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Abstract: When providing probabilistic forecasts for uncertain future e-
vents, it is common to strive for calibrated forecasts, that is, the predic-
tive distribution should be compatible with the observed outcomes. Often,
there are several competing forecasters of different skill. We extend com-
mon notions of calibration where each forecaster is analyzed individually,
to stronger notions of cross-calibration where each forecaster is analyzed
with respect to the other forecasters. In particular, cross-calibration dis-
tinguishes forecasters with respect to increasing information sets. We pro-
vide diagnostic tools and statistical tests to assess cross-calibration. The
methods are illustrated in simulation examples and applied to probabilistic
forecasts for inflation rates by the Bank of England. Computer code and
supplementary material (Strähl and Ziegel, 2017a,b) are available online.
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1. Introduction

In the past decades, probabilistic forecast, specifying a complete predictive prob-
ability distribution for an uncertain future event, have replaced point forecasts in
a number of applications including weather forecasting, climate predictions and
economics; see Gneiting and Katzfuss (2014) for a recent overview. Murphy and
Winkler (1987); Gneiting et al. (2007) have formulated the guiding principle for
a probabilistic forecast to “maximize sharpness subject to calibration”. Calibra-
tion refers to the statistical compatibility of the forecasts and the observations.
Sharpness, on the other hand, is a property that concerns the forecast only.
Roughly speaking, a forecast is sharper the more concentrated the distribution
is, with point forecasts as a limiting case. Gneiting et al. (2007) have formu-
lated their principle in order to pick the “better” of two calibrated forecasts.
While it is generally acknowledged that forecasts should be calibrated (Dawid,
1984; Diebold et al., 1998), it is not universally accepted that it is necessary to
consider sharpness as a further criterion for forecast evaluation (Mitchell and
Wallis, 2011).

In this manuscript, we propose concepts of cross-calibration in order to for-
malize the influence of competing forecasters amongst each other and with re-
spect to the observations. Essentially, a cross-calibrated forecaster not only uses
her own information optimally but also incorporates the information of the com-
peting forecasters in an optimal way. Moreover, a cross-calibrated forecast is
automatically the sharpest; see Section 3. The notions we propose are a broad
generalization of the existing notions of calibration of Gneiting and Ranjan
(2013). Furthermore, we extend their prediction space setting to allow for serial
dependence which is the usual situation in forecasting applications. We are able
to extend the result of Diebold et al. (1998) of uniformity and independence of
probability integral transform (PIT) values to our general framework.

There is a large literature on evaluating predictive performance based on
tests for uniformity and independence of PIT values; see Dawid (1984); Diebold
et al. (1998); Berkowitz (2001) to mention just a few. An ideal forecast should
be preferred by all stakeholders and it always leads to uniformly distributed,
independent PIT values. However, if forecasters are allowed to use more infor-
mation than the past realizations of the quantity of interest, uniformity and
independence of PIT values only gives limited information about the quality
of the forecasts. Examples of this fact can be found in Hamill (2001); Gneit-
ing et al. (2007); see also Examples 2.5 and 2.10. Such additional information
can consist of time series of covariates or expert opinion on parameters in a
model. Holzmann and Eulert (2014) show that comparing forecasts with re-
spect to proper scoring rules respects increasing information sets in the sense
that a more informative forecast will be preferred. In this paper, we address
the problem from a different angle and introduce notions of cross-calibration in
order to account for different information sets. The advantage of our approach
is that we define an optimality property of a forecast, similar to the classical no-
tion of uniformity and independence of PIT values. When comparing forecasts
using proper scoring rules, it is only possible to make comparative statements
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rather than statements about optimality; see Section 3 for a discussion on how
cross-calibrated forecasts are ranked by proper scoring rules. While the notions
of cross-calibration appear rather technical at first sight, we propose generally
applicable tests that show good power for small to moderate sample sizes. In
particular, the p-value plots for the conditional exceedance tests presented in
Section 6.1 allow to identify which quantiles of the predictive distributions are
not optimal. This may be relevant for applications in risk management, where
it has been proposed to use PIT values for backtesting (Campbell, 2005).

Notions of cross-calibration have previously been considered in the literature
for binary or categorical outcomes. Al-Najjar and Weinstein (2008) consider a
test which an uninformed forecaster cannot pass with high probability when
an informed forecaster is present. The notion of cross-calibration by Feinberg
and Stewart (2008) takes into account that several forecasters may influence
each other, and the one with the largest information set should be preferred.
Their test is a generalization of the calibration test suggested by Dawid (1985).
We review the Feinberg and Stewart (2008) cross-calibration test in the supple-
mentary material to this paper and illustrate it with a simulation example. In
this paper, we generalize the cross-calibration notions of Feinberg and Stewart
(2008) to forecasts of real valued outcomes including diagnostic tools and sta-
tistical tests to assess cross-calibration in applications. We have chosen to work
in the framework of prediction spaces as introduced by Gneiting and Ranjan
(2013), and extend it to allow for serial dependence.

The paper is organized as follows. In Section 2, we review and extend the no-
tion of a prediction space and generalize the notions of calibration for individual
forecasters to multiple forecasters. In Section 3, we review the decomposition for
strictly proper scoring rules by Bröcker (2009) and show that a cross-calibrated
forecaster is automatically the sharpest one. In Section 4, we treat the special
case of binary outcomes and relate our work to the existing results of Feinberg
and Stewart (2008). We introduce diagnostic tools for checking cross-calibration
and illustrate their usefulness in a simulation study in Section 5. Statistical tests
for cross-calibration are derived in Section 6. We analyze the Bank of England
density forecasts for inflation rates in Section 7. Finally, the paper concludes
with a discussion in Section 8. All proofs are deferred to the appendix. All
simulations and data examples were done in R (R Core Team, 2015).

2. Notions of cross-calibration

We follow Gneiting and Ranjan (2013) by introducing the notion of a prediction
space.

Definition 2.1 (one-period prediction space). Let k ≥ 1 be an integer. Consider
a probability space (Ω,A,Q) together with sub-σ-algebras A1, . . . ,Ak ⊂ A. A
one-period prediction space is a collection of a real-valued random variable Y on
(Ω,A,Q), Markov kernels Fi : Ω × B(R) → [0, 1] from (Ω,Ai) to (R,B(R)) for
1 ≤ i ≤ k and a standard uniform random variable V on (Ω,A,Q) independent
of A1, . . . ,Ak and Y .
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The integer k corresponds to the number of forecasters. The Markov kernel Fi

represents forecaster i and yields for each outcome ω ∈ Ω a probability measure
on (R,B(R)). The σ-algebra Ai can be seen as the information set available to
forecaster i. The random variable Y is the observation. The random variable
V is needed for technical reasons. It allows to define the probability integral
transform (PIT) in Definition 2.6 below.

We term the prediction space proposed by Gneiting and Ranjan (2013) a one-
period prediction space as it is only concerned with predictions for an outcome
Y at one time point. While this framework is sufficient to define various no-
tions of calibration and cross-calibration of forecasters in principle, a statistical
analysis of calibration is only possible if we can assume that we have indepen-
dent forecast-observation tuples (F1,t, . . . , Fk,t, Yt+1, Vt) for 1 ≤ t ≤ N . This
assumption is unrealistic in most forecasting situations. Therefore, we propose
to extend the prediction space setting, allowing for serial dependence as follows.

Definition 2.2 (prediction space for serial dependence). Let k ≥ 1 be an inte-
ger. Consider a probability space (Ω,A,Q) together with filtrations (A1,t)t∈N,
. . . , (Ak,t)t∈N with Ai,t ⊂ A for all 1 ≤ i ≤ k, t ∈ N. A prediction space for serial
dependence is a collection of a sequence of real-valued random variables (Yt)t∈N

with the filtration (Tt)t∈N generated by (Yt)t∈N, that is, Tt = σ(Ys, s ≤ t), a
sequence of Markov kernels (Fi,t)t∈N for 1 ≤ i ≤ k, where each Fi,t is from
(Ω, σ(Ai,t, Tt)) to (R,B(R)) and an iid sequence (Vt)t∈N of standard uniform
random variables that is independent of everything else.

While the formalism in Definition 2.2 is fairly complicated, we would like
to emphasize that it reflects a common situation in applications. The notation
in Definition 2.2 is chosen such that Ai,t encodes the information of the i-th
forecaster Fi,t at time t to predict the outcome Yt+1 at the next time point.
Additionally, all forecasters F1,t, . . . , Fk,t have access to the past realizations of
Yt in principle, that is, to the information contained in Tt. This means, we have
separated the information of forecaster i into two parts, the information of past
realizations of the outcome Tt, that is available to all forecasters, and a personal
information set Ai,t that she acquires from other sources.

All further statements are within the prediction space for serial dependence
and expressions such as almost surely are with respect to the probability measure
Q. In the prediction space for serial dependence, Fi,t is termed ideal with respect
to Ai,t if

Fi,t = L(Yt+1|Ai,t, Tt) almost surely,

where L(X | G) denotes the conditional law of a random variable X with respect
to the σ-algebra generated by G. In the case of independent forecast-observation
tuples, we recover the definition of an ideal forecaster of Gneiting and Ranjan
(2013), that is, in the one-period prediction space setting, Fi is ideal with respect
to Ai if

Fi = L(Y |Ai) almost surely;

see also Tsyplakov (2011, 2013). We generalize this notion as follows.
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Definition 2.3 (cross-ideal). In the prediction space setting for serial depen-
dence, we call Fi,t cross-ideal with respect to A1,t, . . . ,Ak,t if

Fi,t = L(Yt+1|A1,t, . . . ,Ak,t, Tt) almost surely. (1)

A cross-ideal forecaster does not only use her own information optimally
but also the information available to the other forecasters. In fact, at time
t, her information Ai,t contains all relevant information of all the forecasters
because Fi,t is a version of the conditional distribution of Yt+1 with respect to
σ(A1,t, . . . ,Ak,t, Tt). On the other hand, Fi,t(·, B) is σ(Ai,t, Tt)-measurable for
all B ∈ B(R) by Definition 2.2 of the prediction space for serial dependence.
Thus, Fi,t is also a version of the conditional distribution of Yt+1 with respect
to σ(Ai,t, Tt) and hence Fi,t = L(Yt+1|Ai,t, Tt) almost surely. Therefore, each
cross-ideal forecaster is ideal, whereas the converse does not hold in general; see
Examples 2.5 and 2.10. The above argument shows more generally the following
proposition.

Proposition 2.4. For some t ∈ N, let F1,t, . . . , Fk,t be forecasters with infor-
mation sets A1,t, . . . ,Ak,t in a prediction space for serial dependence. If F1,t is
cross-ideal with respect to A1,t, . . . ,Ak,t, then it is also cross-ideal with respect
to A1,t,Ai2,t, . . . ,Aim,t, where {i2, . . . , im} ⊂ {2, . . . , k}.

For clarity, we have chosen to illustrate the notions of cross-ideal forecasters
(or cross-calibrated forecasters; see Definition 2.7) with independent forecast-
observation tuples, or, in other words, in the one-period prediction space setting
of Gneiting and Ranjan (2013) dropping the time index t. This is natural, as
the notions of calibration are essentially one-period concepts.

Example 2.5. Let ν be uniformly distributed on (5, 20) and, conditionally on
ν, let δ have an inverse chi-squared distribution with ν degrees of freedom.
Conditional on ν and δ, the outcome Y is normally distributed with mean
zero and variance δ, and we consider two forecasters, a normally distributed
forecaster F1 = N (0, δ) and a t-distributed forecaster F2 = tν . This example is
constructed such that F1 has the full information about the distribution of the
outcome Y , whereas F2 only knows the prior distribution of δ. We have that
F1 and F2 are both ideal with respect to their information sets A1 = σ(δ) and
A2 = σ(ν), respectively, but only F1 is cross-ideal with respect to A1,A2.

More specifically, the predictive density function f1(·|δ) of F1 is a normal
density with variance δ, and the predictive density function f2 of F2 is

f2(x|ν) =
∫ ∞

0

f1(x|s)g(s|ν) ds =
Γ
(
ν+1
2

)
√
νπΓ(ν/2)

(
1 +

x2

ν

)− ν+1
2

, (2)

where g(s|ν) = (ν/2)ν/2sν/2−1 exp{−ν/(2s)}/Γ(ν/2) is the density function of
an inverse chi-squared distribution with ν degrees of freedom. The right hand
side of (2) is the density of a t-distribution. Equation (2) holds because for a
normal likelihood with known mean, the inverse chi-squared distribution is a
conjugate prior of a t-distributed posterior distribution. Therefore, we see that
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F1 is cross-ideal with respect to A1,A2. It is clear that F2 is not cross-ideal with
respect to A1,A2. We will come back to this example throughout the paper.

From now on, we often identify the Markov kernels Fi,t with random cu-
mulative distribution functions (CDF). More precisely, we write Fi,t(ω, x) =
Fi,t(ω, (−∞, x]) for all x ∈ R. Often we will omit ω and write Fi,t(x) = Fi,t(ω, x).
The σ-algebra generated by Fi,t, denoted by σ(Fi,t), is the smallest σ-algebra
such that ω 	→ Fi,t(ω, x) is measurable for all x ∈ Q.

Definition 2.6 (PIT). Let F be a (possibly random) CDF, X be a random
variable and V a standard uniform random variable independent of F and X.
We define

ZX
F = F (X−) + V {F (X)− F (X−)},

where F (y−) = limx↑y F (x). In the prediction space for serial dependence, the

random variable Zi,t := Z
Yt+1

Fi,t
is called the probability integral transform (PIT)

of the i-th forecaster Fi,t.

The PIT is the most prominent diagnostic tool for checking calibration em-
pirically (Dawid, 1984; Diebold et al., 1998). The random variable Zi,t takes
values in [0, 1]. If F is deterministic and X ∼ F , then ZX

F is uniformly dis-
tributed and F−1(ZX

F ) = X almost surely, where F−1 is the quantile function
of F ; see for example Rüschendorf (2009). Based on the PIT we introduce the
following notions of cross-calibration.

Definition 2.7 (cross-calibration). Let F1,t, . . . , Fk,t be forecasters in a predic-
tion space for serial dependence. Let {i1, . . . , im} ⊂ {1, . . . , k}.

1. The forecast F1,t is cross-calibrated with respect to Fi1,t, . . . , Fim,t if

L(Z1,t|Fi1,t, . . . , Fim,t, Tt) = U([0, 1]), almost surely,

where U([0, 1]) denotes the uniform distribution on [0, 1]. To be precise,
the left hand side is a Markov kernel κ : Ω × B(R) → [0, 1], which is
required to be constant in ω ∈ Ω and equal to the Lebesgue measure on
[0, 1].

2. For 1 ≤ j ≤ k, F1,t is marginally cross-calibrated with respect to Fj,t if

EQFj,t(y) = Q{F−1
j,t (Z1,t) ≤ y},

for all y ∈ R.

For brevity, we sometimes speak of cross-calibration with respect to {i1, . . . ,
im} instead of Fi1,t, . . . , Fim,t. Our definitions are natural generalizations of the
notions of calibration for individual forecasters in Gneiting and Ranjan (2013,
Definition 2.6), which we recall here for ease of comparison.

Definition 2.8 (calibration). Let F be a forecaster for an outcome Y in a
one-period prediction space.

1. The forecast F is probabilistically calibrated if ZY
F is uniformly distributed

on [0, 1].
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2. The forecast F is marginally calibrated if EQF (y) = Q(Y ≤ y) for all
y ∈ R.

In part 2 of Definition 2.8 the left-hand side of the equation depends only on
the distribution of the forecast, whereas the right-hand side depends only on the
distribution of the observation. Marginal calibration therefore assesses whether
the average forecast distribution is equal to the marginal distribution of Y . If
F1,t is marginally cross-calibrated with respect to Fj,t, then, on average, the PIT
Z1,t of F1,t behaves like a standard uniform random variable when considered
in view of Fj,t. Intuitively, this means that F1,t has enough information about
Fj,t and the observation Yt+1 to disguise itself as uniform on average when
viewed through the eyes of Fj,t. Cross-calibration means that the PIT Z1,t of
F1,t is uniformly distributed no matter what the other forecasters predict. In
contrast, probabilistic calibration of F1 means that ZF1 is uniformly distributed
on average over all possible predictions of the other forecasters, which is a weaker
notion. The following theorem formally connects Definitions 2.7 and 2.8 showing
that the former is indeed a generalization of the latter.

Theorem 2.9. Consider forecasters F1,t, . . . , Fk,t in a prediction space for serial
dependence.

1. The forecast F1,t is marginally cross-calibrated with respect to itself, if and
only if F1,t is marginally calibrated.

2. If F1,t is cross-calibrated with respect to Fi1,t, . . . , Fim,t, then F1,t is cross-
calibrated with respect to any subset of {i1, . . . , im}. In particular, F1,t

is cross-calibrated with respect to the empty set, that is, probabilistically
calibrated.

3. If F1,t is cross-calibrated with respect to F2,t, then it is also marginally
cross-calibrated with respect to F2,t.

It is possible that a forecaster is marginally calibrated but not probabilisti-
cally calibrated; see Gneiting and Ranjan (2013, Example 2.4) which we take
up below in Example 2.10 to illustrate cross-calibration. In contrast, the last
claim of Theorem 2.9 shows that marginal cross-calibration with respect to a
different forecaster is a necessary condition for cross-calibration.

Example 2.10. Let μ be standard normally distributed, which we denote by
μ ∼ N (0, 1). Conditional on μ, the outcome is Y ∼ N (μ, 1). Let τ take the
values 1 or -1 with equal probability, independent of Y and μ. We consider
four forecasters F1, . . . , F4 of different skill, whose properties are summarized in
Table 1.

It is clear that the perfect forecaster F1 is cross-calibrated with respect
to F1, F2, F3, F4. It is straight forward to check that the climatological fore-
caster F2 is not cross-calibrated with respect to any of F1, F3, F4 but with
respect to itself. As F2 is deterministic, this corresponds to the fact that F2

is ideal with respect to the trivial σ-algebra. As the sign-reversed forecaster
F4 is not probabilistically calibrated it cannot be cross-calibrated. The cross-
calibration of F3 with respect to F1, F2, F4 is shown in Appendix C. The state-
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Table 1

Properties of the forecasters of Gneiting and Ranjan (2013, Example 2.4)

Forecaster Predictive distribution Information set
Perfect F1 = N (μ, 1) A1 = σ(μ)
Climatological F2 = N (0, 2) A2 = {∅,Ω}
Unfocused F3 = 1

2
{N (μ, 1) +N (μ+ τ, 1)} A3 = σ(μ, τ)

Sign-reversed F4 = N (−μ, 1) A4 = σ(μ)

Forecaster Cross-calibration Marginal cross-calibration wrt
F1 F2 F3 F4

Perfect wrt F1, F2, F3, F4 yes yes yes yes
Climatological wrt F2 no yes no no
Unfocused wrt F1, F2, F4 yes yes no yes
Sign-reversed no no no no yes

Note: Further details are given in Example 2.10. Cross-calibration with respect to (wrt) F2 is
equivalent to cross-calibration with respect to A2 = {∅,Ω}, that is, probabilistic calibration.

ments about marginal cross-calibration in Table 1 are consequences of Theorem
2.9.

Example 2.10 has originally been constructed by Gneiting et al. (2007) (see
also Hamill, 2001) to illustrate the limitations of assessing uniformity of PIT
histograms, that is, probabilistic calibration, in the quest for ideal forecasters.
By Theorem 2.9, the forecaster F3 is in particular probabilistically calibrated
but it cannot be ideal as it is not marginally calibrated. While the example is
constructed in the framework of a one-period prediction space, its message can
also be transferred to a time series context. It is important to note that the same
limitations apply to the concept of a cross-calibrated forecaster if the forecaster
itself is not contained in the conditioning set. We give further details on these
points below, after Proposition 2.11.

Tsyplakov (2011, 2013) introduced a slightly more restrictive notion than
an ideal forecaster, which is an auto-calibrated forecaster, that is, it fulfils
L(Y | F ) = F , almost surely, in the one-period prediction space setting. Gen-
erally, an auto-calibrated forecaster is ideal with respect to σ(F ). Gneiting and
Ranjan (2013) contend that it is unlikely that empirical test of auto-calibration
are feasible, except for very special circumstances such as forecasts for binary
random variables. In cases where forecasters are restricted to specific classes of
distributions Held et al. (2010) have taken on the challenge to derive statisti-
cal tests for ideal forecasters in the sense of auto-calibration based on a score
regression approach; for earlier work in this direction see Hamill (2001); Mason
et al. (2007). In Section 3 of the supplementary material, we show that it is
possible to extend the score regression approach of Held et al. (2010) to test for
cross-ideal forecasters with respect to σ(F1), . . . , σ(Fk).

In this paper, we challenge the statement of Gneiting and Ranjan (2013) by
proposing two powerful tests for cross-calibration under very general assump-
tions that are justified even under serial dependence; see Sections 6.1 and 6.2.
Note that the following Proposition 2.11 shows that auto-calibration is in fact
a special case of cross-calibration.
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Proposition 2.11. Consider forecasters F1,t, . . . , Fk,t in a prediction space for
serial dependence. Let {i1, . . . , im} ⊂ {1, . . . , k}. Then, the following are equiv-
alent:

1. The forecaster F1,t is cross-calibrated with respect to Fi1,t, . . . , Fim,t.
2. For all z ∈ [0, 1), conditional on Fi1,t, . . . , Fim,t, Tt, the random variable

1(Z1,t ≤ z) is Bernoulli distributed with parameter z.

If 1 ∈ {i1, . . . , im}, then part one and two are equivalent to F1,t being cross-ideal
with respect to σ(Fi1,t), . . . , σ(Fim,t).

In a time series context where forecasters solely base their predictions on
past realizations of the quantity of interest Yt, hence their information set is
Tt and σ(Fi,t) ⊂ Tt, Proposition 2.11 shows that probabilistic calibration is
equivalent to auto-calibration. If forecasters have larger information sets, such
as some of the forecasters in Example 2.10, cross-calibration of F1,t is equivalent
to being cross-ideal if the forecaster itself is contained in the information set.
If this condition is not fulfilled, we do not see a clear interpretation of cross-
calibration. As in the case of probabilistic calibration, this is illustrated by the
unfocused forecaster F3 in Example 2.10. The forecaster F3 is probabilistically
calibrated and even cross-calibrated with respect to F1, F2 and F4 but we know
from its construction that it is not a particularly good forecast, so it is not clear
what cross-calibration really says about F3 in this context.

While we do not recommend to assess cross-calibration for forecast evaluation
if the forecaster itself is not contained in the information set, we allow for this
possibility in Definition 2.7 for sake of generality, and to be able to clarify the
possible pitfalls of a seemingly natural concept.

The following Lemma 2.12 and the unfocused forecaster F3 of Example 2.10
show that the condition 1 ∈ {i1, . . . , im} for the equivalence between cross-
calibration and being cross-ideal is essential. The forecaster F3 is cross-calibrated
with respect to the other forecasters but not with respect to herself, and thus,
cannot be cross-ideal with respect to the other forecasters or herself by the
lemma.

Lemma 2.12. Consider forecasters F1,t, F2,t in a prediction space for serial
dependence. If F1,t is cross-ideal with respect to σ(F2,t), then it is also cross-
ideal with respect to σ(F1,t, F2,t).

We conclude this section with the announced generalization of the result
of Diebold et al. (1998) on uniformity and independence of PIT values in a
prediction space for serial dependence. To this end, we consider the following
assumption which may be called an independent information condition.

Assumption 2.13. In a prediction space for serial dependence, assume that,
for all t ∈ N, m ≥ 1,

L(Yt+1 | A1,t+m, . . . ,Ak,t+m, Tt) = L(Yt+1 | A1,t, . . . ,Ak,t, Tt). (3)

Assumption 2.13 formalizes the idea that information from other sources
about the outcome at time point t + 1 + m should not influence the outcome
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Yt+1 at time point t + 1. Let us illustrate this point in the context of weather
forecasting. Suppose a numerical weather prediction system is used to calculate
the state of the atmosphere to help us predict temperature tomorrow. Such
forecasts rely on many other variables than just the past temperatures, which
are encoded in the σ-algebras Ai,t. Assumption 2.13 means that if we let the
numerical system run longer to give us also information about the atmosphere
the day after tomorrow, this will have no influence on what temperature is
realized tomorrow.

A different scenario where forecasters use additional information other than
past realizations of the quantity of interest are for example the inflation rate
predictions issued by the Bank of England (BoE); see Section 7 for details. In this
case, parameters of the predictive two-piece normal distributions are decided by
the BoE’s Monetary Policy Committee based on estimation and expert opinion.
The expert opinion is contained in the σ-algebras Ai,t.

Theorem 2.14. Suppose we are in the prediction space setting for serial de-
pendence and Assumption 2.13 holds. Let {i1, . . . , im} ⊂ {1, . . . , k} and assume
that F1,t = L(Yt+1|Ai1,t, . . . ,Aim,t, Tt) for all t ∈ N. Then, for all l ∈ N0, we
have

L(Z1,t, . . . , Z1,t+l|Ai1,t+l, . . . ,Aim,t+l) = U([0, 1])⊗(l+1), almost surely,

for all t ∈ N. Here, U([0, 1])⊗(l+1) denotes the distribution of l + 1 independent
standard uniform random variables.

Remark 1. If we consider q-step ahead forecasts for some q ≥ 2, then the above
result continues to hold for all vectors of the form

(Z1,t, Z1,t+q, . . . , Z1,t+mq).

However, there may be dependence amongst (Z1,t, Z1,t+1, . . . , Z1,t+q−1), which
complicates matters when testing for cross-calibration. This problem also arises
in tests for uniformity and independence of PIT values as suggested by Diebold
et al. (1998). Several approaches to deal with this issue have been suggested
in the literature; see Knüppel (2015) and references therein. In this paper, we
restrict our attention to cross-calibration of one-period ahead forecasts but ex-
tensions to q-step ahead forecasts would certainly be of great interest.

3. Scoring rules, calibration and sharpness

In this section, we comment on the relation of proper scoring rules to the notions
of cross-calibration. A scoring rule is a real-valued function S(F, y) that takes a
CDF F as the first and a real number y as the second argument; see e.g. Gneiting
and Raftery (2007). The expected score under a CDF G is then S(F,G) =∫
S(F, y) dG(y). A scoring rule is called proper if the divergence d(F,G) =

S(F,G) − S(G,G) is non-negative and strictly proper if d(F,G) = 0 implies
G = F . For simplicity, we consider a one-period prediction space with forecasters
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F1 and F2, and we define G = L(Y ), G1 = L(Y |F1), G2 = L(Y |F2). Bröcker
(2009) shows the following decomposition for a strictly proper scoring rule S,

EQS(Fj , Y ) = S(G,G)− EQd(G,Gj) + EQd(Fj , Gj), for j = 1, 2. (4)

While Bröcker (2009) assumes a finite outcome space, the result should readily
generalize to outcomes on R if S is sufficiently regular in the second argument.
The term S(G,G) depends on the outcome only and may be interpreted as the
uncertainty of Y . It is also called the entropy of the distribution G. The last
term on the right hand side of (4), the expected divergence between the forecast
Fj and the conditional distribution of Y on Fj , is non-negative and zero, if and
only if, Fj is cross-calibrated with respect to Fj , and is called reliability term.
The second term of the right hand side of (4) enters negatively. It describes the
expected deviation between the distribution of Y and the conditional distribu-
tion of Y on Fj . It quantifies how sharp the forecaster Fj is in comparison to a
climatological forecaster, predicting G = L(Y ), and is called resolution term.

If the forecasters F1 and F2 are cross-calibrated with respect to themselves,
that is, auto-calibrated, then the expected score difference, EQS(F2, Y )
− EQS(F1, Y ) reflects their difference in sharpness, which may be interpreted
as a justification of the principle to “maximize sharpness subject to calibra-
tion” formulated by Murphy and Winkler (1987); Gneiting and Raftery (2007).
To the best of our knowledge, it is currently not well understood how a par-
ticular scoring rule orders forecasts with respect to sharpness. Therefore, even
for auto-calibrated forecasts, different scoring rules may yield different forecast
rankings.

If F1 is cross-calibrated with respect to F1, F2, then one can show that

EQS(F2, Y )− EQS(F1, Y ) = −EQd(G,G2) + EQd(G,F1) + EQd(F2, G2)

= EQS(G2, G2)− EQS(F1, F1) + EQd(F2, G2)

= EQS(G2, F1)− EQS(F1, F1) + EQd(F2, G2)

= EQd(G2, F1) + EQd(F2, G2). (5)

In particular, F1 is preferred over F2 by any strictly proper scoring rule S. This
follows also from Holzmann and Eulert (2014, Theorem 3). However, the score
decomposition approach allows to interpret the components leading to a differ-
ence in expected score. The first term on the right hand side of (5) is a penalty
for the auto-calibrated forecast G2 because it uses a smaller information set than
F1. The second term penalizes a potential lack of auto-calibration of F2. The
decomposition shows that in the presence of a cross-calibrated forecaster with
respect to all forecasters, sharpness does not need to be considered as a further
criterion for forecast selection as the cross-calibrated forecaster is automatically
the sharpest with respect to any proper scoring rule.

Cross-calibration of F1 with respect to F2 is a weaker requirement than F1

being cross-ideal with respect to σ(F1, F2), which is in turn weaker than be-
ing cross-ideal with respect to σ(F2) by Lemma 2.12; see also Theorem 2.9
and Example 2.10. This is analogous to the fact that probabilistic calibration
of F1 (cross-calibration with respect to {∅,Ω}) is a weaker notion than auto-
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calibration (cross-calibration with respect to F1). Unfortunately, we are cur-
rently not able to describe the effect of probabilistic calibration of F1 or of
cross-calibration of F1 with respect to F2 on the expected score in general,
other than being necessary requirements for auto-calibration and being cross-
ideal with respect to σ(F1, F2), respectively. The main merit of these necessary
requirements lies in the fact that they can be assessed empirically.

4. Binary outcomes

In this section, we consider the case when the observation Y only takes two
values, zero and one. We interpret Y = 1 as a success and Y = 0 as a failure.
A forecaster F is then represented by her predictive success probability p, such
that the predictive CDF is F (y) = p · 1(y ≥ 1) + (1− p) · 1(y ≥ 0). We identify
F with p, where p is a random variable taking values in [0, 1].

In the case of an individual forecaster F for a binary outcome, it has been
shown in Gneiting and Ranjan (2013, Theorem 2.11) that the notions of a
probabilistically calibrated forecaster F and an ideal forecaster relative to the
σ-algebra generated by the predictive probability p are equivalent. Furthermore,
both notions coincide with the notion of conditional calibration, that is Q(Y =
1| p) = p. This result carries over to the notions of cross-calibration of multiple
forecasters introduced in this paper. As the notions of calibration are essentially
only concerned with one prediction period, we have chosen to present the results
of this section in the one-period prediction space setting of Definition 2.1 for
simplicity.

Theorem 4.1. Consider the one-period prediction space setting with binary
outcome Y and forecasts F1, . . . , Fk represented by their predictive success prob-
abilities p1, . . . , pk, respectively. Then the following statements are equivalent:

1. The forecast p1 is cross-calibrated with respect to p2, . . . , pk, that is
L(Zp1 | p2, . . . , pk) is standard uniform.

2. The forecast p1 is conditionally cross-calibrated with respect to p1, . . . , pk,
that is Q(Y = 1| p1, . . . , pk) = p1.

3. The forecast p1 is ideal relative to σ(p1, . . . , pk).

The cross-calibration notion of Feinberg and Stewart (2008) is analogous to
our notion of cross-calibration with respect to {1, . . . , k} which is equivalent to
cross-ideal forecasters for binary events. Theorem 4.1 shows that both notions
coincide with cross-calibration of p1 with respect to {2, . . . , k} which is a pri-
ori a weaker requirement; see also Lemma 2.12 and Example 2.10. As noted by
Gneiting and Ranjan (2013) the fact that probabilistically calibrated forecasters
are automatically auto-calibrated clarifies the relation between PIT-histograms
and calibration curves which are the diagnostic tool frequently used for assess-
ing calibration of binary predictions (Dawid, 1986; Murphy and Winkler, 1992;
Ranjan and Gneiting, 2010). As described in Section 5, cross-calibration can be
assessed with conditional PIT-histograms. Analogously, in the case of binary
forecasts, conditional calibration curves can be considered.
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5. Diagnostic plots for assessing cross-calibration

Gneiting et al. (2007) suggest to assess marginal calibration based on a plot of
the empirical analogue of the difference

EQFt(y)−Q(Yt+1 ≤ y), for y ∈ R.

Analogously, to assess marginal cross-calibration, the empirical version of

EQFj,t(y)− EQ1{F−1
j,t (Zi,t) ≤ y}, for y ∈ R, (6)

can be plotted. If the graph is significantly different from a horizontal line
through zero, one can deduce that Fi,t is not marginally cross-calibrated with
respect to Fj,t and therefore also not cross-calibrated with respect to Fj,t by
Theorem 2.9. If the graph is not significantly different from zero anywhere, then
we have marginal cross-calibration. However, this does not necessarily imply
that we have a cross-calibrated forecaster.

Probabilistic calibration is often checked empirically by plotting a histogram
of Zi,t, the so-called PIT-histogram. Generally, it is not obvious how to check
cross-calibration empirically. However, in many situations of practical interest
it can be done by borrowing the idea of considering forecasting profiles as in
the cross-calibration test of Feinberg and Stewart (2008). Suppose that the fore-
casters F1,t, . . . , Fk,t pick predictions from some parametric class of distributions
F = {Fλ | λ ∈ Λ}, where Λ ⊂ Rd. Then we can identify each forecaster Fi,t with
the parameter λi,t she predicts. We observe a sample (F1,t, . . . , Fk,t, Yt+1, Vt) for
1 ≤ t ≤ N . Let Λ1, . . . ,Λp be a partition of the parameter space. For a diag-
nostic plot showing if F1,t, say, is cross-calibrated with respect to {i1, . . . , im},
we can sort the observations into pm bins according to the predicted values
λi1,t, . . . ,λim,t. Then a PIT-histogram of Z1,t can be plotted for each bin.
Clearly, the number of bins needs to be small in relation to the number of
observations. Partitioning the parameter space links cross-calibration to the
stratification approach of Murphy (1994).

We illustrate these diagnostic tools with two examples. Further illustrations
are provided in the supplementary material.

Example 5.1 (Example 2.10 continued). In Figure 1 the differences given at
(6) are plotted for the four forecasters of Example 2.10. More precisely, the ran-
dom variables are simulated 10’000 times and the empirical expectation is plot-
ted. Recall that, for all simulation examples we are using independent forecast-
observation tuples for reasons of simplicity. In this example, it is easy to see that
F1 is superior to F2 using the notion of marginal cross-calibration, which was
not the case using only the calibration notions of Gneiting and Ranjan (2013,
Definition 2.6); see Gneiting et al. (2007).

Example 5.2 (Example 2.5 continued). Coming back to the forecasters F1 and
F2 of Example 2.5, PIT-histograms for assessing cross-calibration with respect
to F1, F2 for 10’000 simulations are given in Figure 2. To show the lack of cross-
calibration of F2 with respect to F1, F2 it is sufficient to consider δ in order to
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Fig 1. Marginal cross-calibration plots of the forecasters in Example 2.10 with 10’000 sim-
ulations. In the i-th row and j-th column the empirical version of Equation (6) is plotted to
assess whether Fi is marginally cross-calibrated with respect to Fj or not.

choose the partition. The intervals are chosen such that in each histogram there
are around the same amount of observations.

6. Tests for assessing cross-calibration

In this section, we consider statistical tests for cross-calibration. The tests in
Section 6.1 are based on the idea of conditional exceedance probabilities (Mason
et al., 2007), whereas the tests in Section 6.2 use a linear regression approach.
Suppose we have observations F1,t, . . . , Fk,t and Yt+1, 1 ≤ t ≤ N in a pre-
diction space for serial dependence. We would like to test the null hypothesis
that F1,t is cross-calibrated with respect to J ⊂ {1, . . . , k}. Under the null hy-
pothesis, using Proposition 2.11, conditional on Fi,t for all i ∈ J , the random
variable Z1,t is standard uniformly distributed. Under the independent informa-
tion condition, Assumption 2.13, the random variables Z1,1, . . . , Z1,N are inde-
pendent conditional on Ai,N for all i ∈ J by Theorem 2.11. Clearly, they are
also independent in the special case of independent forecast-observation-tuples
(F1,t, . . . , Fk,t, Yt+1), 1 ≤ t ≤ N . In this section, we assume that Assumption
2.13 holds.
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Fig 2. PIT-histogram plots of F1 in the top row and F2 in the bottom row conditional on δ,
respectively, where I1 = [0, 0.95], I2 = (0.95, 1.1], I3 = (1.1,∞].

The Tables in this section and Section 7 show the results of the proposed
tests as Monte-Carlo powers and p-values, respectively. The numbers in square
brackets represent tests for cross-calibration with respect to the trivial informa-
tion set, that is probabilistic calibration, in the case that the forecaster under
consideration is using a larger information set. The numbers in round brackets
represent tests for cross-calibration with respect to sets of forecasters without
the forecaster under consideration. (Strictly speaking, the first case is a special
case of second. However, due to the widespread use of probabilistic calibra-
tion tests, we treat this case separately.) We have decided to put the results in
brackets to recall our cautionary remarks of Section 2 on the interpretation of
cross-calibration in these cases. Note that the formulation and implementation
of the tests can be done in this generality without additional effort.

6.1. Conditional exceedance probabilities

For z ∈ (0, 1), we define Bz,t := 1{Z1,t ≤ z}. We stipulate the logistic regression
models

logit[Q{Bz,t = 1|F−1
i,t (z), i ∈ J}] = β0,z +

∑
i∈J

βi,zF
−1
i,t (z) (7)

for each z ∈ (0, 1), where logit(p) = log{p/(1−p)} is the logistic function. Using
(7), the null hypothesis is

H0 : β0,z = logit(z), βi,z = 0, i ∈ J, for all z ∈ (0, 1). (8)
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Generally, we have that σ(Fi,t) ⊂ σ(Ai,t, Tt). If σ(Fi,t) ⊂ Ai,t holds, at least
approximately, it is reasonable to assume that the Bernoulli random variables
Bz,1, . . . , Bz,N , 1 ≤ t ≤ N in (7) are conditionally independent. In the case of
independent forecast-observation-tuples this is clearly fulfilled. Alternatively, if
the information in Ai,t is given separately from Tt, then one can formulate (7)
conditional on this information instead of conditioning on F−1

i,t (z), i ∈ J , to
ensure conditional independence.

For each z ∈ (0, 1), we suggest to test the pointwise hypothesis

H0(z) : β0,z = logit(z), βi,z = 0, i ∈ J, (9)

by a likelihood ratio test yielding a p-value π(z). More precisely, the covariate
vector xz,t has one as the first entry and then F−1

i,t (z), i ∈ J and the parameter
vector βz has entries β0,z, βi,z, i ∈ J . For values of z close to zero or one, we
frequently encounter the phenomenon of separation, that is, the likelihood con-
verges, but at least one parameter value is infinite. Therefore, we have chosen to
use the method of Firth (1993), which always yields finite parameter estimates;
see Heinze and Schemper (2002). That is, we fit the parameters β0,z, βi,z, i ∈ J
by maximizing the penalized log-likelihood function


p(βz) = 
(βz) +
1

2
log |I(βz)|,

where


(βz) =

N∑
t=1

Bz,tx
�
z,tβz −

N∑
t=1

log{1 + exp(x�
z,tβz)},

and |I(βz)| is the determinant of the Fisher information matrix. We denote the

estimated parameter vector by β̂z with entries β̂0,z, β̂i,z, i ∈ J . For N large
enough, the test statistic

Tz = −2{
p(β̂z)− 
p(γz)}

has a χ2-distribution with 1 + |J | degrees of freedom, where |J | denotes the
cardinality of |J |, and γz = (logit(z), 0, . . . , 0)�. We define the p-value π(z) =
1 − χ2

1+|J|(Tz), where χ2
1+|J| denotes the cumulative distribution function of a

χ2 random variable with 1 + |J | degrees of freedom. For the simulation studies
below and the data analysis in Section 7 we have used the R-package of Heinze
et al. (2013) to calculate Tz.

In order to draw conclusions about the global null hypothesis H0 at (8) from
the pointwise p-values π(z), we adjust them for multiple testing. We follow
the approach of Cox and Lee (2008) to use the method of Westfall and Young
(1993, Chapter 2) for functional data to compute adjusted p-values r(z); see
also Meinshausen et al. (2011).

Let 0 < z1 < · · · < zM < 1. Under the null hypothesis of cross-calibration, it
is possible to simulate a vector of p-values (π∗(z1), . . . , π

∗(zM )) with the same
distribution as (π(z1), . . . , π(zM )) conditional on F−1

i,t (zm), i ∈ J , 1 ≤ t ≤
N , 1 ≤ m ≤ M , as follows. Let U1, . . . , UN be iid standard uniform random
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variables. For 1 ≤ m ≤ M , define B∗
zm,t = 1(Ut ≤ zm), and let π∗(zm) be the

p-value from the pointwise likelihood ratio test for the simulated data vector
(B∗

zm,t)1≤t≤N and covariates (xzm,t)1≤t≤N as before.
The adjusted p-values can now be obtained as follows. Let ρ be the permu-

tation of {1, . . . ,M} such that π(zρ(1)) ≤ · · · ≤ π(zρ(M)). This permutation
ρ remains unchanged in the following procedure. For a simulated vector of p-
values (π∗(z1), . . . , π

∗(zM )), we define q∗m = min{π∗(zρ(s)) : s ≥ m}. Repeating
this procedure L times, we obtain an array (q∗m,l)1≤m≤M,1≤l≤L and define the
adjusted p-values r1, . . . , rM corresponding to z1, . . . , zM as

rm =
1

L

L∑
l=1

1{q∗ρ−1(m),l ≤ π(zm)}, 1 ≤ m ≤ M.

The global null hypothesis H0 at (8) can be rejected at level α ∈ (0, 1) if
min[rm : 1 ≤ m ≤ M ] ≤ α. Furthermore, the adjusted p-values allow to draw
conclusions for which values of zm ∈ (0, 1) miscalibration occurs. For example, a
prediction method may perform satisfactory for the left tail of the distribution,
that is, for z close to zero, the adjusted p-values are large, whereas it fails to
capture the right tail and hence for z close to one, the adjusted p-values are
small. We call this test the CEP test with respect to J .

Remark 2. It is important to note that the adjusted p-values rm remain the
same, if the pointwise p-values π(z) are transformed with a strictly monotone
transformation. Therefore, even if the π(z) are only asymptotic p-values, the
adjusted p-values rm will control the familywise error rate at the desired level
α even for finite samples (for large numbers L of bootstrap replications); see
Westfall and Young (1993, Chapter 2) and Cox and Lee (2008). It is nevertheless
important which test statistic to choose for the pointwise tests as the power of
the overall test will crucially depend on the power of the pointwise tests.

Example 6.1 (Example 2.10 continued). We consider the forecasters F1, . . . , F4

of Example 2.10; see Table 1. For sample size N = 50, we performed the CEP
tests for F1, . . . , F4 with respect to all possible subsets of F1, . . . , F4 at signif-
icance level α = 0.05 and calculated the Monte Carlo power based on 10′000
simulations. We used the gridpoints zm = {1+(18/19)m}/20, 0 ≤ m ≤ 19. The
number of bootstrap replications for calculating the adjusted p-values is set to
L = 500. For data examples, L should be much larger. However, for analyzing
the performance of the resampling based p-values, it is more important to run
a large number of simulations than to have a large bootstrap sample for each of
them; see Westfall and Young (1993) for a more detailed discussion. The results
are given in Table 2.

Conditioning on F2 corresponds to conditioning on the trivial σ-algebra,
therefore testing conditional on F1, F2, F3 is the same as testing conditional on
F1, F3, for example. Hence, Table 2 contains all interesting subsets of F1, . . . , F4

and the column entitled ‘F2’ corresponds to a test for probabilistic calibration.
The test performs well, even for the small sample size N = 50. Generally, the
power of the test appears to increase, the more information is used. For exam-
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Table 2

Monte Carlo power for the CEP tests in Example 6.1

wrt F1 F2 F3 F4 F1, F3 F1, F4 F3, F4 F1, F3, F4

F1 0.056 [0.051] (0.055) (0.055) 0.050 0.051 (0.050) 0.048
F2 (0.997) 0.051 (0.979) (0.997) 0.994 0.990 0.993 0.977
F3 (0.052) [0.052] 0.168 (0.051) 0.635 (0.051) 0.634 0.582
F4 (1.000) [1.000] (1.000) 1.000 (1.000) 1.000 1.000 1.000

Table 3

Monte Carlo power for the CEP tests in Example 6.2.

N = 50 N = 200
wrt F1 F2 F1, F2 F1 F2 F1, F2

F1 0.052 (0.053) 0.050 0.050 (0.052) 0.051
F2 (0.156) 0.051 0.139 (0.533) 0.057 0.464

ple, the test has difficulty to detect that F3 is not ideal with respect to itself
but it performs well for rejecting the null hypothesis that F3 is cross-ideal with
respect to F1, F3, F3, F4 or F1, F3, F4.

Prompted by the comments of a reviewer, we would like to issue a word
of warning concerning the interpretation of the test results in this example.
Suppose an applied researcher proceeds as follows: First, she tests for auto-
calibration of F3 and this is not rejected. Then she tests for cross-calibration of
F3 with respect to F1, F3 which is rejected. Note that this is a likely situation
given the powers in Table 6.1. From a theoretical point of view it is intuitive
that the power of testing with respect to F1, F3 is higher than when testing with
respect to F3 as the former null hypothesis is a subset of the latter. However,
she could draw the somewhat misleading conclusion that F3 is close to being
auto-calibrated but that F1 uses additional information that is not used in F3.
If she is interested in a true comparison of forecasters F1 and F3 she should have
also tested for auto-calibration of F1 and cross-calibration of F1 with respect to
F1 and F3. As both of these hypotheses cannot be rejected she should conclude
correctly that F1 uses the information contained in F1 and F3 better than F3

and that this forecast should thus be preferred.

Example 6.2 (Example 2.5 continued). We applied the CEP tests to data
simulated from the prediction space described in Example 2.5 at significance
level α = 0.05. We used the same grid and other parameters as in the previous
example, except that we considered two different sample sizes N = 50 and
N = 200. The results from 10′000 simulations can be seen in Table 3. Here, the
power for sample size N = 50 is only small. Fortunately, it appears to increase
rapidly with sample size and is satisfactory for N = 200.

6.2. Linear regression approach

To formulate the linear regression approach (LRA) tests for cross-calibration,
we restrict ourselves to a parametric class of cumulative distribution functions
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F = {Fλ|λ ∈ Λ}, where Λ ⊂ Rd. Each forecaster Fi,t is then represented by

the predictive parameter vector λi,t = (λ
(1)
i,t , . . . , λ

(d)
i,t ) for 1 ≤ i ≤ k. This leads

to the null hypothesis

H0 : L{Φ−1(Z1,1), . . . ,Φ
−1(Z1,N )|λj,t, j ∈ J, 1 ≤ t ≤ N} = NN (0, IN ), (10)

where Φ−1 denotes the quantile function of a standard normal distribution and
NN (0, IN ) denotes a multivariate standard normal distribution. Here, as for
the CEP tests, some care has to be taken. In general, σ(λi,t) ⊂ σ(Ai,t, Tt). If
σ(λi,t) ⊂ Ai,t holds, at least approximately, it is reasonable to assume condi-
tional independence of Z1,1, . . . , Z1,N , 1 ≤ t ≤ N in (10). In other words, in
(10), one should only condition on the parameters that are Ai,t-measurable.

In order to test the hypothesis at (10) we perform an F-test based on linear
regression. We consider the linear model

Y = DJβ + ε, (11)

where Y = (Φ−1(Z1,1), . . . ,Φ
−1(Z1,N ))T ∈ RN is the response vector,

DJ =

⎛
⎜⎜⎜⎜⎝

1 λ
(1)
i1,1

· · · λ
(d)
i1,1

λ
(1)
i2,1

· · · λ
(d)
im,1

1 λ
(1)
i1,2

· · · λ
(d)
i1,2

λ
(1)
i2,2

· · · λ
(d)
im,2

...
...

. . .
...

...
. . .

...

1 λ
(1)
i1,N

· · · λ
(d)
i1,N

λ
(1)
i2,N

· · · λ
(d)
im,N

⎞
⎟⎟⎟⎟⎠ ∈ RN×(1+dm) (12)

is the design matrix, β = (β0, β1, . . . , βdk)
T ∈ R1+dm is the parameter vector

we would like to estimate, and ε ∈ RN is a random error vector, which is
multivariate standard normal under the null hypothesis. In order to estimate β
the method of least squares is used and we obtain the estimated parameter vector
β̂, the vector of fitted values Ŷ = DJβ̂, and the residual vector ε̂ = Y − Ŷ.

Under the null hypothesis we have that

β = (0, 0, . . . , 0)T ∈ R1+dm and ε ∼ NN (0, IN ).

To test the assumption that ε is standard normal one can use a normality test
such as the Anderson-Darling or Shapiro-Wilk (Anderson and Darling, 1954;
Shapiro and Wilk, 1965; Yap and Sim, 2011). This yields a p-value πnormal. To
test the other assumption we consider the test statistic

F0 =
β̂
T
(DJ

TDJ) β̂

(1 + dm)σ̂2
,

where σ̂2 = ‖Y − Ŷ‖2/{N − (1 + dm)} is the unbiased variance estimator.
The test statistic F0 has a Fisher distribution with 1 + dm and N − 1 − dm
degrees of freedom; see for example Montgomery et al. (2001). The p-value πF

is then πF = 1−F1+dm,N−1−dm(F0), where Fp,q denotes the Fisher cumulative
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Table 4

Monte Carlo power of the LRA test in Example 6.3.

N = 20 N = 50
wrt ∅ μ μ, τ ∅ μ μ, τ
F1 [0.026] 0.024 0.025 [0.022] 0.024 0.025
F2 0.025 0.884 0.825 0.027 1.000 1.000
F3 [0.025] (0.024) 0.238 [0.023] (0.026) 0.734
F4 [0.880] 1.000 0.999 [1.000] 1.000 1.000

distribution function with p and q degrees of freedom. Combining these two
tests by the method of Holm leads to the adjusted p-value

πadjust = 2min(πF , πnormal).

We need that the rank of the design matrix DJ is 1 + dm, otherwise the
regression analysis is not possible. Therefore, any forecaster Fi,t, i ∈ J has to
predict at least two distinct values for each parameter. Otherwise, we omit the
parameter for this forecaster in the model and are still able to use the test,
which we call the LRA test with respect to J .

Example 6.3 (Example 2.10 continued). Recall the forecasters F1, F2, F3 and
F4 from Example 2.10. All four forecasters are in the class of distribution func-
tions F =

{
Fλ|λ = (μ, σ, τ) ∈ R × (0,∞) × {−1, 0, 1}

}
for Fλ = 1

2{N (μ, σ) +
N (μ + τ, σ)}. We apply the LRA test for sample sizes N = 20 and N = 50 at
significance level α = 0.05. The Monte Carlo powers of πadjust for 10

′000 simu-
lations are given in Table 4. In the LRA we condition on the parameters rather
then the forecasts themselves. Therefore, ∅ corresponds to F2, μ to F1 and F4

and μ, τ to F3. Testing cross-calibration with respect to J ⊂ {1, 2, 3, 4} leads
then to the same test as testing with respect to ∅ if J is empty or J = 2, testing
with respect to μ, τ if 3 ∈ J and testing with respect to μ otherwise. For testing
standard normality, we have used an Andersen-Darling test (with mean set to
zero and variance set to one). In the cases of cross-calibration, the normality
test never rejects the null hypothesis, which explains the conservative levels of
around 0.025 in these cases. The test is powerful even for the small sample sizes
and it provides the expected results from the theoretical considerations; see Ta-
ble 1. In particular, the LRA test detects well, that F3 is not ideal with respect
to itself contrary to the CEP test; compare Table 2.

Example 6.4 (Example 2.5 continued). Coming back to forecasters F1 and
F2 from Example 2.5 we perform the F-test for different sample sizes N . Here,
δ corresponds to F1 and ν corresponds to F2. The Monte Carlo powers of the
tests for 10′000 simulations can be found in Table 5. The Monte Carlo powers
are low even for large sample sizes, contrary to the results of the CEP tests;
compare Table 3. We do not report the power of LRA test in this example
because the Anderson-Darling test for standard normality almost never rejects
the null hypothesis.
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Table 5

Monte Carlo power for the F-test in the LRA in Example 6.4

N = 20 N = 50
wrt δ ν δ, ν δ ν δ, ν
F1 0.051 (0.053) 0.050 0.049 (0.050) 0.048
F2 (0.092) 0.051 0.081 (0.105) 0.050 0.092

N = 100 N = 200
wrt δ ν δ, ν δ ν δ, ν
F1 0.048 (0.045) 0.046 0.049 (0.050) 0.049
F2 (0.114) 0.045 0.097 (0.122) 0.048 0.108

N = 1′000 N = 5′000
wrt δ ν δ, ν δ ν δ, ν
F1 0.053 (0.050) 0.051 0.047 (0.050) 0.048
F2 (0.139) 0.051 0.121 (0.135) 0.049 0.119

6.3. Summary

We have presented two different approaches for testing cross-calibration, the
CEP tests in Section 6.1 and the LRA tests in Section 6.2. Both approaches
allow to test for cross-calibration of F1 with respect to any subset J ⊂ {1, . . . , k}.
The CEP test and the LRA test with respect to J = ∅ are tests for probabilistic
calibration, that is, the classical hypothesis of uniformity and independence of
PIT values. The tests are formulated in a prediction space for serial dependence,
which is a scenario that is frequently encountered in practice; see also Section
7.

The CEP test has the advantage that it provides information concerning the
parts of the distribution where miscalibration is detected (in terms of quantile
levels); this is illustrated in Figures 3 and 4. It may be considered a disadvantage
that the adjusted p-values are simulation based and depend on a grid 0 < z1 <
· · · < zM < 1 that is to be chosen. In simulations, the method has shown to
be robust to the number M of grid points. In contrast, the p-values for the
LRA test are given explicitly. The forecasters have to be described through a
finite-dimensional parameter vector and there are some restrictions concerning
the predictive parameters, as it has to be ensured that the design matrix DJ at
(12) has full rank. For the forecasters of Example 2.10, the LRA test has overall
a better power than the CEP test; see Examples 6.1 and 6.3. The difference is
minor, except for the hypothesis that the forecaster F3 is ideal. Here, for sample
size N = 50, the LRA test achieves a power of 0.734, whereas the CEP test
only has a power of 0.168. For the forecasters in Example 2.5 the CEP test
outperformed the LRA test; see Examples 6.2 and 6.4. In fact, for sample size
N = 200, the power of the CEP test is more than three times higher than the
power of the LRA test.

The following modifications of the CEP and the LRA tests are straight for-
ward but unexplored. The logistic regression model in (7) can be replaced by
any other regression model for a binary outcome variable, where it is possible
to formulate a test for an analogous pointwise null hypothesis as given at (9).
If forecasters choose their distributions from a parametric class of distributions



Cross-calibration of probabilistic forecasts 629

as assumed in LRA approach, it could also be considered to regress the random
variables Bz = 1(Z1,t ≤ z) on the predicted parameter values. In the LRA,
the linear regression model stipulated at (11) can be replaced by some other
regression model for a vector of real valued outcomes.

We would like to remark that the CEP and the LRA tests are formulated in
the prediction space setting for serial dependence and make use of Assumption
2.13. It appears that deciding whether this assumption is justified in a given
application context is sometimes a delicate matter. For example, if forecaster
i bases her predictions purely on intuition, then Assumption 2.13 is certainly
justified. If forecaster j uses a time series model for predictions, that is, predic-
tions are exclusively derived from past data, then Aj,t = {∅,Ω} and Assumption
2.13 is trivially fulfilled. The CEP and LRA tests should only be applied with
respect to sets J such that j ∈ J . It may be that some parameters of a predic-
tive distribution are derived from past data, whereas others are from external
sources such as expert opinion. Here, one should only regress on the latter type
of parameters in the LRA tests and use a regression model in terms of these
parameters for the CEP tests. Possibly, the LRA tests are superior here due to
their simplicity.

The score regression approach by Held et al. (2010) to test for ideal forecasters
relies on independent forecast-observation tuples, and this restriction remains,
when generalizing their approach to a test for cross-ideal forecasters. We present
this test in Section 3 of the supplementary material. Finally, we remark that
it is possible to derive a test for marginal cross-calibration by testing for mean
zero in (6) for each y ∈ R. It has turned out in simulations, that the resulting
asymptotic test has several problems for applications. For completeness, we
report these findings in Section 4 of the supplementary material.

7. Data example

The Bank of England (BoE) predicts the inflation rate of every quarter by
using a probabilistic forecast with a potentially asymmetric two-piece normal
distribution with parameters μ ∈ R, σ1, σ2 > 0 and density

f(y) =

⎧⎨
⎩
(
π
2

)−1/2
(σ1 + σ2)

−1 exp
{
− (y−μ)2

2σ2
1

}
if y ≤ μ,(

π
2

)−1/2
(σ1 + σ2)

−1 exp
{
− (y−μ)2

2σ2
2

}
if y > μ.

(13)

The forecasts have been issued by the BoE’s Monetary Policy Committee since
February 1996 for the first quarter of 1996 and are publicly available online. The
first quarter is from March to May, then from June to August, from September
to November and the fourth quarter from December to February. Furthermore,
there are forecasts available which have been issued between February 1993 and
May 1997. These were converted into density forecasts retrospectively. Until
the first quarter of 2004, the forecasts have been issued to predict RPIX infla-
tion rates. But since the first quarter of 2004, inflation has been predicted and
assessed in terms of percentage changes over twelve months of the CPI. The
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observed RPIX as well as the CPI inflation rates are available from the Office
for National Statistics under codes CDKQ and D7G7, respectively. There is no
simple transformation that converts an RPIX inflation rate into a CPI inflation
rate and vice versa, so we have analyzed the two data sets separately; RPIX
inflation rate predictions from the first quarter of 1993 to the first quarter of
2004 and CPI inflation rate predictions from the first quarter of 2004 to the
first quarter of 2015. In both cases we have 45 forecast-observation tuples. For
further detail on the data set, see Gneiting and Ranjan (2011, Section 4.1). The
BoE inflation forecasts have also been previously analyzed for example by Wallis
(2003); Clements (2004); Mitchell and Hall (2005); Galbraith and van Norden
(2012).

For both data sets, we compare the BoE predictions with a Gaussian autore-
gression (AR) of order one with rolling estimation window of length 20 quarters,
which leads to Gaussian density forecasts. The prediction horizon we consider is
one quarter. It is important to note that the AR forecast has the trivial σ-algebra
{∅,Ω} as additional information set AAR,t as it only uses past realizations of
inflation rates for prediction. Therefore, cross-calibration with respect to AR
corresponds to cross-calibration with respect to J = ∅, which is the same as
probabilistic calibration. As discussed in Section 6.3, the CEP and LRA tests
make use of Assumption 2.13, which is trivially satisfied for the AR forecast and
we believe it to be satisfied for the BoE forecasts.

First, we consider the CEP tests. The results for the BoE density forecasts
can be seen in Figure 3 and the ones for the AR forecasts in Figure 4. In both
plots the grid is zm = {1 + (148/149)m}/150 for 0 ≤ m ≤ 149 and 20′000
bootstrap replications are used to calculate the adjusted p-values under the null
hypothesis. For the RPIX inflation rate forecasts in the top panel of Figure 3,
the BoE forecast seems to be probabilistically calibrated. According to the CEP
test, it fails to be ideal, that is, cross-calibrated with respect to itself. The null
hypothesis with respect to BoE is rejected for some small exceedance probabil-
ities between zero and 0.05. However, the rejection region is small allowing the
tentative conclusion that the BoE forecast is not far from being auto-calibrated.
For the CPI inflation rate predictions in the bottom panel of Figure 3, the sit-
uation is different. Probabilistic calibration of the BoE forecast is rejected for
exceedance probabilities between 0.13 and 0.26. Note that this result makes
no use of Assumption 2.13. Cross-calibration with respect to BoE itself is also
rejected in some parts of the region between 0.13 and 0.26.

According to the CEP test, the AR forecast for the RPIX inflation rate is
not probabilistically calibrated with a minimal adjusted p-value of 0.029 and
therefore also not cross-calibrated or cross-ideal; see the top panel of Figure 4.
The overall conclusions remain the same for the CPI inflation rate forecasts; see
the bottom panel of Figure 4. The minimal p-value for probabilistic calibration
of the AR forecaster is 0.002, while it is 0.003 for cross-calibration with respect
to BoE.

Secondly, we consider the LRA tests. The parametric class F used for the
tests is the class of two-piece normal distributions with parameters μ ∈ R, σ1 >
0, σ2 > 0 given at (13). We can perform all the tests as for the CEP. The corre-
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Fig 3. The p-values of the CEP tests for the BoE forecast. The top panel corresponds to
the prediction of RPIX inflation rates, whereas the bottom panel displays the results for CPI
inflation rates. The solid horizontal lines give 0.05 level; the solid lines refer to probabilistic
calibration and the dotted lines to cross-calibration with respect to BoE.

Table 6

The p-values for the LRA tests for the BoE forecast.

RPIX CPI
BoE wrt ∅ BoE ∅ BoE
F-test [0.338] 0.010 [0.397] 0.149
AD-test [0.496] 0.822 [0.010] 0.007
adjusted [0.676] 0.021 [0.020] 0.015

Table 7

The p-values for the LRA tests for the AR forecast.

RPIX CPI
AR wrt ∅ BoE ∅ BoE
F-test 0.0350 0.097 0.042 <0.001
AD-test 0.401 0.255 0.150 0.423
adjusted 0.070 0.195 0.084 <0.001

sponding p-values can be found in Tables 6 and 7. We also see if the estimated
regression parameter failed to be zero or the standard normality assumption for
the residuals was violated. Recall that the results in square brackets correspond
to tests for probabilistic calibration in the case of a forecaster that uses a larger
information set than Tt. For the BoE forecaster, the overall results coincide with
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Fig 4. The p-values of the CEP tests for the AR forecast. The top panel corresponds to the
prediction of RPIX inflation rates, whereas the bottom panel displays the results for CPI in-
flation rates. The solid horizontal lines give the 0.05 level; the solid lines refer to probabilistic
calibration and the dotted lines refer to cross-calibration with respect to BoE.

the ones from the CEP. On the other hand, for the AR forecaster, the CEP tests
display better power. Overall, for RPIX inflation rates, we would prefer the BoE
forecast over the AR forecast, whereas for CPI inflation rates, the AR forecast
seems to predict the lower tail of the distribution better than the BoE forecast.
Therefore, one could investigate whether adapting the lower part of the two-
piece normal distribution of the BoE forecast using the estimated parameters
of the AR forecast improves calibration overall.

8. Discussion

We have extended the prediction space setting of Gneiting and Ranjan (2013) to
accommodate serially dependent forecasts which are commonly encountered in
practice. For prediction spaces with serial dependence, we have shown a refined
version of the result of Diebold et al. (1998) on uniformity and independence of
PIT values. It relies on Assumption 2.13, whose implications should be studied
in greater detail. We have focussed on the case of one period ahead forecasts like
in the original result. As mentioned in Remark 1, an analogous result continues
to hold for q-step ahead forecasts. However, additional complications arise in
testing for cross-calibration, which need further investigation in future research.

We have refined the notions of calibration to notions of cross-calibration
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and we have provided powerful statistical tests for these properties requiring
minimal assumptions on the sequences of forecasts and observations. The char-
acterization of cross-calibration and cross-ideal forecasters in Proposition 2.11
sheds some light on the difference between ideal or auto-calibrated forecasters
and probabilistically calibrated forecasters as discussed in Gneiting and Ranjan
(2013). It is remarkable to note that with our approaches, testing for auto-
calibrated forecasters is not more difficult than testing for probabilistic calibra-
tion.

However, in applications with strong temporal dependence of forecasts, it
may be difficult to discern which information is purely derived from past obser-
vations of the quantity of interest, i.e. it belongs to Tt, and which is additional
information of a forecaster, i.e. it belongs to Ai,t. This difficulty could possibly
be overcome if the whole procedure for producing a forecast was disclosed by
the forecaster.

The results of this paper allow to assess (cross-)calibration without the choice
of a proper scoring rule, and hence, independently of sharpness considerations.
Being aware of the calibration properties of a forecaster separately from its
sharpness properties may provide guidance on how to improve forecasts and
could potentially be useful in combining different forecasts.

In order to optimize forecasting performance, it is natural to combine fore-
casts. Gneiting and Ranjan (2013) have proposed combination formulas and
aggregation methods to combine several forecasters; see also Ranjan and Gneit-
ing (2010). It would be interesting to consider under which conditions calibrated
forecasters can be combined to yield cross-calibrated forecasts. Also, the more
refined notions of cross-calibration in this paper may help to identify which
forecasters to include in combination formulas and which ones do not add addi-
tional information about the future outcome. Finally, combining forecasts is only
a good idea if the predictions are based on different information sets. If there is
a cross-calibrated forecaster with respect to all forecasters, any combination of
forecasts would compromise on forecast quality.

Appendix A: Proofs of Section 2

Proof of Theorem 2.9. To show the first claim, observe that we have for all
y ∈ R,

EQ1{F−1
1,t (Z1,t) ≤ y}= Q[F1,t(Yt+1−)+V {F1,t(Yt+1)− F1,t(Yt+1−)} ≤ F1,t(y)]

= Q{F1,t(Yt+1) ≤ F1,t(y)}
= Q(Yt+1 ≤ y).

The second equality holds, because

Z1,t = F1,t(Yt+1−) + V {F1,t(Yt+1)− F1,t(Yt+1−)} ∈ [F1,t(Yt+1−), F1,t(Yt+1)],

where the interval consists of the point F1,t(Yt+1−) = F1,t(Yt+1) if F1,t is con-
tinuous at the point Yt+1, and Z1,t ∈ (F1,t(Yt+1−), F1,t(Yt+1)) almost surely,
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otherwise. Furthermore, F1,t(y) ≤ F1,t(Yt+1−) or F1,t(y) ≥ F1,t(Yt+1). Let
J ⊂ {i1, . . . , im}. The second claim follows because, for y ∈ (0, 1),

Q(Z1,t ≤ y | Fi,t, i ∈ J, Tt) = EQ{Q(Z1,t ≤ y|Fi1 , . . . , Fim , Tt) | Fi,t, i ∈ J, Tt}
= EQ(y | Fi,t, i ∈ J, Tt) = y

by the definition of cross-calibration. The last claim holds because

EQ1{F−1
2,t (Z1,t) ≤ y} = EQQ{Z1,t ≤ F2,t(y) | F2,t, Tt} = EQF2,t(y).

Proof of Proposition 2.11. The equivalence of parts one and two is immediate
from the definition of cross-calibration. Suppose now that 1 ∈ {i1, . . . , im}. For
all y ∈ R, we obtain

Q(Yt+1 ≤ y|Fi1,t, . . . , Fim,t, Tt) = Q{F−1
1,t (Z1,t) ≤ y|Fi1,t, . . . , Fim,t, Tt}

= Q{Z1,t ≤ F1,t(y)|Fi1,t, . . . , Fim,t, Tt} = F1,t(y),

which shows the last claim.

Proof of Lemma 2.12. The forecast F1,t is σ(F1,t) measurable and this is the
smallest σ-algebra with this property. If F1,t is cross-ideal with respect to
σ(F2,t), then it is also measurable with respect to σ(σ(F2,t), Tt) and hence
σ(F1,t) ⊂ σ(σ(F2,t), Tt). Therefore, σ(σ(F1,t), σ(F2,t), Tt) = σ(σ(F2,t), Tt).
Proof of Theorem 2.14. We define the σ-algebra Bt := σ(Ai1,t, . . . ,Aim,t). For
u = (u0, . . . , ul) ∈ (0, 1)l+1, we obtain

EQ

{
l∏

k=0

1(Z1,t+k ≤ uk) | Bt+l

}

= EQ

[
l∏

k=0

EQ{1(Z1,t+k ≤ uk) | Bt+l, Tt+k} | Bt+l

]

= EQ

[
l∏

k=0

EQ{1(Z1,t+k ≤ uk) | Bt+k, Tt+k} | Bt+l

]
=

l∏
k=0

uk

where we use condition (3) to obtain the second equality.

Appendix B: Proofs of Section 4

The proof of Theorem 4.1 parallels the proof of Gneiting and Ranjan (2013,
Theorem 2.11). The following lemma gives a formula for the density function of
Zp1 conditional on p1 = x1, . . . , pk = xk.

Lemma B.1. The density function of Zp1 conditional on p = x is given by

u(z|p = x) =
q(x)

x1
1(1− x1 ≤ z ≤ 1) +

1− q(x)

1− x1
1(0 ≤ z < 1− x1),

where p = (p1, . . . , pk), x = (x1, . . . , xk) ∈ [0, 1]k, x1 ∈ (0, 1) and q(x) = Q(Y =
1|p = x).
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Proof of Lemma B.1. The PIT of p1 is

Zp1 =

{
(1− p1) + p1V, if Y = 1,

(1− p1)V, if Y = 0.

Let 0 ≤ z ≤ 1, then

Q(Zp1 ≤ z |p = x) = Q{(1− p1) + p1V ≤ z, Y = 1|p = x}
+Q{(1− p1)V ≤ z, Y = 0 |p = x}

= Q{(1− p1) + p1V ≤ z |Y = 1,p = x}Q(Y = 1|p = x)

+Q{(1− p1)V ≤ z |Y = 0,p = x}Q(Y = 0|p = x)

=
z + x1 − 1

x1
q(x)1(1− x1 ≤ z) + {1− q(x)}1(1− x1 ≤ z)

+
z

1− x1
{1− q(x)}1(1− x1 > z)

=
1− q(x)

1− x1
z1(1− x1 > z)

+

{
1− q(x)

x1
+

q(x)

x1
z

}
1(1− x1 ≤ z).

Differentiation yields the claim.

Proof of Theorem 4.1. It is easy to see that part two is equivalent to part three.
By Theorem 2.9, part three implies part one. The remaining task is to prove
that part one implies part two. Let H = p(Q) be the marginal law of the random
vector p under Q. Recall that q(x) = Q(Y = 1|p = x). If H({0}× [0, 1]k−1) > 0,
then q(0, x2, . . . , xk) = 0 for all (x2, . . . , xk) ∈ [0, 1]k−1, because

H({0} × [0, 1]k−1) = Q{p−1({0} × [0, 1]k−1)} = Q{p−1
1 (0)} = Q(p1 = 0),

and furthermore,

Q(ZF1 = 1 | p2 = x2, . . . , pk = xk)

≥ Q(ZF1 = 1, Y = 1, p1 = 0 | p2 = x2, . . . , pk = xk)

= Q(Y = 1, p1 = 0 | p2 = x2, . . . , pk = xk)

= Q(Y = 1 | p1 = 0, p2 = x2, . . . , pk = xk)Q(p1 = 0)

= q(0, x2, . . . , xk)Q(p1 = 0).

We know that Q(Zp1 = 1| p2 = x2, . . . , pk = xk) = 0, because L(Zp1 | p2, . . . , pk)
is standard uniform. This implies that q(0, x2, . . . , xk) = 0. Similarly one can
show thatH({1}×[0, 1]k−1) > 0 implies q(1, x2, . . . , xk) = 1 for all (x2, . . . , xk) ∈
[0, 1]k−1.

Using that L(Zp1 |p2, . . . , pk) is a standard uniform distribution and Lemma
B.1, we have for a.a. z ∈ ( 0, 1), δ ∈ ( 0, 1− z)

0 = u(z + δ| p2 = x2, . . . , pk = xk)− u(z| p2 = x2, . . . pk = xk)
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=

∫
[0,1]

{u(z + δ|p = x) − u(z|p = x)} dH1(x1)

=

∫
[1−z−δ,1−z)

q(x)− x1

x1(1− x1)
dH1(x1),

where H1 = p1(Q) is the marginal law of p1 under Q. We define the signed
measure μ for a given (x2, . . . , xk) ∈ [0, 1]k−1 as

μ(A) =

∫
A

q(x)− x1

x1(1− x1)
dH1(x1),

for all Borel sets A ⊂ [a, b], where 0 < a < b < 1. For [c, d) ⊂ [a, b] we have
shown before, that

μ([c, d)) =

∫
[c,d)

q(x)− x1

x1(1− x1)
dH1(x1) = 0.

Therefore, μ(B) = 0 for all B ∈ B([a, b]). In particular, {x1 ∈ [a, b]| q(x) > x1}
and {x1 ∈ [a, b]| q(x) < x1} are H1 null sets and we have q(x) = x1 H1-a.s.,
hence,

p−1
1 {q(x) = x1)} = {ω : q{p1(ω), x2, . . . , xk} = p1(ω)}

= {Q(Y = 1 | p1, p2 = x2, . . . pk = xk) = p1}

has Q-measure 1 for all (x2, . . . , xk) ∈ [0, 1]k−1. Therefore, Q(Y = 1|p) = p1
Q-a.s..

Appendix C: Calculations for Example 2.10

Let μ ∼ N (0, 1) and let τ takes values 1 or −1 with equal probability inde-
pendent of μ. Conditional on μ and τ , the observation is Y ∼ N (μ, 1) and
the forecasters have the following predictive distribution functions: F1(y) =
Φ(y − μ), F2(y) = Φ

(
y/

√
2
)
, F3(y) = (1/2)Φ(y − μ) + (1/2)Φ(y − μ − τ),

F4(y) = Φ(y + μ) for y ∈ R. As in Gneiting et al. (2007), we use the defi-
nitions Ψ+(x) = 1

2{Φ(x) + Φ(x − 1)}, Ψ−(x) = 1
2{Φ(x) + Φ(x + 1)}. Thus,

Ψ−(x) = Ψ+(x+ 1) and Ψ−1
− {Ψ+(x+ 1)} = x.

Proposition C.1. The unfocused forecaster F3 is cross-calibrated with respect
to F1, F2, F4.

Proof. Let y ∈ (0, 1). We have

Q(ZF3 ≤ y|F1, F2, F4) = Q(ZF3 ≤ y|μ)

=
1

2
Q{Ψ+(Y − μ) ≤ y|μ}+ 1

2
Q{Ψ−(Y − μ) ≤ y|μ}

=
1

2
Φ{Ψ−1

+ (y)}+ 1

2
Φ{Ψ−1

− (y)} = y.
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Supplementary Material

Further Examples and the Score Regression Approach
(doi: 10.1214/17-EJS1244SUPPA; .pdf). We provide a short discussion of the
cross-calibration test suggested by Feinberg and Stewart (2008) and give addi-
tional examples of diagnostic plots for cross-calibration. We generalize the test
suggested by Held et al. (2010) to a test for cross-ideal forecasters. Finally, we
discuss a natural approach for testing marginal cross-calibration, which, unfor-
tunately, is useless in practice.

Computer Code
(doi: 10.1214/17-EJS1244SUPPB; .zip). The zip archive contains all R-code used
in the paper and supplementary material.
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Knüppel, M. (2015). Evaluating the calibration of multi-step-ahead density fore-
casts using raw moments. Journal of Business and Economic Statistics 33,
270–281. MR3337062

Mason, S. J., J. Galpin, L. Goddard, N. Graham, and B. Rajartnam (2007).
Conditional exceedance probabilities. Monthly Weather Review 135, 363–372.

Meinshausen, N., M. H. Maathuis, and P. Bühlmann (2011). Asymptotic op-
timality of the Westfall-Young permutation procedure for multiple testing
under dependence. The Annals of Statistics 39 (6), 3369–3391.

Mitchell, J. and S. G. Hall (2005). Evaluating, comparing and combining den-
sity forecasts using the KLIC with an application to the Bank of England
and NIESR ‘fan’ charts of inflation. Oxford Bulletin of Economics and Statis-
tics 67S, 995–1033.

http://www.ams.org/mathscinet-getitem?mr=2325275
http://www.ams.org/mathscinet-getitem?mr=3337062


Cross-calibration of probabilistic forecasts 639

Mitchell, J. and K. F. Wallis (2011). Evaluating density forecasts: Forecast
combinations, model mixtures, calibration and sharpness. Journal of Applied
Econometrics 26, 1023–1040. MR2843116

Montgomery, D. C., E. A. Peck, and C. G. Vining (2001). Introduction to linear
regression analysis (3rd ed.). John Wiley & Sons, Inc.

Murphy, A. H. (1994). A coherent method of stratification within a general
framework for forecast verification. Monthly Weather Review 123, 1582–1588.

Murphy, A. H. and R. L. Winkler (1987). A general framework for forecast
verification. Monthly Weather Review 115, 1330–1338.

Murphy, A. H. and R. L. Winkler (1992). Diagnostic verification of probability
forecasts. International Journal of Forecasting 7, 435–455.

R Core Team (2015). R: A Language and Environment for Statistical Com-
puting. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-
900051-07-0.

Ranjan, R. and T. Gneiting (2010). Combining probability forecasts. Journal of
the Royal Statistical Society: Series B 72, 71–91.
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