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Abstract: The Expectation Maximization (EM) algorithm is a versatile
tool for model parameter estimation in latent data models. When process-
ing large data sets or data stream however, EM becomes intractable since
it requires the whole data set to be available at each iteration of the algo-
rithm. In this contribution, a new generic online EM algorithm for model
parameter inference in general Hidden Markov Model is proposed. This new
algorithm updates the parameter estimate after a block of observations is
processed (online). The convergence of this new algorithm is established,
and the rate of convergence is studied showing the impact of the block-size
sequence. An averaging procedure is also proposed to improve the rate of
convergence. Finally, practical illustrations are presented to highlight the
performance of these algorithms in comparison to other online maximum
likelihood procedures.
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1. Introduction

A hidden Markov model (HMM) is a stochastic process {Xk, Yk}k≥0 in X× Y,
where the state sequence {Xk}k≥0 is a Markov chain and where the observations
{Yk}k≥0 are independent conditionally on {Xk}k≥0. Moreover, the conditional
distribution of Yk given the state sequence depends only on Xk. The sequence
{Xk}k≥0 being unobservable, any statistical inference task is carried out using
the observations {Yk}k≥0. These HMM can be applied in a large variety of
disciplines such as financial econometrics (Mamon and Elliott [2007]), biology
(Churchill [1992]) or speech recognition (Juang and Rabiner [1991]).

The Expectation Maximization (EM) algorithm is an iterative algorithm used
to solve maximum likelihood estimation in HMM, see Dempster et al. [1977].
The EM algorithm is generally simple to implement since it relies on complete
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data computations. Each iteration is decomposed into two steps: the E-step
computes the conditional expectation of the complete data log-likelihood given
the observations and the M-step updates the parameter estimate based on this
conditional expectation. In many situations of interest, the complete data like-
lihood belongs to the curved exponential family. In this case, the E-step boils
down to the computation of the conditional expectation of the complete data
sufficient statistic. Even in this case, except for simple models such as linear
Gaussian models or HMM with finite state-spaces, the E-step is intractable and
has to be approximated e.g. by Monte Carlo methods such as Markov Chain
Monte Carlo methods or Sequential Monte Carlo methods (see Carlin et al.
[1992] or Cappé et al. [2005], Doucet et al. [2001] and the references therein).

However, when processing large data sets or data streams, the EM algo-
rithm might become impractical. Online variants of the EM algorithm have
been first proposed for independent and identically distributed (i.i.d.) obser-
vations, see Cappé and Moulines [2009]. When the complete data likelihood
belongs to the cruved exponential family, the E-step is replaced by a stochas-
tic approximation step while the M-step remains unchanged. The convergence
of this online variant of the EM algorithm for i.i.d. observations is addressed
by Cappé and Moulines [2009]: the limit points are the stationary points of the
Kullback-Leibler divergence between the marginal distribution of the observa-
tion and the model distribution.

An online version of the EM algorithm for HMM when both the observations
and the states take a finite number of values (resp. when the states take a finite
number of values) was recently proposed by Mongillo and Denève [2008] (resp.
by Cappé [2011]). This algorithm has been extended to the case of general state-
space models by substituting deterministic approximation of the smoothing
probabilities for Sequential Monte Carlo algorithms (see Cappé [2009], Del Moral
et al. [2010], Le Corff et al. [2011]). There do not exist convergence results for
these online EM algorithms for general state-space models (some insights on the
asymptotic behavior are nevertheless given in Cappé [2011]): the introduction
of many approximations at different steps of the algorithms makes the analysis
quite challenging.

In this contribution, a new online EM algorithm is proposed for HMM with
complete data likelihood belonging to the curved exponential family. This algo-
rithm sticks closely to the principles of the original batch-mode EM algorithm.
The M-step (and thus, the update of the parameter) occurs at some deter-
ministic times {Tk}k≥1 i.e. we propose to keep a fixed parameter estimate for
blocks of observations of increasing size. More precisely, let {Tk}k≥0 be an in-
creasing sequence of integers (T0 = 0). For each k ≥ 0, the parameter’s value
is kept fixed while accumulating the information brought by the observations
{YTk+1, . . . , YTk+1

}. Then, the parameter is updated at the end of the block.
This algorithm is an online algorithm since the sufficient statistics of the k-th
block can be computed on the fly by updating an intermediate quantity when a
new observation Yt, t ∈ {Tk + 1, . . . , Tk+1} becomes available. Such recursions
are provided in recent works on online estimation in HMM, see Cappé [2009],
Cappé [2011], Del Moral et al. [2010].
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This new algorithm, called Block Online EM (BOEM) is derived in Section 2
together with an averaged version. Section 3 is devoted to practical applications:
the BOEM algorithm is used to perform parameter inference in HMM where the
forward recursions mentioned above are available explicitly. In the case of finite
state-space HMM, the BOEM algorithm is compared to a gradient-type recur-
sive maximum likelihood procedure and to the online EM algorithm of Cappé
[2011]. The convergence of the BOEM algorithm is addressed in Section 4. The
BOEM algorithm is seen as a perturbation of a deterministic limiting EM algo-
rithm which is shown to converge to the stationary points of the limiting relative
entropy (to which the true parameter belongs if the model is well specified). The
perturbation is shown to vanish (in some sense) as the number of observations
increases thus implying that the BOEM algorithms inherits the asymptotic be-
havior of the limiting EM algorithm. Finally, in Section 5, we study the rate of
convergence of the BOEM algorithm as a function of the block-size sequence.
We prove that the averaged BOEM algorithm is rate-optimal when the block-
size sequence grows polynomially. All the proofs are postponed to Section 6;
supplementary proofs and comments are provided in Le Corff and Fort [2011].

2. The Block Online EM algorithms

2.1. Notations and Model assumptions

Our model is defined as follows. Let Θ be a compact subset of Rdθ . We are
given a family of transition kernels {Mθ}θ∈Θ, Mθ : X × X → [0, 1], a positive
σ-finite measure µ on (Y,Y), and a family of transition densities with respect
to µ, {gθ}θ∈Θ, gθ : X × Y → R+. For each θ ∈ Θ, define the transition kernel
Kθ on X× Y by

Kθ [(x, y), C]
def
=

∫
1C(x

′, y′) gθ(x
′, y′)µ(dy′)Mθ(x, dx

′) .

Denote by {Xk, Yk}k≥0 the canonical coordinate process on the measurable
space

(
(X× Y)N, (X ⊗ Y)⊗N

)
. For any θ ∈ Θ and any probability distribution

χ on (X,X ), let P
χ
θ be the probability distribution on ((X × Y)N, (X ⊗ Y)⊗N)

such that {Xk, Yk}k≥0 is Markov chain with initial distribution P
χ
θ ((X0, Y0) ∈

C) =
∫
1C(x, y) gθ(x, y)µ(dy)χ(dx) and transition kernel Kθ. The expectation

with respect to P
χ
θ is denoted by E

χ
θ . Throughout this paper, it is assumed

that the Markov transition kernel Kθ has a unique invariant distribution πθ
(see below for further comments). For the stationary Markov chain with initial
distribution πθ, we write Pθ and Eθ instead of Pπθ

θ and E
πθ

θ . Note also that the
stationary Markov chain {Xk, Yk}k≥0 can be extended to a two-sided Markov
chain {Xk, Yk}k∈Z.

It is assumed that, for any θ ∈ Θ and any x ∈ X, Mθ(x, ·) has a density
mθ(x, ·) with respect to a finite measure λ on (X,X ). Define the complete data
likelihood by

pθ(x0:T , y0:T )
def
= gθ(x0, y0)

T−1∏

i=0

mθ(xi, xi+1)gθ(xi+1, yi+1) , (1)
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where, for any u ≤ s, we will use the shorthand notation xu:s for the sequence
(xu, . . . , xs). For any probability distribution χ on (X,X ), any θ ∈ Θ and any
s ≤ u ≤ v ≤ t, we have

E
χ
θ [f(Xu:v)|Ys:t] =

∫
f(xu:v)φ

χ
θ,u:v|s:t(dxu:v) ,

where φχθ,u:v|s:t is the so-called fixed-interval smoothing distribution. We also

define the fixed-interval smoothing distribution when Xs ∼ χ:

E
χ,s
θ [f(Xu:v)|Ys+1:t]

=

∫ ∏t
i=s+1{mθ(xi−1, xi)gθ(xi, Yi)}f(xu:v)χ(dxs)λ(dxs+1:t)∫ ∏t

i=s+1{mθ(xi−1, xi)gθ(xi, Yi)}χ(dxs)λ(dxs+1:t)
. (2)

Given an initial distribution χ on (X,X ) and T + 1 observations Y0:T , the
EM algorithm maximizes the so-called incomplete data log-likelihood θ 7→ ℓχθ,T
defined by

ℓχθ,T (Y)
def
= log

∫
pθ(x0:T , Y1:T )χ(dx0)λ(dx1:T ) . (3)

The central concept of the EM algorithm is that the intermediate quantity
defined by

θ 7→ Q(θ, θ′)
def
= E

χ
θ′ [log pθ(X0:T , Y1:T )|Y1:T ]

may be used as a surrogate for ℓχθ,T (Y0:T ) in the maximization procedure. There-
fore, the EM algorithm iteratively builds a sequence {θn}n≥0 of parameter es-
timates following the two steps:

i) Compute θ 7→ Q(θ, θn).
ii) Choose θn+1 as a maximizer of θ 7→ Q(θ, θn).

In the sequel, it is assumed that there exist functions S, φ and ψ such that (see
A1 for a more precise definition), for any (x, x′) ∈ X

2 and any y ∈ Y,

mθ(x, x
′)gθ(x

′, y) = exp {φ(θ) + 〈S(x, x,′ , y), ψ(θ)〉} .

Therefore, the complete data likelihood belongs to the curved exponential family
and the step i) of the EM algorithm amounts to computing

θ 7→ Q(θ, θn) = φ(θ) +

〈
1

T

T∑

t=1

E
χ
θn

[S(Xt−1, Xt, Yt)|Y1:T ] , ψ(θ)
〉
,

where 〈·, ·〉 is the scalar product on R
d (and where the contribution of gθ(x0, Y0)

is omitted for brevity). It is also assumed that for any s ∈ S, where S is an ap-
propriately defined set, the function θ 7→ φ(θ)+〈s, ψ(θ)〉 has a unique maximum
denoted by θ̄(s). Hence, a step of the EM algorithm writes

θn = θ̄

(
1

T

T∑

t=1

E
χ
θn−1

[S(Xt−1, Xt, Yt)|Y1:T ]
)
.
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2.2. The Block Online EM (BOEM) algorithms

We now derive an online version of the EM algorithm. Define S̄χ,T
τ (θ,Y) as

the intermediate quantity of the EM algorithm computed with the observations
YT :T+τ :

S̄χ,T
τ (θ,Y)

def
=

1

τ

T+τ∑

t=T+1

E
χ,T
θ [S(Xt−1, Xt, Yt)|YT+1:T+τ ] , (4)

where Eχ,T
θ [·|YT+1:T+τ ] is defined by (2). Let {τn}n≥1 be a sequence of positive

integers such that limn→∞ τn = +∞ and set

Tn
def
=

n∑

k=1

τk and T0
def
= 0 ; (5)

τn denotes the length of the n-th block. Given an initial value θ0 ∈ Θ, the
BOEM algorithm defines a sequence {θn}n≥1 by

θn
def
= θ̄ [Sn−1] , and Sn−1

def
= S̄χn−1,Tn−1

τn (θn−1,Y) , (6)

where {χn}n≥0 is a family of probability distributions on (X,X ). By analogy to
the regression problem, an estimator with reduced variance can be obtained by
averaging and weighting the successive estimates (see Kushner and Yin [1997],
Polyak and Juditsky [1992] for a discussion on the averaging procedures). Define

Σ0
def
= 0 and for n ≥ 1,

Σn
def
=

1

Tn

n∑

j=1

τj Sj−1 . (7)

Note that this quantity can be computed iteratively and does not require to
store the past statistics {Sj}n−1

j=0 . Given an initial value θ̃0, the averaged BOEM

algorithm defines a sequence {θ̃n}n≥1 by

θ̃n
def
= θ̄ (Σn) . (8)

The algorithm above relies on the assumption that Sn can be computed in
closed form. In the HMM case, this property is satisfied only for linear Gaus-
sian models or when the state-space is finite. In all other cases, Sn cannot be
computed explicitly and will be replaced by a Monte Carlo approximation S̃n.
Several Monte Carlo approximations can be used to compute S̃n. The conver-
gence properties of the Monte Carlo BOEM algorithms rely on the assumption
that the Monte Carlo error can be controlled on each block. Le Corff and Fort
[2013] provides examples of applications when Sequential Monte Carlo algo-

rithms are used. Hereafter, we use the same notation {θn}n≥0 and {θ̃n}n≥0 for
the original BOEM algorithm or its Monte Carlo approximation.

Our algorithms update the parameter after processing a block of observations.
Nevertheless, the intermediate quantity Sn can be either exactly computed or
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approximated in such a way that the observations are processed online. In this
case, the intermediate quantity Sn or S̃n is updated online for each observation.
Such an algorithm is described in Cappé [2011, Section 2.2] and Del Moral et al.
[2010, Proposition 2.1] and can be applied either to finite state-space HMM or
to linear Gaussian models. Del Moral et al. [2010] proposed a Sequential Monte

Carlo approximation to compute S̃n online for more complex models (see also
Le Corff and Fort [2013]).

The classical theory of maximum likelihood estimation often relies on the
assumption that the “true” distribution of the observations belongs to the spec-
ified parametric family of distributions. In many cases, it is doubtful that this
assumption is satisfied. It is therefore natural to investigate the convergence of
the BOEM algorithms and to identify the possible limit for misspecified models
i.e. when the observations {Yk}k≥0 are from an ergodic process which is not
necessarily an HMM.

3. Application to inverse problems in Hidden Markov Models

In Section 3.1, the performance of the BOEM algorithm and its averaged version
are illustrated in a linear Gaussian model. In Section 3.2, the BOEM algorithm
is compared to online maximum likelihood procedures in the case of finite state-
space HMM.

Applications of the Monte Carlo BOEM algorithm to more complex models
with Sequential Monte Carlo methods can be found in Le Corff and Fort [2013].

3.1. Linear Gaussian Model

Consider the linear Gaussian model:

Xt+1 = φXt + σuUt , Yt = Xt + σvVt ,

where X0 ∼ N
(
0, σ2

u(1 − φ2)−1
)
, {Ut}t≥0, {Vt}t≥0 are independent i.i.d. stan-

dard Gaussian r.v., independent from X0. Data are sampled using φ = 0.9,
σ2
u = 0.6 and σ2

v = 1. All runs are started with φ = 0.1, σ2
u = 1 and σ2

v = 2.
We illustrate the convergence of the BOEM algorithms. We choose τn =

n1.1. We display in Figure 1 the median and lower and upper quartiles for the
estimation of φ obtained with 100 independent Monte Carlo experiments. Both
the BOEM algorithm and its averaged version converge to the true value φ = 0.9;
the averaging procedure clearly improves the variance of the estimation.

We now discuss the role of {τn}n≥0. Figure 2 displays the empirical variance,
when estimating φ, computed with 100 independent Monte Carlo runs, for differ-
ent numbers of observations and, for both the BOEM algorithm and its averaged
version. We consider four polynomial rates τn ∼ nb, b ∈ {1.2, 1.8, 2, 2.5}. Fig-
ure 2(a) shows that the choice of {τn}n≥0 has a great impact on the empirical
variance of the (non averaged) BOEM path {θn}n≥0. To reduce this variability,
a solution could consist in increasing the block sizes τn at a larger. The influence
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(a) The BOEM algorithm without averaging.
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(b) The BOEM algorithm with averaging.

Fig 1. Estimation of φ.

of the block size sequence τn is greatly reduced with the averaging procedure as
shown in Figure 2(b). We will show in Section 5 that averaging really improves
the rate of convergence of the BOEM algorithm.

3.2. Finite state-space HMM

We consider a Gaussian mixture process with Markov dependence of the form:

Yt = Xt+Vt where {Xt}t≥0 is a Markov chain taking values in X
def
= {x1, . . . , xd},

with initial distribution χ and a d × d transition matrix m. {Vt}t≥0 are i.i.d.
N (0, v) r.v., independent from {Xt}t≥0, i.e., for all (x, y) ∈ X× Y,

gθ(x, y)
def
= (2πv)−1/2 exp

{
− (y − x)2

2v

}
,

where θ
def
=
(
v, x1:d, (mi,j)

d
i,j=1

)
. The true transition matrix is given by

m =




0.5 0.05 0.1 0.15 0.15 0.05
0.2 0.35 0.1 0.15 0.05 0.15
0.1 0.1 0.6 0.05 0.05 0.1
0.02 0.03 0.1 0.7 0.1 0.05
0.1 0.05 0.13 0.02 0.6 0.1
0.1 0.1 0.13 0.12 0.1 0.45




.
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(a) The BOEM algorithm, without averaging
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(b) The BOEM algorithm, with averaging

Fig 2. The BOEM algorithm: empirical variance of the estimation of φ after n = 0.5ℓ · 105

observations (ℓ ∈ {1, . . . , 7}) for different block size schemes τn ∼ n1.2 (stars), τn ∼ n1.8

(dots), τn ∼ n2 (crosses) and τn ∼ n2.5 (squares).

In the experiments below, the initial distribution below is chosen as the uniform
distribution on X. The statistics used to estimate θ are, for all (i, j) ∈ {1, . . . , d}
and all (x, x′) ∈ X

2,

Si,0(x, x′, y) = 1xi(x
′) , Si,1(x, x′, y) = y1xi(x

′) , (9)

Si,2(x, x′, y) = y21xi(x
′) , Si,j(x, x

′, y) = 1xi(x)1xj (x
′) .

The online computation of these intermediate quantities is given Cappé [2011,
Section 2.2]. The computations below are performed for each statistic in (9).
Define, for all x ∈ X, φ0(x) = χ(x) and ρ0(x) = 0.

i) For t ∈ {1, . . . , τ}, compute, for any x ∈ X,

φt(x) =

∑
x′∈X

φt−1(x
′)mx′,xgθ(x, Yt+T )∑

x′,x′′∈X
φt−1(x′)mx′,x′′gθ(x′′, Yt+T )

,

and

rt(x, x
′) =

φt−1(x
′)mx′,x∑

x′′∈X
φt−1(x′′)mx′′,x

.

ρt(x) =
∑

x′∈X

[
1

t
S(x, x′, Yt+T ) +

(
1− 1

t

)
ρt−1(x

′)

]
rt(x, x

′) .
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(a) The BOEM algorithm.
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(b) The OEM algorithm.
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(c) The averaged BOEM algorithm.
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(d) The averaged OEM algorithm.

Fig 3. Estimation of v using the online EM and the BOEM algorithms (top) and their
averaged versions (bottom). Each plot displays the empirical median (bold line) and the first
and last quartiles (dotted lines) over 100 independent Monte Carlo runs with τn = n1.1 and
γn = n−0.53.

ii) Set

S̄χ,T
τ (θ,Y) =

∑

x∈X

ρτ (x)φτ (x) .

At the end of the block, the new estimate is given, for all (i, j) ∈ {1, . . . , d}2 by
(the dependence on Y, θ, χ, T and τ is dropped from the notation)

mi,j =
S̄i,j∑d
j=1 S̄i,j

, xi =
S̄i,1

S̄i,0
, v =

d∑

i=1

S̄i,2 +
d∑

i=1

x2i S̄
i,0 − 2

d∑

i=1

xiS̄
i,1 .

We first compare the averaged BOEM algorithm to the online EM (OEM)
procedure of Cappé [2011] combined with a Polyak-Ruppert averaging (see
Polyak and Juditsky [1992]). Note that the convergence of the OEM algorithm
is still an open problem. In this case, we want to estimate the variance v and
the states {x1, . . . , xd}. All the runs are started from v = 2 and from the ini-
tial states {−1; 0; .5; 2; 3; 4}. The algorithm in Cappé [2011] follows a stochastic
approximation update and depends on a step-size sequence {γn}n≥0. It is ex-

pected that the rate of convergence in L2 after n observations is γ
1/2
n (and

n−1/2 for its averaged version) - this assertion relies on classical results for
stochastic approximation. We prove in Section 5 that the rate of convergence of
the BOEM algorithm is n−b/(2(b+1)) (and n−1/2 for its averaged version) when
τn ∝ nb. Therefore, we set τn = n1.1 and γn = n−0.53. Figure 3 displays the
empirical median and first and last quartiles for the estimation of v with both
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(a) The averaged BOEM algorithm.
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(b) The averaged OEM algorithm.

Fig 4. Estimation of x1 using the averaged OEM and the averaged BOEM algorithms. Each
plot displays the empirical median (bold line) and the first and last quartiles (dotted lines)
over 100 independent Monte Carlo runs with τn = n1.1 and γn = n−0.53. The first ten
observations are omitted for a better visibility.
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(a) The averaged BOEM algorithm.
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(b) The averaged RML algorithm.

Fig 5. Empirical median (bold line) and first and last quartiles (dotted line) for the estimation
of m(1, 1) using the averaged RML algorithm (right) and the averaged BOEM algorithm
(left). The true values is m(1, 1) = 0.5 and the averaging procedure is starter after 10000
observations. The first 10000 observations are not displayed for a better clarity.

algorithms and their averaged versions as a function of the number of obser-
vations. These estimates are obtained over 100 independent Monte Carlo runs.
Both the BOEM and the OEM algorithms converge to the true value of v and
the averaged versions reduce the variability of the estimation. Figure 4 shows
the similar behavior of both averaged algorithms for the estimation of x1 in the
same experiment. Some supplementary graphs on the estimation of the states
can be found in Le Corff and Fort [2011, Section 4]).

We now compare the averaged BOEM algorithm to a recursive maximum like-
lihood (RML) procedure (see Le Gland andMevel [1997], Tadić [2010]) combined
with Polyak-Ruppert averaging (see Polyak and Juditsky [1992]). We want to es-
timate the variance v and the transition matrix m. All the runs are started from
v = 2 and from a matrix m with each entry equal to 1/d. The RML algorithm
follows a stochastic approximation update and depends on a step-size sequence
{γn}n≥0 which is chosen in the same way as above. Therefore, for a fair compar-
ison, the RML algorithm (resp. the BOEM algorithm) is run with γn = n−0.53

(resp. τn = n1.1). Figure 5 displays the empirical median and empirical first
and last quartiles of the estimation of m(1, 1) as a function of the number of
observations over 100 independent Monte Carlo runs. For both algorithms, the
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bias and the variance of the estimation decrease as n increases. Nevertheless,
the bias and/or the variance of the averaged BOEM algorithm decrease faster
than those of the averaged RML algorithm (similar graphs have been obtained
for the estimation of the other entries of the matrix m and for the estimation
of v; see Le Corff and Fort [2011, Section 4]). As a conclusion, it is advocated
to use the averaged BOEM algorithm instead of the averaged RML algorithm.

4. Convergence of the Block Online EM algorithms

4.1. Assumptions

Consider the following assumptions.

A1 (a) There exist continuous functions φ : Θ → R, ψ : Θ → R
d and

S : X× X× Y → R
d s.t.

logmθ(x, x
′) + log gθ(x

′, y) = φ(θ) + 〈S(x, x,′ , y), ψ(θ)〉 ,

where 〈·, ·〉 denotes the scalar product on R
d.

(b) There exists an open subset S of Rd that contains the convex hull of
S(X× X× Y).

(c) There exists a continuous function θ̄ : S → Θ s.t. for any s ∈ S,

θ̄(s) = argmaxθ∈Θ {φ(θ) + 〈s, ψ(θ)〉} .

A2 There exist σ− and σ+ s.t. for any (x, x′) ∈ X
2 and any θ ∈ Θ, 0 < σ− ≤

mθ(x, x
′) ≤ σ+. Set ρ

def
= 1− (σ−/σ+) .

A2, often referred to as the strong mixing condition, is commonly used to prove
the forgetting property of the initial condition of the filter, see e.g. Del Moral and
Guionnet [1998], Del Moral et al. [2003]. This assumption holds for example if X
is finite or for linear state-spaces with truncated gaussian state and measurement
noises. More generally, this condition holds when X is compact. Note in addition
that by [Meyn and Tweedie, 1993, Theorem 16.0.2], A2 implies that the Markov
kernel Mθ has a unique invariant distribution which guarantees the existence of
the unique invariant distribution πθ for Kθ.

We now introduce assumptions on the observation process Y
def
= {Yk}k∈Z. It

is defined on some probability space (Ω,F ,P). We stress that this process is not
necessarily the observation of an HMM. Let

FY

k
def
= σ ({Yu}u≤k) and GY

k
def
= σ ({Yu}u≥k) (10)

be σ-fields associated to Y. We also define the β-mixing coefficients by, see
Davidson [1994],

βY(n) = sup
u∈Z

sup
B∈GY

u+n

E
[
|P(B|FY

u )− P(B)|
]
, ∀ n ≥ 0 . (11)
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A3-(p) E
[
supx,x′∈X2 |S(x, x′, Y0)|p

]
< +∞.

A4 (a) Y is a β-mixing stationary sequence such that there exist C ∈ [0, 1)
and β ∈ (0, 1) satisfying, for any n ≥ 0, βY(n) ≤ Cβn, where βY is
defined in (11).

(b) E [| log b−(Y0)|+ | log b+(Y0)|] < +∞ where

b−(y)
def
= infθ∈Θ

∫
gθ(x, y)λ(dx) ,

b+(y)
def
= supθ∈Θ

∫
gθ(x, y)λ(dx) .

Upon noting that, for all n ≥ 0, βY(n) ≤ β(X,Y)(n), we can prove that A4(a)
holds when Y is the observation process of a an HMM under classical geometric
ergodicity conditions [Meyn and Tweedie, 1993, Chapter 15] and [Cappé et al.,
2005, Chapter 14].

A5 There exists c > 0 and a > 1 such that for all n ≥ 1, τn = ⌊cna⌋.
For p > 0 and Z a random variable measurable w.r.t. the σ-algebra σ (Yn, n ∈ Z),

set ‖Z‖p
def
= (E [|Z|p])1/p.

A6 -(p) There exists b ≥ (a + 1)/2a (where a is defined in A5) such that, for
any n ≥ 0, ∥∥∥Sn − S̃n

∥∥∥
p
= O(τ−b

n+1) ,

where S̃n is the Monte Carlo approximation of Sn which is defined by (6).

A6 gives a Lp control of the Monte Carlo error on each block. In Dubarry and
Le Corff [2012, Theorem 1], such bounds are given for Sequential Monte Carlo
algorithms. Practical conditions to ensure A6 are given in Le Corff and Fort
[2013] in the case of Sequential Monte Carlo methods.

4.2. The limiting EM algorithm

In the sequel, M(X) denotes the set of all probability distributions on (X,X ).

Theorem 4.1. Let p̄ > 2. Assume that A1-2, A3-(p̄) and A4 hold.

i) For any θ ∈ Θ, there exists a r.v. S(θ,Y) s.t.

sup
θ∈Θ, χ∈M(X)

∣∣∣Eχ,−τ−1
θ [S(X−1, X0, Y0)|Y−τ :τ ]− S(θ,Y)

∣∣∣

≤ Cρτ sup
(x,x′)∈X2

|S(x, x′, Y0)| , P−a.s. , (12)

where C is a finite constant. Define for all θ ∈ Θ,

S̄(θ)
def
= E [S(θ,Y)] . (13)
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ii) θ 7→ S̄(θ) is continuous on Θ and for any T > 0,

S̄χ,T
τ (θ,Y) −→

τ→+∞
S̄(θ) , P−a.s. , (14)

where S̄χ,T
τ (θ,Y) is defined by (4).

iii) Assume in addition that A6-(p̄) holds. For any p ∈ (2, p̄), there exists a
constant C s.t. for any n ≥ 1,

∥∥∥S̃n − S̄(θn)
∥∥∥
p
≤ C√

τn+1
,

where S̃n is the Monte Carlo approximation of Sn defined by (6).

Theorem 4.1 allows to introduce the limiting EM algorithm, defined as the
deterministic iterative algorithm θ̌n = R(θ̌n−1) where

R(θ)
def
= θ̄

(
S̄(θ)

)
. (15)

The limiting EM can be seen as an EM algorithm applied as if the whole trajec-
toryY was observed instead of Y0:T . For this limiting EM, the so-called sufficient
statistics depend on the observations only through the mean E [S(θ,Y)]. The
stationary points of the limiting EM are defined as

L def
= {θ ∈ Θ; R(θ) = θ} . (16)

We show that there exists a Lyapunov function W w.r.t. to the map R and the
set L i.e., a continuous function W satisfying the two conditions:

(i) for all θ ∈ Θ, W ◦ R(θ)−W(θ) ≥ 0 ,
(ii) for all compact set K ⊂ Θ \ L, infθ∈K {W ◦ R(θ) −W(θ)} > 0 .

For such a function, the sequence {W(θ̌k)}k≥0 is nondecreasing and {θ̌k}k≥0

converges to L.
Define, for any m ≥ 0, θ ∈ Θ and probability distribution χ on (X,X ),

pχθ (Y1|Y−m:0)

def
=

∫
χ(dx−m)gθ(x−m, Ym)

∏1
i=−m+1 {mθ(xi−1, xi)gθ(xi, Yi)}λ(dx−m+1:1)∫

χ(dx−m)gθ(x−m, Ym)
∏0

i=−m+1 {mθ(xi−1, xi)gθ(xi, Yi)}λ(dx−m+1:0)
.

By [Douc et al., 2004, Lemma 2 and Proposition 1], under A1-4, for any θ ∈ Θ,
there exists a random variable log pθ (Y1|Y−∞:0), such that for any probability
distribution χ on (X,X ), log pθ (Y1|Y−∞:0) is the a.s. limit of log pχθ (Y1|Y−m:0)
as m→ +∞ and

T−1ℓχθ,T (Y) −→
T→+∞

ℓ(θ)
def
= E [log pθ (Y1|Y−∞:0)] , P−a.s. , (17)

where ℓχθ,T (Y) is the log-likelihood defined by (3). The function θ 7→ ℓ(θ) may
be interpreted as the limiting log-likelihood. We consider the function W , given,
for all θ ∈ Θ, by

W(θ)
def
= exp {ℓ(θ)} . (18)
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To identify the stationary points of the limiting EM algorithm as the stationary
points of ℓ, we introduce an additional assumption.

A7 (a) For any y ∈ Y and for all (x, x′) ∈ X
2, θ 7→ gθ(x, y) and θ 7→ mθ(x, x

′)
are continuously differentiable on Θ.

(b) E [φ(Y0)] < +∞ where

φ(y)
def
= sup

θ∈Θ
sup

(x,x′)∈X2

|∇θ logmθ(x, x
′) +∇θ log gθ(x

′, y)| .

Proposition 4.2. Assume that A1-2, A3-(1) and A4 hold. Then, the function
W given by (18) is a Lyapunov function for (R,L). Assume in addition that A7
holds. Then, θ 7→ ℓ(θ) is continuously differentiable and

L = {θ ∈ Θ; R(θ) = θ} = {θ ∈ Θ; ∇ℓ(θ) = 0} .

Proposition 4.2 is proved in Section 6.2.

Remark 4.3. In the case where {Yk}k≥0 is the observation process of the sta-
tionary HMM {(Xk, Yk)}k≥0 parameterized by θ⋆ ∈ Θ, we can build a two-
sided stationary extension of this process to obtain a sequence of observations
{Yk}k∈Z. Following [Douc et al., 2004, Proposition 3], the quantity ℓ(θ) can be
written as

ℓ(θ) = Eθ⋆

[
lim

m→+∞
log pθ(Y1|Y−m:0)

]

= lim
m→+∞

Eθ⋆ [log pθ(Y1|Y−m:0)]

= lim
m→+∞

Eθ⋆ [Eθ⋆ [log pθ(Y1|Y−m:0)|Y−m:0]] ,

where pθ(Y1|Y−m:0) is the conditional distribution under the stationary distri-
bution. Since

Eθ⋆ [log pθ⋆(Y1|Y−m:0)|Y−m:0]− Eθ⋆ [log pθ(Y1|Y−m:0)|Y−m:0]

is the Kullback-Leibler divergence between pθ⋆(Y1|Y−m:0) and pθ(Y1|Y−m:0), for
any θ ∈ Θ, ℓ(θ⋆)− ℓ(θ) ≥ 0 and θ⋆ is a maximizer of θ 7→ ℓ(θ). If in addition θ⋆
lies in the interior of Θ, then θ⋆ ∈ L.

The following proposition gives sufficient conditions for the convergence of
the limiting EM algorithm and the Monte Carlo BOEM algorithm to the set L.
Theorem 4.4. Let p̄ > 2. Assume that A1-2, A3-(p̄) and A4 hold. Assume in
addition that W(L) has an empty interior. For any initial value θ̌0 ∈ Θ, there
exists w⋆ s.t. {θ̌k}k≥0 converges to {θ ∈ L; W(θ) = w⋆}. If in addition A5 and
A6-(p̄) hold, then the sequence {θn}n≥0 converges P−a.s. to the same stationary
points.

Theorem 4.4 is a direct application of Proposition A.1 for the limiting EM
algorithm. The proof for the Monte Carlo BOEM algorithm is detailed in Sec-
tion 6.3. By Sard’s theorem if W is at least dθ (where Θ ⊂ R

dθ ) continuously
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differentiable, then W(L) has Lebesgue measure 0 and hence has an empty
interior.

5. Rate of convergence of the Block Online EM algorithms

We address the rate of convergence of the Monte Carlo BOEM algorithms to a
point θ⋆ ∈ L. It is assumed that

A8 (a) S̄ and θ̄ are twice continuously differentiable on Θ and S.
(b) There exists 0 < γ < 1 s.t. the spectral radius of ∇s(S̄ ◦ θ̄)s=S̄(θ⋆) is

lower than γ.

Hereafter, for any sequence of random variables {Zn}n≥0, write Zn = OLp(1)
if supn E [|Zn|p] <∞ and Zn = Oa.s(1) if supn |Zn| < +∞ P−a.s.

Theorem 5.1. Let p̄ > 2. Assume that A2, A3-(p̄), A4-5, A6-(p̄) and A8 hold.
Then, for any p ∈ (2, p̄),

√
τn [θn − θ⋆]1limn θn=θ⋆ = OLp(1) +

1√
τn
OLp/2

(1)Oa.s (1) . (19)

In (19), the rate is a function of the number of updates (i.e. the number of
iterations of the algorithm). Theorem 5.2 shows that the averaging procedure
reduces the influence of the block-size schedule: the rate of convergence is pro-

portional to T
1/2
n i.e. to the inverse of the square root of the total number of

observations up to iteration n.

Theorem 5.2. Let p̄ > 2. Assume that A2, A3-(p̄), A4-5, A6-(p̄) and A8 hold.
Then, for any p ∈ (2, p̄),

√
Tn

[
θ̃n − θ⋆

]
1limn θn=θ⋆ = OLp(1) +

n√
Tn
OLp/2

(1)Oa.s (1) . (20)

Theorems 5.1 and 5.2 give the rates of convergence as a function of the
number of updates but they can also be studied as a function of the number
of observations. Let {θintk }k≥0 (resp. {θ̃intk }k≥0) be such that, for any k ≥ 0,

θintk (resp. θ̃intk ) is the value θn (resp. θ̃n), where n is the only integer such that

k ∈ [Tn+1, Tn+1]. The sequences {θintk }k≥0 and {θ̃intk }k≥0 are piecewise constant
and their values are updated at times {Tn}n≥1.

By Theorem 5.1, the rate of convergence of {θintk }k≥0 is given (up to a multi-
plicative constant) by k−a/(2(a+1)), where a is given by A5. This rates is slower
than k−1/2 and depends on the block-size sequence (through a). On the con-

trary, by Theorem 5.2, the rate of convergence of {θ̃intk }k≥0 is given (up to a
multiplicative constant) by k−1/2, for any value of a. Therefore, this rate of
convergence does not depend on the block-size sequence.
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6. Proofs

Define, for any initial density χ on (X,X ), any θ ∈ Θ, any y ∈ Y
Z and any

r < s ≤ t,

Φχ,r
θ,s,t(h,y)

def
=

∫
χ(xr){

∏t−1
i=r mθ(xi, xi+1)gθ(xi+1, yi+1)} h(xs−1, xs, ys)λ(dxr:t)∫

χ(xr){
∏t−1

i=r mθ(xi, xi+1)gθ(xi+1, yi+1)}λ(dxr:t)
, (21)

for any bounded function h on X
2 × Y. Then, the intermediate quantity of the

Block online EM algorithm is (see (4)),

S̄χ,T
τ (θ,Y)

def
=

1

τ

T+τ∑

t=T+1

Φχ,T
θ,t,T+τ(S,Y) . (22)

Lemma 6.1. Assume A1-2. Let y ∈ Y
Z s.t. supx,x′ |S(x, x′, yi)| < +∞ for any

i ∈ Z. Then for any r > 0 and any distribution χ on (X,X ), θ 7→ Φχ,−r
θ,0,r (S,y)

is continuous on Θ.

Proof. Set Kθ(x, x
′, y)

def
= mθ(x, x

′)gθ(x
′, y). Let r > 0 and χ be a distribution

on (X,X ). By definition of Φχ,−r
θ,0,r (S,y) (see (21)) we have to prove that

θ 7→
∫
χ(dx−r)

(
r−1∏

i=−r

Kθ(xi, xi+1, yi+1)

)
h(x−1, x0, y0) dλ(x−r+1:r)

is continuous for h(x, x′, y) = 1 and h(x, x′, y) = S(x, x′, y). By A1(a), the

function θ 7→ ∏r−1
i=−rKθ(xi, xi+1, yi+1)h(x−1, x0, y0) is continuous. In addition,

under A1, for any θ ∈ Θ,
∣∣∣∣∣

r−1∏

i=−r

Kθ(xi, xi+1, yi+1)h(x−1, x0, y0)

∣∣∣∣∣

= |h(x−1, x0, y0)| exp
(
2rφ(θ) +

〈
ψ(θ),

r−1∑

i=−r

S(xi, xi+1, yi+1)

〉)
.

Since Θ is compact, by A1, there exist constants C1 and C2 s.t. the supremum
in θ ∈ Θ of this expression is bounded above by

C1 sup
x,x′

|h(x, x′, y0)| exp
(
C2

r−1∑

i=−r

sup
x,x′

|S(x, x′, yi+1)|
)
.

Since χ is a distribution and λ is a finite measure, the continuity follows from
the dominated convergence theorem.

Let us introduce the following shorthand Ss(x, x
′)

def
= S(x, x′, Ys). Define the

shift operator ϑ onto YZ by (ϑy)k = yk+1 for any k ∈ Z; and by induction, define
the s-iterated shift operator ϑs+1y = ϑ(ϑsy), with the convention that ϑ0 is the

identity operator. For a function h, define osc(h)
def
= supz,z′ |h(z)− h(z′)|.
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6.1. Proof of Theorem 4.1

The proof of Theorem 4.1 relies on auxiliary results about the forgetting proper-
ties of HMM. Most of them are really close to published results and their proof is
provided in the supplementary material Le Corff and Fort [2011, Section 3]. The
main novelty is the forgetting property of the bivariate smoothing distribution.

Proof of i) Note that under A3-(1), E [osc(S0)] < +∞. Under A2, Proposi-
tion A.2(ii) implies that for any θ ∈ Θ, there exists a r.v. S(θ,Y) s.t. for any
r < s ≤ T ,

sup
θ∈Θ

∣∣∣Φχ,r
θ,s,T (S,Y) − S(θ, ϑsY)

∣∣∣ ≤
(
ρT−s + ρs−r−1

)
osc(Ss) . (23)

This concludes the proof of (12).

Proof of ii) We introduce the following decomposition: for all T > 0,

S̄χ,T
τ (θ,Y) =

1

τ

τ∑

t=1

[
S(θ, ϑt+TY) +

{
Φχ,0

θ,t,τ

(
S, ϑTY

)
− S(θ, ϑt+TY)

}]
,

upon noting that by (22), S̄χ,T
τ (θ,Y) = τ−1

∑τ
t=1 Φ

χ,0
θ,t,τ

(
S, ϑTY

)
. By (21), (23)

and A3-(1) E [|S(θ,Y)|] < +∞. Under A4, the ergodic theorem (see e.g. Billings-
ley [1995, Theorem 24.1, p.314]) states that, for any fixed T ,

lim
τ→∞

1

τ

τ∑

t=1

S(θ, ϑt+TY) = E [S(θ,Y)] , P−a.s.

By (23),

1

τ

τ∑

t=1

∣∣∣Φχ,0
θ,t,τ

(
S, ϑTY

)
− S(θ, ϑt+TY)

∣∣∣ ≤ 1

τ

τ∑

t=1

(
ρτ−t + ρt−1

)
osc(St+T ) . (24)

Set Zt
def
= 1

t

∑t
s=1 osc(Ss+T ) and Z0

def
= 0. Then, by an Abel transform,

1

τ

τ∑

t=1

ρt−1osc(St+T ) = ρτ−1Zτ +
1− ρ

τ

τ−1∑

t=1

tρt−1Zt . (25)

By A3-(1) and A4, the ergodic theorem implies that limτ→∞ Zτ = E [osc(S0)],
P−a.s. Therefore, lim supτ Zτ <∞, P−a.s. Since

∑
t≥1 tρ

t−1 <∞, this implies

that τ−1
∑τ

t=1 ρ
t−1osc(St+T ) −→

τ→+∞
0, P−a.s. Similarly,

1

τ

τ∑

t=1

ρτ−tosc(St+T ) = Zτ − (1 − ρ)

τ−1∑

t=1

ρτ−t−1Zt +
1− ρ

τ

τ−1∑

t=1

tρt−1Zτ−t .
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Using the same arguments as for the second term in (25), we can state that

limτ→∞ τ−1
∑τ−1

t=1 tρ
t−1Zτ−t = 0, P−a.s. Furthermore,

∣∣∣∣∣

τ−1∑

t=1

ρτ−t−1

1− ρ
Zt − E [osc(S0)]

∣∣∣∣∣ ≤
τ−1∑

t=1

ρτ−t−1

1− ρ
|Zt − E [osc(S0)]|

+ E [osc(S0)] ρ
τ−1 .

Since, P−a.s., Zτ −→
τ→+∞

E [osc(S0)], the RHS converges P−a.s. to 0 and

lim
τ→+∞

∣∣∣∣∣Zτ − (1 − ρ)
τ−1∑

t=1

ρτ−t−1Zt

∣∣∣∣∣ = 0 , P−a.s.

Hence, the RHS in (24) converges P−a.s. to 0 and this concludes the proof of
(14). We now prove that the function θ 7→ E [S(θ,Y)] is continuous by applica-
tion of the dominated convergence theorem. By Proposition A.2(ii), for any y

s.t. osc(S0) <∞,

lim
r→+∞

sup
θ∈Θ

∣∣∣Φχ,−r
θ,0,r (S,y) − S(θ,y)

∣∣∣ = 0 .

Then, by Lemma 6.1, θ 7→ S(θ,y) is continuous for any y such that osc(S0) <
+∞. In addition, supθ∈Θ |S(θ,Y)| ≤ supx,x′ |S(x, x′, Y0)|. We then conclude by
A3-(1).

Proof of iii) Let mn, vn be positive integers s.t. 1 ≤ mn ≤ τn+1 and τn+1 =

2vnmn + rn, where 0 ≤ rn < 2mn. Set ∆p
def
= p−1 − p̄−1. By the Minkowski

inequality combined with Lemmas A.6, A.7 applied with qn
def
= 2vnmn, there

exists a constant C s.t.

∥∥Sn − S̄(θn)
∥∥
p
≤ C

[
ρmn +

mn

τn+1
+ βmn∆p +

1√
τn+1

]
.

The proof is concluded by choosing mn = ⌊− log τn+1/ (log ρ ∨∆p log β)⌋ and
by A6-(p̄) (since b in A6-(p̄) is such that b ≥ 1/2).

6.2. Proof of Proposition 4.2

(Continuity of R and W) By A1(c) and Theorem 4.1, the function R is con-
tinuous. Under A1-2 and A4, there exists a continuous function ℓ on Θ s.t.
limT T

−1ℓχθ,T (Y) = ℓ(θ) P−a.s. for any distribution χ on (X,X ) and any θ ∈ Θ,
(see Douc et al. [2004, Lemma 2 and Propositions 1 and 2], see also Le Corff
and Fort [2011, Theorem 3.8]). Therefore, W is continuous.

Proof of Proposition 4.2 (i) Under Assumption A1(a)

1

T
log pθ(x0:T , Y1:T ) = φ(θ) +

〈{
1

T

T∑

t=1

S(xt−1, xt, Yt)

}
, ψ(θ)

〉
,
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where pθ(x0:T , Y1:T ) is defined by (1). Upon noting that

∫
S(xt−1, xt, Yt)

pθ(x0:T , Y1:T )∫
pθ(z0:T , Y1:T )λ(dz1:T )χ(dz0)

λ(dx1:T )χ(dx0)

= Φχ,0
θ,t,T (S,Y) ,

the Jensen inequality gives, P−a.s.,

1

T
ℓχR(θ),T (Y)− 1

T
ℓχθ,T (Y) ≥ φ(R(θ)) +

〈
1

T

T∑

t=1

Φχ,0
θ,t,T (S,Y), ψ(R(θ))

〉

− φ(θ) −
〈

1

T

T∑

t=1

Φχ,0
θ,t,T (S,Y), ψ(θ)

〉
. (26)

Under A1-4, it holds by Theorem 4.1 and Douc et al. [2004, Lemma 2 and
Proposition 1] (see also Le Corff and Fort [2011, Theorem 3.8]) that for all
θ ∈ Θ, P−a.s.,

1

T

T∑

t=1

Φχ,0
θ,t,T (S,Y) −→

T→+∞
S̄(θ) ,

1

T
ℓχθ,T (Y) −→

T→+∞
lnW(θ) .

Therefore, when T → +∞, (26) implies

ln (W(R(θ))/W(θ)) ≥ φ(R(θ)) +
〈
S̄(θ), ψ(R(θ))

〉
− φ(θ) −

〈
S̄(θ), ψ(θ)

〉
. (27)

By definition of θ̄ and R (see A1(c) and (15)), the RHS is non negative. This
concludes the proof of Proposition 4.2(i).

Proof of Proposition 4.2 (ii) We prove that W◦R(θ)−W(θ) = 0 if and only if
θ ∈ L. Since W◦R−W is continuous, this implies that inf

θ∈K
W◦R(θ)−W(θ) > 0

for all compact set K ⊂ Θ \ L. Let θ ∈ Θ be s.t. W ◦ R(θ) −W(θ) = 0. Then,
the RHS in (27) is equal to zero. By definition of θ̄, R(θ) = θ and thus θ ∈ L.
The converse implication is immediate from the definition of L.

Stationary points If in addition A7 holds, [Le Corff and Fort, 2011, Theo-
rem 3.12] proves that, for any initial distribution χ on (X,X ),

1

T
∇θℓ

χ
θ,T (Y) −→

T→+∞
∇θℓ(θ) P−a.s.

Therefore,

1

T
∇θℓ

χ
θ,T (Y) = ∇θφ(θ) +∇θψ

′

(θ)

{
1

T

T∑

t=1

Φχ,0
θ,t,T (S,Y)

}
,

where A′ is the transpose matrix of A. Theorem 4.1 yield, P−a.s.,

∇θℓ(θ) = ∇θφ(θ) +∇θψ
′

(θ)S̄(θ) .

The proof follows upon noting that by definition of θ̄, the unique solution to
the equation ∇θφ(τ) +∇θψ

′

(τ)S̄(θ) = 0 is τ = R(θ).
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6.3. Proof of Theorem 4.4

The proof of Theorem 4.4 relies on Proposition A.1 applied with T (θ)
def
= R(θ)

and with θn+1 = θ̄
(
S̃χn,Tn
τn+1

(θn,Y)
)
. The key ingredient for this proof is the con-

trol of the Lp-mean error between the Monte Carlo Block Online EM algorithm
and the limiting EM. The proof of this bound is derived in Theorem 4.1 and
relies on preliminary lemmas given in Appendix A. The proof of (37) is now
close to the proof of Fort and Moulines [2003, Proposition 11] and is postponed
to the supplement paper Le Corff and Fort [2011, Section 2.1].

6.4. Proof of Theorem 5.1

Define s⋆
def
= S̄(θ⋆) and write

θ̄(S̃n)− θ̄(s⋆) = Υ(S̃n − s⋆) + θ̄(S̃n)− θ̄(s⋆)−Υ(S̃n − s⋆) , (28)

where Υ
def
= ∇θ̄(s⋆). We now derive the rate of convergence of the quantity

S̃n − s⋆. Set G(s)
def
= S̄ ◦ θ̄(s). Note that under A8(b), ρ(Γ) ≤ γ, where Γ

def
=

∇G(s⋆). Since G(s⋆) = s⋆, we write

S̃n− s⋆ = Γ
(
S̃n−1 − s⋆

)
+ S̃n−G(S̃n−1)+G(S̃n−1)−G(s⋆)−Γ

(
S̃n−1 − s⋆

)
.

Define {µn}n≥0 and {ρn}n≥0 s.t. µ0 = 0, ρ0 = S̃0 − s⋆ and

µn
def
= Γµn−1 + en , ρn

def
= S̃n − s⋆ − µn , n ≥ 1 , (29)

where,

en
def
= S̃n − S̄(θn) , n ≥ 1 . (30)

Proposition 6.2. Assume A2, A3-(p̄), A4-5, A6-(p̄) and A8 for some p̄ > 2.
Then for any p ∈ (2, p̄),

√
τnµn = OLp(1) and τnρn1limn θn=θ⋆ = OLp/2

(1)Oa.s(1) .

The proof of Proposition 6.2 is on the same lines as the proof of Fort and
Moulines [2003, Theorem 6]. The main ingredient is the control of ‖µn‖p which
is a consequence of Pólya and Szegő [1976, Result 178, p. 39] and Theorem 4.1.
The detailed proof is thus omitted and postponed to the supplementary mate-
rial Le Corff and Fort [2011, Section 2.2].

By Proposition 6.2, the first term in (28) gives

√
τnΥ(Sn − s⋆)1limn θn=θ⋆ = OLp(1) +

1√
τn
OLp/2

(1)Oa.s (1) .

A Taylor expansion with integral remainder term gives the rate of convergence
of the second term. This concludes the proof of Theorem 5.1, Eq. (19).
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6.5. Proof of Theorem 5.2

In the sequel, for all function Ξ on Θ × Y
Z and all υ ∈ Θ, we denote by

E [Ξ(θ,Y)]θ=υ the function θ 7→ E [Ξ(θ,Y)] evaluated at θ = υ. We preface
the proof by the following lemma.

Lemma 6.3. Assume A2, A3-(p̄), A4-5, A6-(p̄) and A8 for some p̄ > 2. For
any p ∈ (2, p̄),

lim sup
n→+∞

1√
Tn+1

∥∥∥∥∥

n∑

k=1

τk+1ek

∥∥∥∥∥
p

<∞ ,

where en is given by (30).

Proof. By A5 and A6-(p̄), we have

lim sup
n→+∞

1√
Tn+1

n∑

k=1

τk+1

∥∥∥S̃k − Sk

∥∥∥
p
<∞ .

Then, it is sufficient to prove that

lim sup
n→+∞

1√
Tn+1

∥∥∥∥∥

n∑

k=1

τk+1

(
S̄(θk)− Sk

)
∥∥∥∥∥
p

<∞ .

Let p ∈ (2, p̄). In the sequel, C is a constant independent on n and whose value

may change upon each appearance. Let 1 ≤ mn ≤ τn+1 and set vn
def
=
⌊
τn+1

2mn

⌋
.

By Lemma A.7 applied with qk
def
= 2vkmk, we have,

∥∥∥∥∥

n∑

k=1

τk+1

(
S̄(θk)− Sk

)
∥∥∥∥∥
p

≤ C




n∑

k=1

{τk+1ρ
mk +mk}+

∥∥∥∥∥

n∑

k=1

{δk + ζk}
∥∥∥∥∥
p



 ,

where δk and ζk are defined by

δk
def
=

2vkmk∑

t=2mk

{
Ft,k(θk,Y)− E

[
Ft,k(θk,Y)

∣∣∣F̃Y

Tk

]}
,

ζk
def
=

2vkmk∑

t=2mk

{
E

[
Ft,k(θk,Y)

∣∣∣F̃Y

Tk

]
− E

[
Φχ,−mk

θ,0,mk
(S,Y)

]

θ=θk

}

and where Ft,k(θk,Y)
def
= Φχ,t−mk

θk,t,t+mk
(S, ϑTkY) and F̃Y

Tk
is given by (41). We will

prove below that there exists C s.t.

‖ζk‖p ≤ C βmk/pbτk+1 , ∀k ≥ 1 (31)
∥∥∥∥∥

n∑

k=1

δk

∥∥∥∥∥
p

≤ C
√
Tn+1 + C

n∑

k=1

τk+1β
mk/pb , ∀n ≥ 1 (32)
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so that the proof is concluded by choosing mk = ⌊η log τk+1⌋, η def
= (−1/ log ρ)∨

(−pb/ logβ) and by using A5.
We turn to the proof of (31). By the Berbee Lemma (see Rio [1990, Chapter

5]) and A4, there exist C ∈ [0, 1) and β ∈ (0, 1) s.t. for all k ≥ 1, there exists a

random variable Y
⋆,(k)
Tk+mk:Tk+1+mk

on (Ω,F ,P) independent from F̃Y

Tk
with the

same distribution as YTk+mk:Tk+1+mk
and

P

{
Y

⋆,(k)
Tk+mk:Tk+1+mk

6= YTk+mk:Tk+1+mk

}
≤ Cβmk . (33)

Upon noting that E
[
Ft,k(θk,Y

⋆,(k))
∣∣∣F̃Y

Tk

]
= E [Ft,k(θ,Y)]θ=θk

, we have

ζk =

2vkmk∑

t=2mk

{
E

[
Ft,k(θk,Y)

∣∣∣F̃Y

Tk

]
− E

[
Ft,k(θk,Y

⋆,(k))
∣∣∣F̃Y

Tk

]}
. (34)

Therefore, by setting Ak
def
= {Y ⋆,(k)

Tk+mk:Tk+1+mk
6= YTk+mk:Tk+1+mk

},

|ζk| ≤
2vkmk∑

t=2mk

E

[
sup
θ∈Θ

∣∣∣Ft,k(θ,Y) − Ft,k(θ,Y
⋆,(k))

∣∣∣ 1Ak

∣∣∣∣F̃Y

Tk

]
.

Minkowski and Holder (with a
def
= p̄/p and b−1 def

= 1−a−1) inequalities, combined
with (33), A4, Lemma A.4 and A3-(p̄) yield (31).

We now prove (32). Upon noting that δk is F̃Y

Tk+1
-measurable and δk is a mar-

tingale increment, the Rosenthal inequality (see Hall and Heyde [1980, Theorem

2.12, p.23]) states that ‖∑n
k=1 δk‖p ≤ C

(∑n
k=1 I

(1)
k

)1/p
+ CI

(2)
n where

I
(1)
k

def
= E [|δk|p] and I(2)n

def
=

∥∥∥∥∥∥

(
n∑

k=1

E

[
|δk|2

∣∣∣F̃Y

Tk

])1/2
∥∥∥∥∥∥
p

.

Using again E

[
Ft,k(θk,Y

⋆,(k))
∣∣∣F̃Y

Tk

]
= E [Ft,k(θ,Y)]θ=θk

and (34)

I
(1)
k ≤ C

∥∥∥∥∥

2vkmk∑

t=2mk

{
Ft,k(θk,Y)− E [Ft,k(θ,Y)]θ=θk

}∥∥∥∥∥

p

p

+ C ‖ζk‖pp .

By Lemma A.6 and (31), there exists C s.t. for any k ≥ 1

I
(1)
k ≤ C

(
τ
p/2
k+1 + τpk+1β

mk/b
)
, (35)

and since 2/p < 1, convex inequalities yield
(∑n

k=1 I
(1)
k

)1/p
≤ C

√
Tn+1 +

C
∑n

k=1 τk+1β
mk/pb. By the Minkowski and Jensen inequalities, it holds I

(2)
n ≤(∑n

k=1{I
(1)
k }2/p

)1/2
. Hence, by (35), I

(2)
n ≤ C

√
Tn+1 + C

∑n
k=1 τk+1β

mk/pb.

This concludes the proof of (32).
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We write Σn − s⋆ = µ̄n + ρ̄n with

µ̄n
def
=

1

Tn

n∑

k=1

τkµk−1 and ρ̄n
def
=

1

Tn

n∑

k=1

τkρk−1 . (36)

Proposition 6.4. Assume A2, A3-(p̄), A4-5, A6-(p̄) and A8 for some p̄ > 2.
For any p ∈ (2, p̄),

√
Tnµ̄n = OLp(1) ,

Tn
n
ρ̄n1limn θn=θ⋆ = OLp/2

(1)Oa.s(1) .

Proof. Set A
def
= (I − Γ). Under A8, A−1 exists. By (29) and (36),

A
√
Tnµ̄n = −τn+1µn√

Tn
+

1√
Tn

n∑

k=1

τk+1ek +
1√
Tn

n∑

k=1

τk

(
τk+1

τk
− 1

)
Γµk−1 .

The result now follows from Proposition 6.2, Lemma 6.3 and A5. The proof of
the second assertion follows from (36) and Proposition 6.2.

Upon noting that θ⋆ = θ̄(s⋆), we may write, for the averaged sequence,

θ̃n − θ⋆ = Υ(Σn − s⋆) + θ̄(Σn)− θ̄(s⋆)−Υ(Σn − s⋆) .

The first term in this decomposition gives

√
TnΥ(Σn − s⋆)1limn θn=θ⋆ = OLp(1) +

n√
Tn
OLp/2

(1)Oa.s (1) .

By A8(b), as for the non averaged sequence, a Taylor expansion with integral
remainder term gives the result for the second term. This concludes the proof
of Theorem 5.2, Eq.(20).
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Appendix A: Technical results

Proposition A.1 is exactly Fort and Moulines [2003, Proposition 9] applied with
a compact set Θ.

Proposition A.1. Let T : Θ → Θ and W be a continuous Lyapunov function
relatively to T and to L ⊂ Θ. Assume W(L) has an empty interior and that
{θn}n≥0 is a sequence lying in Θ such that

lim
n→+∞

|W(θn+1)−W ◦ T (θn)| = 0 . (37)

Then, there exists w⋆ such that {θn}n≥0 converges to {θ ∈ L; W(θ) = w⋆}.
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The proof of Proposition A.2 is given in [Le Corff and Fort, 2011, Proposi-
tion 3.3]

Proposition A.2. Assume A2. Let χ, χ̃ be two distributions on (X,X ). For any
measurable function h : X2×Y → R

d and any y ∈ Y
Z such that supx,x′ |h(x, x′, ys)| <

+∞ for any s ∈ Z

(i) For any r < s ≤ t and any ℓ1, ℓ2 ≥ 1,

sup
θ∈Θ

∣∣∣Φχ̃,r
θ,s,t (h,y)− Φχ,r−ℓ1

θ,s,t+ℓ2
(h,y)

∣∣∣ ≤
(
ρs−1−r + ρt−s

)
osc(hs) . (38)

(ii) For any θ ∈ Θ, there exists a function y 7→ Φθ(h,y) s.t. for any distribu-
tion χ on (X,X ) and any r < s ≤ t

sup
θ∈Θ

∣∣∣Φχ,r
θ,s,t (h,y)− Φθ (h, ϑ

sy)
∣∣∣ ≤

(
ρs−1−r + ρt−s

)
osc(hs) . (39)

Remark A.3. (a) If χ = χ̃, ℓ1 = 0 and ℓ2 ≥ 1, (38) becomes

sup
θ∈Θ

∣∣∣Φχ,r
θ,s,t (h,y)− Φχ,r

θ,s,t+ℓ2
(h,y)

∣∣∣ ≤ ρt−sosc(hs) .

(b) if ℓ2 = 0 and ℓ1 ≥ 1, (38) becomes

sup
θ∈Θ

∣∣∣Φχ̃,r
θ,s,t (h,y)− Φχ,r−ℓ1

θ,s,t (h,y)
∣∣∣ ≤ ρs−1−rosc(hs) .

Lemma A.4 is a consequence of (21) and of Proposition A.2(ii).

Lemma A.4. Assume A2. Let r < s ≤ t be integers, θ ∈ Θ and y ∈ Y
Z, and

h : X2 × Y → R
d s.t. for any s ∈ Z, supx,x′ |h(x, x′, ys)| <∞. Then

∣∣∣Φχ,r
θ,s,t (h,y)

∣∣∣ ≤ sup
(x,x′)∈X2

|h(x, x′, ys)| , |Φθ (h, ϑ
sy)| ≤ sup

(x,x′)∈X2

|h(x, x′, ys)| .

For any L ≥ 1, m ≥ 1 and any distribution χ on (X,X ), define

κχL,m(θ,Y)
def
= Φχ,L−m

θ,L,L+m(S,Y)− E
[
Φχ,−m

υ,0,m(S,Y)
]
υ=θ

. (40)

We introduce the σ-algebra F̃Tn defined by

F̃Tn

def
= σ{FY

Tn
,HTn} , (41)

where FTn is given by (10) and where HTn is independent fromY (the σ-algebra
HTn is generated by the random variables independent from the observations
Y used to produce the Monte Carlo approximation of {Sk−1}nk=1). Hence, for
any positive integer m and any B ∈ GY

Tn+m, since HTn is independent from B

and from FY

Tn
, P(B|F̃Tn) = P(B|FY

Tn
). Hence, the mixing coefficients defined in

(11) are such that

β(GY

Tn+m, F̃Tn) = β(GY

Tn+m,FTY
n
) .

Note that θn is F̃Tn- measurable and that S̃n is F̃Tn+1-measurable.
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Lemma A.5. Assume A2, A3-(p̄) and A4 for some p̄ > 2. Let p ∈ (2, p̄). There
exists a constant C s.t. for any distribution χ on (X,X ), any m ≥ 1, k, ℓ ≥ 0

and any Θ-valued F̃Y

0 -measurable r.v. θ,

∥∥∥∥∥

k∑

u=1

κχ2um+ℓ,m(θ,Y)

∥∥∥∥∥
p

≤ C

[√
k

m
+ kβm∆p

]
,

where ∆p
def
= p̄−p

pp̄ and β is given by A4.

Proof. For ease of notation χ is dropped from the notation κχ2um,m. By the
Berbee Lemma (see Rio [1990, Chapter 5]), for any m ≥ 1, there exists a Θ-
valued r.v. υ⋆ on (Ω,F ,P) independent from GY

m (see (10)) s.t.

P {θ 6= υ
⋆} = sup

B∈GY
m

|P(B|σ(θ))− P(B)| . (42)

Set Lu
def
= 2um+ ℓ. We write

k∑

u=1

κLu,m(θ,Y) =

k∑

u=1

{
Φχ,Lu−m

θ,Lu,Lu+m(S,Y) − Φχ,Lu−m
υ⋆,Lu,Lu+m(S,Y)

}

+
k∑

u=1

κLu,m(υ⋆,Y) + k
{
E
[
Φχ,−m

υ,0,m(S,Y)
]
υ=υ⋆

− E
[
Φχ,−m

υ,0,m(S,Y)
]
υ=θ

}
.

(43)

By the Holder’s inequality with a
def
= p̄/p and b−1 def

= 1− a−1,

∥∥∥Φχ,L−m
θ,L,L+m(S,Y)− Φχ,L−m

υ⋆,L,L+m(S,Y)
∥∥∥
p

≤
∥∥∥Φχ,L−m

θ,L,L+m(S, ϑTY) − Φχ,L−m
υ⋆,L,L+m(S,Y)

∥∥∥
p̄
P {θ 6= υ

⋆}∆p .

By A3-(p̄), A4, (11) and (42), there exists a constant C1 s.t. for any m,L ≥ 1,

any distribution χ and any Θ-valued F̃Y

0 -measurable r.v. θ,

∥∥∥Φχ,L−m
θ,L,L+m(S,Y) − Φχ,L−m

υ⋆,L,L+m(S,Y)
∥∥∥
p̄
≤ C1β

m∆p .

Similarly, there exists a constant C2 s.t. for any m ≥ 1, any distribution χ and
any Θ-valued F̃Y

0 -measurable r.v. θ,

∥∥∥E
[
Φχ,−m

υ,0,m(S,Y)
]
υ=υ⋆

− E
[
Φχ,−m

υ,0,m(S,Y)
]
υ=θ

∥∥∥
p
≤ C2β

m∆p .

Let us consider the second term in (43). For any u ≥ 1 and any υ ∈ Θ, the r.v.
κLu,m(υ,Y) is a measurable function of Yi for all Lu −m + 1 ≤ i ≤ Lu +m.
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Since Lu ≥ 2um, for any υ ∈ Θ,
∑k

u=1 κLu,m(υ,Y) is GY

m-measurable. υ⋆ is
independent from GY

m so that:

∥∥∥∥∥

k∑

u=1

κLu,m(υ⋆,Y)

∥∥∥∥∥
p

= E

[
E

[∣∣∣∣∣

k∑

u=1

κLu,m(υ,Y)

∣∣∣∣∣

p]

υ=υ⋆

]1/p
.

Define the strong mixing coefficient (see Davidson [1994])

αY(r)
def
= sup

u∈Z

sup
(A,B)∈FY

u ×GY

u+r

|P(A ∩B)− P(A)P(B)| , r ≥ 0 .

Then, Davidson [1994, Theorem 14.1, p.210] implies that for any m ≥ 1, the

strong mixing coefficients of the sequence κ(m)
def
= {κLu,m(υ,Y)}u≥1 satisfies

ακ(m)(i) ≤ αY(2(i− 1)m). Furthermore, by Rio [1990, Theorem 2.5],

∥∥∥∥∥

k∑

u=1

κLu,m(υ,Y)

∥∥∥∥∥
p

≤ (2kp)1/2
(∫ 1

0

[
N(m)(t) ∧ k

]p/2 Qp
υ,m(t)dt

)1/p

,

where N(m)(t)
def
=
∑

i≥1 1α
κ(m) (i)>t and Qυ,m denotes the inverse of the tail

function t 7→ P(|κLu,m(υ,Y)| ≥ t). The sequenceY being stationary, this inverse
function does not depend on u. By A4 and the inequality αY(r) ≤ βY(r) (see
e.g. Davidson [1994, Chapter 13]), there exist β ∈ [0, 1) and C ∈ (0, 1) s.t. for
any u,m ≥ 1,

N(m)(u) ≤
∑

i≥1

1αY(2(i−1)m)>u ≤
∑

i≥1

1Cβ2(i−1)m>u ≤
(
log u− logC

2m logβ

)
∨ 0 .

Let U be a uniform r.v. on [0, 1]. Observe that Cβ2mk < 1. Then, by the Holder

inequality applied with a
def
= p̄/p and b−1 def

= 1− a−1,

∥∥∥
[
N(m)(U) ∧ k

]1/2 Qυ,m(U)
∥∥∥
p

def
=

(∫ 1

0

[
N(m)(u) ∧ k

]p/2 Qp
υ,m(u)du

)1/p

≤
[ −1

2m log β

]1/2 ∥∥∥∥∥Qυ,m(U)

(
− log

U

C

)1/2

1(CβCmk,C)(U)

∥∥∥∥∥
p

+ k1/2
∥∥Qυ,m(U)1U≤Cβ2mk

∥∥
p
,

≤




(Cβ2mk)∆pk1/2 +

[ −1

2m logβ

]1/2 ∥∥∥∥∥

(
− log

U

C

)1/2

1(CβCmk,C)(U)

∥∥∥∥∥
pb






× ‖Qυ,m(U)‖p̄ .

Since U is uniform on [0, 1], Qυ,m(U) and |κLu,m(υ,Y)| have the same distri-
bution, see Rio [1990]. Then, by Lemma A.4 and A3-(p̄), there exists a constant
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C s.t. for any υ ∈ Θ, any m ≥ 1,

sup
υ∈Θ

‖Qυ,m(U)‖p̄ ≤ C

∥∥∥∥∥ sup
x,x′∈X2

|S(x, x′,Y0)

∥∥∥∥∥
p̄

,

which concludes the proof.

Lemma A.6. Assume A2, A3-(p̄) and A4 for some p̄ > 2. Let p ∈ (2, p̄). There
exists a constant C s.t. for any n ≥ 1, any 1 ≤ mn ≤ τn+1 and any distribution
χ on (X,X ),

∥∥∥∥∥
1

τn+1

2vnmn∑

t=2mn

κχt,mn
(θn, ϑ

TnY)

∥∥∥∥∥
p

≤ C

[
1√
τn+1

+ βmn∆p

]
,

where κχL,m and β are defined by (40) and A4, vn
def
=
⌊
τn+1

2mn

⌋
and ∆p

def
= p̄−p

pp̄ .

Proof. We write,

∥∥∥∥∥

2vnmn∑

t=2mn

κχt,mn
(θn, ϑ

TnY)

∥∥∥∥∥
p

≤
2mn−1∑

ℓ=0

∥∥∥∥∥

vn−1∑

u=1

κχ2umn+ℓ,mn
(θn, ϑ

TnY)

∥∥∥∥∥
p

.

Observe that by definition θn is F̃Y

Tn
-measurable. Then, by Lemma A.5, there

exists a constant C s.t. for any mn ≥ 1 and any ℓ ≥ 0,

∥∥∥∥∥

vn−1∑

u=1

κχ2umn+ℓ,mn
(θn, ϑ

TnY)

∥∥∥∥∥
p

≤ C

[√
vn
mn

+ vnβ
mn∆p

]
.

The proof is concluded upon noting that τn+1 ≥ 2mnvn.

Lemma A.7. Assume A2, A3-(p̄) and A4 for some p̄ > 2. For any p ∈ (2, p̄],
there exists a constant C s.t. for any n ≥ 1, any 1 ≤ mn ≤ qn ≤ τn+1 and any
distribution χ on (X,X ),

∥∥∥S̄χ,Tn
τn+1

(θn,Y)− S̄(θn)− ρ̃n

∥∥∥
p
≤ C

[
ρmn +

mn

τn+1
+
τn+1 − qn
τn+1

]
,

where ρ̃n
def
= τ−1

n+1

∑qn
t=2mn

κχt,mn
(θn, ϑ

TnY) and κχL,m is defined by (40).

Proof. By (4) and (21), S̄χ,Tn
τn+1

(θn,Y)− S̄(θn)− ρ̃n =
∑4

i=1 gi,n where

g1,n
def
=

1

τn+1

τn+1∑

t=1

(
Φχ,0

θn,t,τn+1
(S, ϑTnY)− Φχ,t−mn

θn,t,t+mn
(S, ϑTnY)

)
,

g2,n
def
=

1

τn+1

2mn−1∑

t=1

(
Φχ,t−mn

θn,t,t+mn
(S, ϑTnY)− E

[
Φχ,−mn

θ,0,mn
(S,Y)

]

θ=θn

)
,
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g3,n
def
=

1

τn+1

τn+1∑

t=qn+1

(
Φχ,t−mn

θn,t,t+mn
(S, ϑTnY) − E

[
Φχ,−mn

θ,0,mn
(S,Y)

]

θ=θn

)
,

g4,n
def
= E

[
Φχ,−mn

θ,0,mn
(S,Y)

]

θ=θn
− S̄(θn) .

In the case τn+1 > 2mn, it holds

τn+1 |g1,n| ≤
τn+1∑

t=τn+1−mn+1

(
ρmn−1 + ρτn+1−t

)
osc(St+Tn)

+

mn∑

t=1

(
ρmn + ρt−1

)
osc(St+Tn) + 2ρmn−1

τn+1−mn∑

t=mn+1

osc(St+Tn) ,

where we used Proposition A.2(i) and Remark A.3 in the last inequality. By
A3-(p̄) and A4, there exists C s.t. ‖g1,n‖p ≤ C

(
ρmn + τ−1

n+1

)
. The same bound

hold in the case τn+1 ≤ 2mn. For g2,n and g3,n, we use the bounds
∣∣∣∣Φ

χ,t−mn

θn,t,t+mn
(S, ϑTnY)− E

[
Φχ,−mn

θ,0,mn
(S,Y)

]

θ=θn

∣∣∣∣

≤ sup
(x,x′)∈X2

|S(x, x′, YTn+t)|+ E

[
sup

(x,x′)∈X2

|S(x, x′, Y0)|
]
.

Then, by A4,

∥∥∥∥Φ
χ,t−mn

θn,t,t+mn
(S, ϑTnY)− E

[
Φχ,−mn

θ,0,mn
(S,Y)

]

θ=θn

∥∥∥∥
p

≤ 2

∥∥∥∥∥ sup
(x,x′)∈X2

|S(x, x′, Y0)|
∥∥∥∥∥
p

,

and the RHS is finite under A3-(p̄). Finally,

|g4,n| ≤ 2ρmn−1
E [osc(S0)] ,

where we used Theorem 4.1. This concludes the proof.

Supplementary Material

Supplement paper to “Online Expectation Maximization based algo-

rithms for inference in Hidden Markov Models”

(doi: 10.1214/13-EJS789SUPP; .pdf).
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