the two tags which models
dependence in loss. Although not immediately obvi-
ous, the b-spline effect, B(1)

sex(i),j (s; r), can be written in

the form bj ·β(1)
sex(i)(s; r), where bj is a vector of the b-

spline basis function values for occasion j . Therefore,
it fits into the proposed log-linear framework. Also, be-
cause the same type of tag was placed on each flipper,
we constrained the marginal loss rates to be identical
for each side. This is accomplished by setting the tag
loss parameters β(2)(−;+) = β(3)(−;+). The proba-
bilities for impossible transitions [i.e., going from “−”
to “+” for either flipper tag variable (s2, s3)] were fixed
to zero. The tag loss portion of the state transition gen-
erally follows the tag loss model proposed by Laake
et al. (2014). Note that the structural zeros only affect
the r(2,3) → s(2,3) transitions and there is no interac-
tion term for s(1) and s(2,3); therefore, we can write
ψij (s; r) = ψ

(1)
ij (s; r)ψ(2,3)

ij (s; r). Table A.3 in Supple-
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ment A (Johnson et al., 2016a) illustrates the transition
probabilities for each current state, r, to each possible
state, s.

The full model was fitted with maximum likelihood
methods using the forward HMM algorithm in Sec-
tion 2.3. The ability to fit multivariate state models was
added to the R package marked (Laake, Johnson and
Conn, 2013). R code used for this example is available
in Supplement B (Johnson et al., 2016b). Confidence
intervals (CI) for derived quantities were approximated
using a multivariate normal parametric bootstrap with
mean equal to the maximum likelihood estimate and
covariance matrix equal to the negative Hessian of the
log-likelihood function (see Supplement B; Johnson et
al., 2016b). The delta method could be used. However,
with complex parameter functions, forming the gradi-
ent can be challenging, thus we opted for the ease of
the bootstrap.

3.2 Results

The 1996 cohort of sea lion pups on SMI experi-
enced a very strong El Niño in 1997 which both in-
fluenced the movement of young animals to ANI and
created a high level of mortality before the sea lions
reached age 2. With a single cohort and a high level
of early mortality, the sample sizes were small at older
age classes and the confidence intervals became very
wide and that should be considered in evaluating any
patterns across age. This unusual event may have also
influenced differences in survival across sex and age.
However, as an example, it does illustrate the useful-
ness and flexibility of building multivariate state mod-
els.

We begin the results description with the observation
model, δ. This is a somewhat unusual example with re-
gard to observation of each state’s status. Observers use
the brand for resighting and the tag status was often not
observed. Observers were more likely to record status
of left tag because the brand is on the sea lion’s left side
(Figure 1). The odds of missing the second side when
the first is missed increases 5-fold [3.5–8.2] (95% con-
fidence intervals are contained within square brackets).
This again is due to use of brand for resighting. If the
observer didn’t record the status of the left side, then
they were unlikely to get the status of the right side.
The fitted detection model, p, is illustrated in Figure
A.1 of Supplement A (Johnson et al., 2016a). It is rel-
atively standard with respect to multistate (and CJS)
modeling, so we do not elaborate further here.

Male pups had a slightly better overall pup sur-
vival (Figure 2). Although confidence intervals over-

FIG. 1. Estimated δ parameters for the California sea lion model.
If the tag status was observed, then it appears as “Obs” in the plot.
Thus, for example, the column “Obs/Unk” indicates the probability
that the left tag was observed and the right tag was not observed
and its status is unknown. The error bars represent 95% CIs.

lapped considerably. For both sexes, pup survival in-
creased with increasing mass, which has also been ob-
served in northern fur seals (Baker and Fowler, 1992;
Baker, Fowler and Antonelis, 1994), Steller sea lions
(Hastings, Gelatt and King, 2009) and Hawaiian monk
seals (Baker, Fowler and Antonelis, 1994; Craig and
Ragen, 1999).

For nonpups (age > 0) survival increased to adult
age (about 5 years old) and then declined in older ages
(Figure 3). The decline was much more dramatic for
males whose cost of reproduction is high due to their
polygynous breeding system in which breeding males
have to defend a territory (Peterson and Bartholomew,
1967; Johnson, 1968). For both sexes, higher survival
at ANI was likely due to two factors. First, in El
Niño years prey resources are distributed farther north,
closer to ANI, thus animals not constrained by repro-

FIG. 2. Mass- and sex-specific survival probability for California
sea lion pups on San Miguel Island, California. Mass anomaly is
the deviation from the sex-specific mean mass. Colored envelopes
represent 95% CIs.
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FIG. 3. Sex- and age-specific annual survival probabilities for
California sea lion nonpups (age > 0). Separate curves are plot-
ted for each area A = Año Nuevo I. and S = San Miguel I. Although
plotted as a solid curve, animals transitioned between the curves
depending on the area occupied. Colored envelopes represent 95%
CIs.

ductive commitments at SMI had better access to food.
Second, animals at ANI during the breeding season
were likely nonreproductive (at least for a given year)
and, thus, did not have to invest in costly activities such
as holding territories (males) or lactation (females),
which allowed them to preserve or invest in better body
condition.

With respect to movement between SMI and ANI,
we could look at the fitted age- and sex-specific an-
nual area transition probabilities (Figure A.2; Sup-
plement A, Johnson et al., 2016a). However, a more
biologically interesting, derived quantity is the sex-
specific proportion of animals that are located in each
area for a given age, π ij . This is because animals at
SMI during the breeding season were likely reproduc-
tive. This derived quantity can be calculated by

π̂ ij = π i1 ·
J−1∏
j=1

�̂
(1)
ij ,(3.5)

where, for the sea lion data, π i1 = (1,0)′ because all
pups began at SMI on occasion 1, and �̂

(1)
ij is a 2 × 2

matrix with ψ̂
(1)
ij (s; r) entries. Figure 4(A) illustrates

the occupancy rate of SMI by both sexes. In general,
females began returning to SMI at around age 3 and oc-
cupancy stabilized to ≈0.7 by age 5. Thus, about 70%
of females from the 1996 cohort were reproductively
active each year based on location alone. This is simi-
lar to the 0.77 average natality estimated by Melin et al.
(2011) for several cohorts. A large proportion of males
stayed at ANI until the age of 10 or 11 when they began
to return and to hold territories. Because a large propor-
tion of males were located at ANI during the breeding

FIG. 4. (A) Age- and sex-specific probability that an individual
was located at San Miguel I. during the breeding season. Solid
lines and envelopes represent probability that an animal was lo-
cated at SMI and 95% CIs. (B) The Age- and sex-specific cumula-
tive marginal survival, that is, the expected proportion of animals
that were alive at a given age.

season, they experienced better annual survival (for the
reasons discussed previously) and, hence, had higher
survivorship than females [Figure 4(B)]. By age 12–
13, however, the lower survival for breeding males on
SMI resulted in equal survivorship.

Finally, although it did not affect the estimation of
survival in this case due to the permanent brand, the
flipper tag results were quite revealing for pinniped
studies where a third mark is not possible. First, tag
loss rate increased with age. Marginally, the odds of
loosing a specific tag (left or right) increased 1.56-fold
[1.38–1.75] every year. There was also substantial de-
pendence between tags. The odds of losing a tag in-
creased 406-fold [76–2204] when the other had been
lost. Therefore, tags were almost always lost simulta-
neously. The probability of losing both tags at or be-
fore the animal was 5 years old was 0.49 [0.38–0.61];
by age 9, the probability increased to 0.91 [0.86–0.95]
(Figure 5; CDF). The most probable age for an animal
to become (−,−) tag status was 5–6, when approxi-
mately 40% of animals entered double loss status (Fig-
ure 5; PMF). This was probably due to the fact that
females and males are in periods of strong growth and
development at these ages as they prepare for repro-
ductive activities.

4. DISCUSSION

In the ongoing development of state-based CJS mod-
eling we present a generalization of the multievent CJS
models to the case where states are multivariate vectors
of categorical variables. This allows the user to analyze
complex state transitions and handle partial knowledge
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FIG. 5. Age-specific probabilities of double tag loss. The upper
plot (CDF) is the cumulative probability distribution of entering the
double tag loss state at or before each age. The lower plot (PMF)
is the difference of the upper plot and provides the probability mass
function that an animal enters the double tag loss state at each age.
Gray envelopes represent 95% CIs.

of states upon observation of the individual. Using a
log-linear model parameterization for multiway con-
tingency table data allows parsimonious modeling of
multivariate state transitions by enforcing desired in-
dependence (or dependence) between state variables
by exclusion (inclusion) of specified interaction terms.
Because of the necessary and sufficient conditions for
determining independence from log-linear models, in-
ference on dependence of state variables can also be
tested by examining for significant deviation from zero
for the appropriate interaction terms. We use the term
“testing” in a loose sense, in that one might ascer-
tain those effects through a model selection procedure
(Burnham and Anderson, 2002; Hooten and Hobbs,
2015). Because we can efficiently calculate the like-
lihood for the multivariate state model, all of the usual
information criteria and Bayesian methods for model
selection are applicable.

The parsimonious construction and hypothesis test-
ing properties were both demonstrated in the example
analysis of the sea lion data. We assumed that tag loss
was primarily due to growth of the foreflippers from
the time the tags were placed on the animals as pups.
Therefore, it is reasonable to conclude that loss of tags
will be independent of the location of the animal (i.e.,
tag loss variables s2 and s3 are independent of the area
s1). Therefore, we specifically omitted any interaction
terms that would imply dependence of tag loss on area.
Second, we examined the parameter measuring interac-
tion between the loss of each tag, β(2,3)(s; r), for sig-
nificant deviation from zero and found that there is a
high degree of dependence in the loss of flipper tags

in California sea lions. This conclusion has strong im-
plications for future studies that do not use a perma-
nent third mark such as a brand, as survival estimation
may be negatively biased, depending on the assumed
tag loss process (Laake et al., 2014). By using the mul-
tivariate state framework we were able to directly ex-
tend the double tag loss model of Laake et al. (2014)
to account for movement between different areas as
well. Another practical extension multivariate models
provide over the single multievent framework is that
the probability of state uncertainty can depend on the
true state. For example, although we did not examine
it here, it is possible that the probability of an observer
missing the status of a flipper tag depends on whether
it is present or not. Or, if there are different observer
teams in each area, one team may ignore the tag status,
while the other dutifully records it. Thus, probability of
correct observation of one state variable may depend
on another state variable.

Although the proposed multivariate framework is
quite general, there are further extensions that are
straightforward to develop given the HMM formula-
tion. First, our model was based on the assumption that
the state variable is either observed correctly or it is
not observed at all and, hence, unknown. There is no
reason that this cannot be relaxed. All that needs to be
done is to augment the observation space for each vari-
able for which errors can be made. For example, Ck =
{0,1, . . . ,m,u, e1, . . .}, where e1, . . . refers to states
that are not biological in origin, but observational er-
rors. In the tag loss example, an observer might see a
tag is physically present, but fail to read it. In this case
it is uncertain whether or not the tag should be con-
sidered lost (i.e., unreadable = lost), but there is more
information than a simple “unknown” observation. In
addition, it is also possible that an observer might de-
clare a tag to be lost when in fact it is present or vice
versa. This is accomplished by removing the constraint
that δij (c; s) = 0 when any ck 	= sk or u. Finally, con-
tinuously valued states could be incorporated using the
discrete approximation method of Langrock and King
(2013). This creates a large state-space for the continu-
ous variable, thus, careful consideration of the interac-
tion parameterization may be necessary. Each of these
three extensions are directly handled by the HMM in-
ference framework. Some of these extensions, how-
ever, might produce a model of such complexity that
some parameters become unidentifiable or the model
fitting is computationally unfeasible. Placement of the
multivariate model in a robust design framework sim-
ilar to Kendall et al. (2012) might improve estimation
of parameters, however, careful parameterization may
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be the only way to handle large state-spaces. Robust
design analysis can be accomplished in the multivari-
ate setting (and in the marked package in general) by
constraining parameters to be constant (most likely 0
or 1) within secondary sampling periods, but free be-
tween primary periods.

In addition to model extensions, there is also a need
to develop methods to assess goodness of fit (GOF)
for complex CJS models such as those presented here.
We do not provide specific recommendations here, as
this is a large topic in its own right. There are, how-
ever, some avenues worth pursuing. Zucchini and Mac-
Donald (2009) and Titman and Sharples (2008) pro-
vide general frameworks for assessing model fit in
HMMs. Those general approaches may be adapted for
the specifics of the state-based CJS models. In ad-
dition, the minimally sufficient stagtistics GOF test-
ing approach of Pradel, Gimenez and Lebreton (2005)
might be investigated using the work of King and Mc-
Crea (2014) to derive the necessary sufficient statistics.

We, again, would like to acknowledge the seminal
work by the Cormack (1964), Jolly (1965) and Seber
(1965) papers which initiated 50 years of development
and analysis of capture-recapture data. Through the
years, the same basic framework has been generalized
to add additional inference capability as well as over-
come assumptions of the original CJS models, but the
same basic framework exists in each of these models,
including the extension proposed herein.
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SUPPLEMENTARY MATERIAL

Supplement A: Notation summary and addi-
tional sea lion analysis details (DOI: 10.1214/15-
STS542SUPPA; .pdf). Contains additional tables that
summarize notation used throughout the paper and pro-
vides additional details and results for the analysis of
sea lion data in Section 3.

Supplement B: R code used to analyze sea lion
data (DOI: 10.1214/15-STS542SUPPB; .pdf). Con-
tains the R code used to run the sea lion example
analysis in Section 3. The most up-to-date version of
the marked package can be installed directly using

the R package devtools with the command: dev-
tools::install_github("jlaake/marked/
marked"). However, in order to install this version,
users need to ensure that their machines are equipped to
compile R packages with source code (namely, Fortran
and C++). Using the R console, the command, in-
stall.packages("marked"), will install a pre-
compiled binary version from CRAN.
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