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Spatial Disease Mapping Using Directed Acyclic
Graph Auto-Regressive (DAGAR) Models

Abhirup Datta∗¶, Sudipto Banerjee†‖, James S. Hodges‡, and Leiwen Gao§

Abstract. Hierarchical models for regionally aggregated disease incidence data
commonly involve region specific latent random effects that are modeled jointly as
having a multivariate Gaussian distribution. The covariance or precision matrix
incorporates the spatial dependence between the regions. Common choices for the
precision matrix include the widely used ICAR model, which is singular, and its
nonsingular extension which lacks interpretability. We propose a new parametric
model for the precision matrix based on a directed acyclic graph (DAG) repre-
sentation of the spatial dependence. Our model guarantees positive definiteness
and, hence, in addition to being a valid prior for regional spatially correlated ran-
dom effects, can also directly model the outcome from dependent data like images
and networks. Theoretical results establish a link between the parameters in our
model and the variance and covariances of the random effects. Simulation stud-
ies demonstrate that the improved interpretability of our model reaps benefits
in terms of accurately recovering the latent spatial random effects as well as for
inference on the spatial covariance parameters. Under modest spatial correlation,
our model far outperforms the CAR models, while the performances are similar
when the spatial correlation is strong. We also assess sensitivity to the choice
of the ordering in the DAG construction using theoretical and empirical results
which testify to the robustness of our model. We also present a large-scale public
health application demonstrating the competitive performance of the model.

Keywords: areal data, Bayesian inference, directed acyclic graphs, disease
mapping, spatial autoregression.

1 Introduction

Epidemiological data for disease rates are often presented as aggregated disease counts
over entire geographical regions like states or counties. Such areal or areally-referenced
data are ubiquitous in public health applications. Accurate identification of trends and
factors associated with the disease requires accounting for the spatial dependence among
the regions. A common approach to analyze areal datasets envisions the geographic do-
main as an undirected graph with the regions constituting the vertices and an edge be-
tween two vertices if the corresponding regions share a geographical border. This creates
well defined neighbors for each region which are used to specify the joint or conditional
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distributions of region-specific latent Gaussian random effects in a hierarchical setup.
For example, the popular conditional autoregressive (CAR) model (Besag 1974; Clayton
and Bernardinelli 1992) incorporates the underlying neighborhood structure in speci-
fying the full conditional distribution for each observation. If wi denotes the random
effect representing the ith region for i = 1, . . . , k and i ∼ j indicates that regions i and
j are neighbors, then the CAR model specifies the full conditional distributions

wi | w−i ∼ N

⎛
⎝∑

j∼i

wj/ni, τwni

⎞
⎠ , (1.1)

where w−i denotes the vector of observations leaving out the ith one, ni denotes the
number of neighbors for the ith region and throughout the text we adopt the convention
that N(α,Δ) denotes normal distribution with mean α and precision Δ, both in univari-
ate and multivariate contexts. Hence, in (1.1) above, τwni is the conditional precision
of wi | w−i.

The joint distribution of w = (w1, . . . , wk)
T can be derived from (1.1) as w ∼

N(0, τw(D − A)) where A = (aij) is the adjacency matrix of the neighborhood graph,
i.e., aij = 1 if and only if i ∼ j, and D is a diagonal matrix with n1, . . . , nk on the
diagonal. As D−A is singular, this construction yields an improper joint distribution of
the wi’s, referred to as the intrinsic or improper CAR (ICAR) model. This impropriety
renders the model ineligible for directly modeling the response or for generating data,
although both can proceed by using contrasts as demonstrated in Besag and Kooperberg
(1995). Also, the distribution can still be used as a prior for latent spatial random effects
w and the posterior of w usually remains valid.

The impropriety of the ICAR model can be rectified by generalizing the full con-
ditional mean to E(wi | w−i) = ρ

∑
j∼i wj/ni yielding the joint distribution w ∼

N(0, τw(D − ρA)) which is proper for a certain range of ρ. Although introduction of
ρ imparts more flexibility than the parameter-free improper analogue, it is difficult to
interpret ρ as even very high values of ρ induce only modest spatial correlation among
the observations (see Banerjee et al. 2014, for a discussion on this). Furthermore, Wall
(2004) shows that even negative values of ρ may lead to positive correlation among
neighboring regions. Assuncao and Krainski (2009) found that these oddities are a gen-
eral feature of CAR models.

The second popular approach is the simultaneous autoregressive (SAR) model (Whit-
tle 1954) which proceeds by simultaneously modeling the random effects as

wi =
∑
j �=i

bijwj + εi for i = 1, 2, . . . , k (1.2)

where εi
ind∼ N(0, τi) are errors independent of w. Defining B = (bij) and F to be a

diagonal matrix with entries τ1, . . . , τk, the set of equations in (1.2) yields the joint
distribution w ∼ N(0, (I − B)F (I − B)T ). However, the common choice of defining
bij = ρI(i ∼ j)/ni, where I(·) denotes the indicator function, leads to similar problems
with respect to interpretation of the parameter ρ (Wall 2004).
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Beyond these two approaches, the inventory of covariance models for areal datasets
is very limited. Leroux et al. (2000) and MacNab and Dean (2000) extended the CAR
model by accommodating over-dispersion alongside spatial information. They proposed
using the precision matrix λτw(D−A)+(1−λ)τwI, where λ ∈ [0, 1] controls the degree
of dependence among the regions. For a regular graph where all vertices have same
number of neighbors d, D = dI. In this case, λτw(D−A)+ (1−λ)τwI can be rewritten

as 1+(d−1)λ
d τw(D − ρ∗A) where ρ∗ = dλ

1+(d−1)λ . Thus, if the numbers of neighbors for

the vertices do not vary greatly, this approach is somewhat similar to the proper CAR
model and is encumbered by the same interpretability concerns.

For lattice based applications, there is a richer class of parametric intrinsic autore-
gression models (Besag and Kooperberg 1995; Besag and Higdon 1999). However, all
such intrinsic models rely heavily on the lattice structure and cannot be used directly
for arbitrary graphs. Applications to irregular areal data can proceed by breaking up
the region into a fine lattice, using the intrinsic model on the lattice and aggregating
over each area. Besag and Mondal (2005) demonstrated that certain classes of intrinsic
autoregressive models can be interpreted as an average of a fine scale Gaussian Process
over the entire domain. In disease mapping contexts, where the data are often observed
over fixed politically delineated regions, such a latent fine scale spatial process may be
difficult to interpret. In this manuscript, we only focus on models that can be formulated
directly on the areal units.

We propose a new way of constructing precision matrices for areal models using
a directed acyclic graph derived from the original undirected graph. Directed acyclic
graphs or DAGs have been used in the spatial literature for modeling large spatial
datasets (Datta et al. 2016) and for generating image textures (Cressie and Davidson
1998). Instead of modeling the precision matrix directly, we model its Cholesky factor,
which for any multivariate Gaussian distribution is determined by the conditional dis-
tributions of the wi’s. We specify these conditional distributions using autoregressive
covariance models on a sequence of local trees created from this directed acyclic graph.
The resulting Cholesky factor and the precision matrix are sparse. We refer to this
model as the directed acyclic graph autoregressive or DAGAR model.

Unlike the ICAR model, our model’s covariance matrix is guaranteed to be posi-
tive definite. This opens up a new avenue to generate or directly model multivariate
Gaussian data with dependence structure derived from a graph. Common examples
of such data, besides aggregated regional data, include images or social network data.
We establish, both theoretically and empirically, that our model endows ρ with a clear
interpretation as a spatial autocorrelation parameter, which, in fact, resolves an im-
portant conundrum in the conditional and simultaneous autoregressive models (Wall
2004). Also, the Cholesky factor has the same level of sparsity as the undirected graph
ensuring scalability for analyzing very large areal datasets.

Cholesky factors inherit the dependence of directed acyclic graphs on ordering of the
regions, thereby making our model order-dependent. As spatial regions generally do not
have any natural ordering, to understand the impact of ordering, we propose a novel
order free model by averaging over all k! possible orderings. We show that the resulting
precision matrix, which is order-free, can be evaluated in closed form and we use it
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to present some theoretical results suggesting that the DAGAR precision matrix with
a reasonably chosen ordering is often similar to the order-free matrix. The theoretical
results complemented by simulation exercises reveal that the choice of ordering does not
significantly affect the results. Simulation experiments also show that when the spatial
correlation is weak or moderate, the DAGAR model outperforms CAR models in their
ability to correctly estimate a latent spatial surface while the performances are similar
for data with stronger spatial dependence.

2 Model

2.1 Cholesky Factors

We first review a general approach to modeling Gaussian covariance matrices using
sparse Cholesky factors and discuss how this relates to CAR models and general co-
variance estimation. This helps motivate the subsequent construction of our model in
Section 2.2. We assume that the graph of the regions is connected. Disconnected graphs
with multiple islands will entail a simple extension with block diagonal covariance struc-
tures, where each block represents an island. Let G = (V,E) denote the connected graph
with the regions as vertices V and edges E between neighbors. We denote the ith region
simply by i and let A = (aij) denote the adjacency matrix for this undirected graph.
To model Cholesky factors we specify distributions of the wi’s as

w1 = ε1, w2 = b21w1 + ε2, . . . , wk = bk1w1 + · · ·+ bk,k−1wk−1 + εk, (2.1)

where the εi’s are independent N(0, τi) errors. Throughout this section and Section 2.2,
we assume τw, the scale parameter for the wi’s, is one. B = (bij) in (2.1) is a strictly
lower triangular matrix. Let F be the diagonal matrix with τ1, . . . , τk on the diagonal.
Then w ∼ N(0, LTFL) where L = I −B. Switching from the specification in (1.2) to a
strictly lower triangular matrix B is not restrictive because of the following result.

Theorem 1. Let w ∼ N(0, Q) where Q is the (possibly singular) precision matrix.
Then there exists a permutation matrix P , a strictly lower triangular matrix B and a
diagonal matrix F with non-negative entries such that PQP� = (I −B)�F (I −B).

If Q is non-singular, the result is familiar. For rank deficient Q we resort to the
algorithm for obtaining the Cholesky factor. All proofs are presented in the Supple-
ment (Datta et al. 2019). Hence, any multivariate normal distribution can be expressed
as in (2.1) under certain orderings of the areal units. For low rank distributions this
will be equivalent to setting some of the τi’s to zero. In fact, switching to the lower
triangular B has several advantages. First, L is lower triangular with ones on the diag-
onal, guaranteeing that LTFL is positive definite as long as all τi’s are positive. Also
det(LTFL) is simply

∏n
i=1 τi and the quadratic form wTLTFLw can be expressed as

τ1w
2
1 +

∑k
i=2 τi(wi −

∑
{j<i} wjbij)

2, evaluating which requires O(k+ s) floating point

operations (FLOPs) where s is the sparsity, i.e., the number of non-zero entries of B.
Hence, if B is sparse, the joint density of w can be evaluated in an extremely scalable
manner.
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To complete the specification in (2.1), we need to fully specify the matrices B and
F . The parameters {bij} and {τi} are identifiable up to a marginal precision parameter
because the factorization (I − B)�F (I − B) is the so called “LDLT factorization” (a
variant of Cholesky decomposition with ones on the diagonal of L), which is unique.
If multiple observations have been made for each region, we can estimate B and F
without imposing simplifying assumptions. In fact, since a sparse representation of the
Cholesky factor I−B is desired, the problem reduces to high -dimensional covariance or
precision matrix estimation for which there exists a vast inventory of statistical methods
including banding (Wu and Pourahmadi 2003; Bickel and Levina 2008b), tapering (Cai
et al. 2010), thresholding (Bickel and Levina 2008a; El Karoui 2008; Rothman et al.
2009) and penalization (Meinshausen and Buhlmann 2006; Friedman et al. 2007; Xue
et al. 2012) among others.

On the other hand, for large point-referenced spatial datasets, Datta et al. (2016);
Finley et al. (2017); Datta et al. (2016) construct sparse Cholesky factor approximations
of the precision matrix from a Matérn covariance function (Stein 1999). These approx-
imations are hence derived from an original joint distribution of the spatial random
effects.

However, most areal datasets lack replication that would permit use of fully data-
driven learning methods to estimate B and F . Also, there is no analog of Matérn
covariance functions on arbitrary graphs from which one can derive sparse Cholesky
factors. In fact, our goal here is the opposite, that is to construct a multivariate Gaussian
distribution on graphs starting from the sparse Cholesky factor. Consequently, we will
make parametric assumptions that will lead to an interpretable covariance model.

2.2 Directed Acyclic Graph Autoregressive Models

To achieve sparsity, we adopt the strategy of defining neighbor sets N(i) such that
bij = 0 for all j /∈ N(i). The choice and size of the neighbor sets for areal datasets
can be predicated upon the underlying neighborhood graph G. For i > 1, we define
N(i) = {j < i, j ∼ i}. The constraint j < i is necessary to endow B with a lower
triangular structure. This reduces (2.1) to

w1 = ε1, wi =
∑

j∈N(i)

wjbij + εi, (i = 2, . . . , k) (2.2)

This specification is analogous to auto-regressive models for time series. In fact, if wi

denotes the response at time i, N(i) includes all time points less than i up to a lag
of r, and bij = bi−j , then (2.2) simply denotes the autoregressive model of order r.
In a time-series context, where i and j denote time points, assigning the weights bij
based on the temporal lag seems natural, but for irregular areal datasets, enumeration
of the areal units does not have any physical interpretation. In the context of image
texture analysis, Cressie and Davidson (1998) used different coefficients for wj in (2.2)
based on the direction of neighbors on a regular lattice, to generate images with a wide
range of textures. In general, vertices of irregular graphs based on areal datasets do not
share such commonality in terms of spatial orientation of their neighbors. Hence, it is
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intuitive to assign equal weights to all the neighbors, i.e., letting bij = bi for all j ∈ N(i).

A natural choice would be to let bi = 1/n<i and τi ∝ n<i where n<i = |N(i)| denotes
the cardinality of the neighbor set. This specification is similar to (1.1) except that we

are only using the directed neighbors N(i) instead of all neighbors. Since n<1 = 0, this

choice of bij leads to the conundrum of how to specify τ1. Either we need to define τ1 in

a manner inconsistent with the definition of τi for i > 1 or we define τ1 = 0 which yields

an improper distribution for w. We circumvent this using a more general specification

described below that includes the degenerate prior with bi = 1/n<i and τi ∝ n<i as a

limiting case.

Let dij denote the length of the shortest path on G between nodes i and j. If G
is a tree, i.e., an acyclic graph, then for any 0 ≤ ρ < 1, the matrix with elements

ρdij is positive definite and can be used to model the covariance of w. This extends the

autoregressive model of lag 1 (AR(1) model) for time series to any tree graph (Basseville

et al. 2006). However, graphs corresponding to areal datasets are rarely acyclic and

for loopy graphs such results generally do not hold. A spanning tree of a graph is a

subgraph that is a tree and includes all the vertices of the original graph. Spanning

trees have been used to iteratively approximate parametric covariance matrices over

loopy graphs (Sudderth 2002). Borrowing these ideas, a potential solution would be to

define the covariance matrix for w as the AR(1) covariance matrix on a spanning tree

of G. However, for large graphs, strategies for deciding upon the best spanning tree are

unclear and computationally expensive. Furthermore, as demonstrated in (Sudderth

2002), ignoring certain edges when pruning G to a spanning tree can lead to large

errors. Instead, we will use local spanning tree embeddings of small subgraphs of G to

construct the lower dimensional conditional densities specified in (2.2). This method will

not ignore any edge and yet produces a computationally convenient precision matrix.

Let Gi be the subgraph of G comprising vertices {i}∪N(i) and the edges among them.

We intend to construct the conditional density wi | wN(i) using an embedded spanning

tree Ti of Gi. The natural candidate for Ti is the tree graph ({i}∪N(i), {i ∼ j | j ∈ N(i)})
as it contains all edges between i and N(i). We specify the conditional density wi | wN(i)

using the AR(1) model on Ti with parameter ρ. To be precise, for any 0 ≤ ρ < 1, an

auto-regressive AR(1) covariance matrix with parameter ρ on Ti is given by

⎛
⎜⎜⎜⎜⎜⎝

1 ρ ρ · · · ρ
ρ 1 ρ2 · · · ρ2

ρ ρ2 1 · · · ρ2

...
...

...
...

...
ρ ρ2 · · · ρ2 1

⎞
⎟⎟⎟⎟⎟⎠ =

(
1 v�i
vi Σi

)
. (2.3)

This helps us define E(wi | wN(i)) = vTi Σ
−1
i wN(i) and var(wi | wN(i)) = 1 − vTi Σ

−1
i vi,

where vi is the n<i × 1 vector of covariances between wi and wN(i), and Σi is the

n<i × n<i covariance matrix of wN(i) assuming an AR(1) model on Ti. From equation

(2.3) it is clear that vi = ρ1 where 1 denotes the vector of ones, and Σi is the matrix
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with one on the diagonals and ρ2 on the off-diagonals. Equating this with (2.2), we have

bij =
ρ

1 + (n<i − 1)ρ2
(i = 2, . . . , k; j ∈ N(i)), τi =

1 + (n<i − 1)ρ2

1− ρ2
(i = 1, . . . , k)

(2.4)

The specifications in (2.4) reveal some desirable intuitive features. First, as discussed
earlier, bij = bi for all j ∈ N(i), i.e, we assign equal weights to all the directed neighbors.
Also, the conditional precision τi for wi increases with the number of directed neighbors.
The formulation of Ti also ensures that any edge between i and j is incorporated in the
conditional specification of wi or wj depending on which comes later in the ordering.
So, unlike approximating the entire graph with a spanning tree, the local spanning tree
approach ensures that no edge of G is ignored. Furthermore, for any 0 ≤ ρ < 1 all τi’s
are positive thereby ensuring a proper probability distribution w ∼ N(0, LTFL). The
limiting case of ρ = 1 is equivalent to the improper prior with bi = 1/n<i and τi ∝ n<i.

The constructions in (2.1) and (2.4) assume a specific ordering, which we now gener-
alize to any other ordering. Let π = {π(1), . . . , π(n)} be any predetermined ordering of
the regions and π−1 denote its corresponding inverse permutation. Under this ordering,
for any i �= π(1), we define its past observations w<i,π as the collection {wj | π−1(j) <
π−1(i)} and its set of directed neighbors Nπ(i) = {j | i ∼ j, π−1(j) < π−1(i)}. Let
Eπ denote the collection of directed edges from all members of Nπ(i) to i for every
i �= π(1). We now have a directed acyclic graph Dπ = (V,Eπ). Let nπ(i) = |Nπ(i)|. The
generalization of (2.4) based on Dπ is:

wi | w<i,π ∼ N
(

ρ
1+(nπ(i)−1)ρ2

∑
j∈Nπ(i)

wj ,
1+(nπ(i)−1)ρ2

1−ρ2

)
, (2.5)

where for any i that has no directed neighbors under π, nπ(i) = 0 and the conditional
mean in (2.5) is zero. If wπ = (wπ(1), . . . , wπ(k))

T , and Lπ and Fπ denote the analogous
matrices corresponding to this ordering π, then we have

wπ ∼ N(0, LT
πFπLπ) (2.6)

This completes the specification of a new class of covariance models for areal datasets.
Since the construction is predicated upon a directed acyclic graph derived from an
original graph G, we refer to this as the directed acyclic graph autoregressive or DAGAR
model. Since Lπ is lower triangular with e = |Eπ| = |G| non-zero sub-diagonal entries

and Fπ is diagonal, for any ρ, the determinant of cov(wπ) is simply (1−ρ2)k/
∏k

i=1(1+
(nπ(i) − 1)ρ2) and the likelihood for the model in (2.6) can be evaluated using O(k+ e)
FLOPs. This ensures that our model is scalable and can be used to analyze massive
areal datasets.

2.3 Interpretation of ρ

While scalability of the DAGAR model is an important aspect in the analysis of large
spatial datasets, our current emphasis is on offering a class of areal models with an in-
terpretable parameterization. In this regard, we resolve the issue of a lack of meaningful
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relationship between ρ and spatial correlation in the proper CAR models. We now offer
insight about the interpretability of ρ in the DAGAR model for certain special graphs.

Theorem 2. Let T denote a tree with vertices V = {1, . . . , k} and π denote any ordering
such that for any i �= π(1), nπ(i) = 1. Then the covariance matrix in (2.6) defines the
autoregressive Gaussian process on T , i.e., (LT

πFπLπ)
−1 = (ρdij ) where dij denotes the

shortest path on T between i and j.

Theorem 2 shows that if G is acyclic, then, under certain orderings including breadth-
first and pre-order tree traversals, this model is equivalent to the stationary AR(1)
model on trees with unit variances and ρ being exactly equal to the correlation between
neighboring areas. In fact, for any two vertices separated by a distance d, the correlation
is ρd. The result also shows that while we require an ordering of the locations to construct
the DAGAR model, the resulting matrix in this case is order-free and stationary and
simply a function of the underlying undirected graph. We now present a result on
interpretation of ρ for an m× n regular grid graph.

Theorem 3. Let G denote the m×n grid graph with vertices V = {(i, j) | i = 1, . . . ,m; j =
1, . . . , n} and neighbors to the north, south, east, and west, and let π denote any diag-
onal ordering of the vertices corresponding to non-decreasing or non-increasing order
of i + j or i − j, then var(w(i,j)) = 1 for all i and j, and for any neighboring pair of
vertices (i, j) and (i′, j′), cov(w(i,j), w(i′,j′)) = ρ.

Hence, although for a grid, the DAGAR precision matrix is a function of the ordering,
for all orderings of Theorem 3, the model yields unit variances and a correlation of ρ for
all neighbor pairs. Hence, ρ is still interpretable as the correlation between neighboring
units . This result for a grid graph is quite promising as graphs arising from areal
data, like the grid graph, are loopy. Also note that when a CAR model is specified as
w ∼ N(0, τw(D − ρA)), it may seem that 1/τw is the marginal variance of each spatial
random effect. Unfortunately, this is not true as the specification of the precision matrix
for the CAR model effectuates a heteroskedastic distribution. Consequently, τw can only
be interpreted as a common scale factor for the marginal variances. This is remedied in
the DAGAR specification, as we see from Theorems 2 and 3 that the resulting model
N(0, τwQ(ρ)), where Q(ρ) is the DAGAR precision matrix, is homoskedastic, and hence
1/τw is the marginal variance. So, the DAGAR model ensures interpretability for both
ρ and τw. We will see that this interpretability empowers the DAGAR model to deliver
significantly improved inference about the spatial parameters in areal data analysis.

Of course, it is difficult to generalize these theoretical interpretability results for
irregular graphs. Hence, we also conducted numerical experiments to corroborate the
results in Theorems 2 and 3, and also gain insight into the relationship between ρ and
the neighbor-pair correlations for the proper CAR model and the DAGAR model using
an irregular graph. So we used three different graphs: a simple path graph with 100
vertices which is analogous to a time-series, a two-dimensional 10 × 10 lattice or grid
graph with edges between vertically or horizontally adjacent vertices, and the state map
of the contiguous United States, where two states are said to have an edge if they share
a common geographical boundary.
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Figure 1: Average neighbor pair correlations as a function of ρ for proper CAR and
DAGAR model. The solid gray line represents x = y line.

We generated covariance matrices corresponding to the two models for ρ ∈ {i/10 |
i = 1, . . . , 9}. Figure 1 plots the average neighbor-pair correlation, given by c(ρ) =∑

i∼j cov(wi, wj)/(2
√
var(wi)

√
var(wj))/(

∑
ni) as a function of ρ, for proper CAR

and DAGAR models. For the path and grid graphs, we find the average neighbor pair
correlation c(ρ) for our model is exactly ρ as guaranteed in Theorems 2 and 3. For
the highly irregular United States graph, the theoretical results, of course, do not hold.
Nevertheless, c(ρ) for the DAGAR model is much closer to ρ than for the proper CAR
model. For the CAR model, even when ρ is close to one, c(ρ) is less than 0.4. In fact,
for all three graphs, the average neighbor-pair correlation for the proper CAR model
remains modest. This seems to be true even for very high values of ρ and is consistent
with findings elsewhere (see, e.g., Banerjee et al. 2014).

2.4 Impact of Ordering

Unlike covariance or precision matrices that remain invariant up to a permutation factor
under different orderings of the multivariate vector, Cholesky factors depend on the
ordering of the observations. Our model in (2.6) assumes a predetermined ordering π.
We have already seen that for tree and grid graphs, Theorems 2 and 3 guarantee that
the under many different orderings, the DAGAR model retains desirable properties like
homoskedasticity and neighbor-pair correlation of ρ.

To understand the impact of ordering beyond the variances and neighbor-pair cor-
relations, we consider an order-free model using a product-of-experts type construc-
tion (Hinton 2002). Let Pπ denote the permutation matrix corresponding to π, i.e.,
Pπ(x1, . . . , xk)

T = (xπ(1), . . . , xπ(k))
T for any k-dimensional vector x, and let Q denote

the average of the DAGAR precision matrices in (2.6) over all permutations π, i.e.,

Q(ρ) =
1

k!

∑
π

PT
π LT

πFπLπPπ . (2.7)
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It is clear that Q = Q(ρ) is free of any ordering and is only a function of the undirected
graph G. Also, since it is the average of positive definite matrices, it is also positive
definite. We will use the order-free model Q to understand how the DAGAR precision
matrices Qπ differ under different choices of the ordering π. In order to do this, we first
note that Q can be expressed in closed form.

Theorem 4. Let i ≈ j mean that i and j share at least one common neighbor. There
exist functions f(ρ, r) and g(ρ, r) for any positive integer r and 0 ≤ ρ < 1 such that

Qii = 1 +
niρ

2

2(1− ρ2)
+

ρ2

1− ρ2

∑
j∼i

f(ρ, nj)

Qij = − ρ

1− ρ2
I(i ∼ j) +

1

1− ρ2
I(i ≈ j)

∑
k∼N(i)∩N(j)

g(ρ, nk).

Here I(·) denotes the indicator function. Explicit expressions for f(ρ, r) and g(ρ, r)
are provided in the proof of Theorem 4. Let K denote a set of ‘reasonable’ orderings
that one can consider for a given areal dataset. We note that for two orderings π1 and
π2 in K, the relative difference ‖Qπ1(ρ)−Qπ2(ρ)‖F /‖Q(ρ)‖F , where || · ||F denotes the
Frobenius norm, is bounded above by 2maxπ∈K ‖Qπ(ρ) − Q(ρ)‖F /‖Q(ρ)‖F . We now
investigate the asymptotic behavior of this quantity for the path and grid graphs.

Theorem 5. Consider the path graph with k nodes, and let π denote the left to right
or right to left ordering. Then the relative difference

lim
k→∞

||Qπ(ρ)−Q(ρ)||F
||Q(ρ)||F

=

√
4ρ8 + 2ρ4

(3 + 6ρ2 + ρ4)2 + 18ρ2(1 + ρ2)2 + 2ρ4
. (2.8)

Theorem 5 quantifies asymptotically the relative difference between the DAGAR
model and the order free version. Figure 2 (a) plots the quantity on the right hand side
of (2.8) as a function of ρ ∈ [0, 1]. We see that it is a monotonically increasing function
of ρ. For small values of ρ the difference is extremely small (0.02 for ρ = 0.25) and even
for moderate values of ρ (0.5 − 0.75) the difference is around or less than 10%. Below
we also provide the analogous result for the two-dimensional grid graph.

Theorem 6. Consider a m×m grid graph and let π denote any of the orderings used
in Theorem 3. Then

lim
m→∞

||Qπ(ρ)−Q(ρ)||F
||Q(ρ)||F

=

√√√√ρ4( s(ρ)5 − 2
1+ρ2 )2 + 2( 13 − s(ρ)

30 − ρ2

1+ρ2 )2 + 12( 16 − s(ρ)
60 )2

(1 + ρ2 + ρ2 s(ρ)
5 )2 + 4ρ2 + 20( 16 − s(ρ)

60 )2

(2.9)

where s(ρ) =
∑4

r=1
r

1+(r−1)ρ2 .

The limit in Theorem 6 looks more complicated than the analogous result for the
path graph. However, things are simplified noting that 1− s(ρ)/10 is O(ρ2) and, hence,
so is the numerator in the right hand side of (2.9). Figure 2 (b) plots this quantity as



A. Datta, S. Banerjee, J. S. Hodges, and L. Gao 1231

Figure 2: Asymptotic relative difference between the DAGAR model and the order
free DAGAR model in terms of Frobenius norm for path graph (left) and grid graph
(right). The five numbers on each curve corresponds to the values of the difference at
ρ = 0, 0.25, 0.5, 0.75 and 1 respectively.

a function of ρ. We see that once again this is monotonic in ρ and the difference is
negligible for small ρ. Theorems 5 and 6 show that at least for small ρ, the impact of
ordering is negligible, though for larger ρ theoretically the DAGAR precision matrices
for different orderings will be somewhat different.

While these results are restricted to the case of special graphs, for an arbitrary
areal dataset, one approach would be to use simple intuitive orderings based on the
coordinates representing the nodes in some Euclidean embedding of G. Similar strategies
have been used in Cholesky factor based approaches in Datta et al. (2016), Stein et al.
(2004) and Vecchia (1988) who observed empirically that the joint distribution seemed
to be less sensitive to ordering of the regions. Our own set of simulations, detailed
in Section 3.2 will confirm these findings as we observe that results corresponding to
different orderings are similar for both regular and irregular graphs.

The order-free model, owing to the availability of the precision matrix in closed form,
can be deemed a worthy candidate for analyzing areal data given its liberation from a
synthetic ordering. Our simulation analyses detailed in Section 3.1, show that for a wide
range of scenarios, performance of the DAGAR model and its order-free version were
very similar. However, the order-free model has certain disadvantages. From Theorem 4,
it is clear that for i �= j, Qij �= 0 if and only if either i ∼ j or i ≈ j. Hence, the sparsity
of Q is e2 where e2 is the number of edges in the second order graph created from G. As
e2 > e, Q is less sparse than the precision matrices for the original DAGAR model in
Section 2.2 or the CAR models. Furthermore, unlike the DAGAR precision matrix Qπ,
Q does not have a closed form expression for the determinant, which invokes expensive
computations. These computational roadblocks limit the possibility of using the order-
free model for larger datasets. The results of Theorems 2 and 3 about interpretability
of the parameter ρ also do not carry over to the order-free model.
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3 Data Analysis

3.1 Data Generated Using an Exponential Gaussian Process

Models for areal datasets are typically used as priors for areal random effects in a
hierarchical setup. For example, let yi denote the response observed at region i and xi

denote the corresponding set of covariates. A spatial generalized linear mixed model
framework assumes h(E(yi)) = xT

i β + wi where h(·) denotes a suitable link function.
Subsequently, a hierarchical areal model is customarily specified as∏k

i=1 pr(yi | xT
i β + wi, θ)×N(w | 0, τwQ(ρ))× pr(β, τw, ρ, θ) (3.1)

where Q(ρ) denotes the precision matrix of the areal model, pr(yi | xT
i β+wi, θ) denotes

the density corresponding to the link h(·) and pr(β, τw, ρ, θ) is the prior for the param-
eters. If h(·) is the identity link, e.g., the responses are Gaussian, then we can exploit
conjugacy for generating w in a sampler. However, for non-Gaussian responses, we have
to sample w and the other parameters using a Metropolis random walk sampler from
the joint density in (3.1).

We conducted simulation experiments assessing the performance of the areal data
models using the three graph structures described in Section 2.3 — path, grid and US
states. For each graph, we embed the vertices on the Euclidean plane and generate
the spatial random effect vector w from an Gaussian process, i.e., w ∼ N(0, τwM)
where M−1 is the covariance matrix corresponding to an exponential (Matérn1/2) GP,
i.e., M−1 = exp(−φd(i, j)) with d(i, j) denoting the distance between the embedding
of the ith and jth vertex. The path graph has a distance preserving embedding in
the Euclidean plane such that D(i, j) = |i − j|. We embed the grid graph within a
10 × 10 grid in the Euclidean plane. Although the resulting distance matrix is not
identical to the shortest distance (or geodesic) matrix on the graph, the distance between
each neighbor-pair remains one. For the United States graph, we use the centroid of
each state to create the distance matrix. We scale the distance matrix so that the
average neighbor-pair distance is one. To generate w, we use τw = 0.25, τe = 2.5 and
φ = − log(j/10) for j = 1, . . . , 9. This implies that for the exponential GP the average
neighbor pair correlation ρ = exp(−φ) varies between 0.1 and 0.9, thereby covering
a wide spectrum of scenarios. Subsequently, we generate the response y comprising
independent yi = xT

i β +wi + εi, where xi is a 2× 1 vector comprising two independent
standard normal variables, β = (1, 5)T , and the εi’s are independent N(0, τe).

We fitted all models using the hierarchical setup in (3.1) with the six different choices
of Q(ρ) — 1) ICAR 2) proper CAR, 3) a scaled ICAR model (as suggested by one
reviewer) of Sørbye and Rue (2014) which specifies a prior for τw in the ICAR model
as τw ∼ Gamma(2, σ2

ref ) where

σ2
ref = exp

(
1

k

k∑
i=1

log(((D −A)+)ii)

)
,

(D−A)+ denoting the Moore-Penrose inverse ofD−A, 4) the dimension-reducing sparse
generalized linear mixed model (sparse GLMM or SGLMM, Hughes and Haran 2013),
and the 5) ordered (DAGAR) and 6) order-free (DAGAROF ) directed acyclic graph
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autoregressive models. To create the directed acyclic graph for our model, we used the
ordering π based on the sum of the co-ordinates of the mappings of the vertices. The
sparse GLMM was implemented directly using the npSpatial R-package with the method
of restricted spatial regression (Hughes and Cui 2018). For the remaining models, the
proper CAR, ICAR, scaled ICAR and two DAGAR, the models were fit using Jags and
rjags packages. The hierarchical model fit for ICAR is∏k

i=1 N(yi | xT
i β + wi, τe)×N(w | 0, τw(D −A))×

N(β | 0, 0.0001I)×Gamma(τw | 2, 1)×Gamma(τe | 2, 0.1) .
(3.2)

The scaled ICARmodel was specified same as in (3.2) with replacing theGamma(τw|2, 1)
prior with Gamma(τw | 2, σ2

ref ). For proper CAR the model fitted is same as in 3.2 but
with D−A replaced by D−ρA and a Uniform(0, 1) prior for ρ. The ordered and order-
free DAGAR model replaced D−A in (3.2) respectively with Qπ(ρ) and Q(ρ) alongwith
inclusion of the Uniform(0, 1) prior for ρ. For each combination of parameter values we
used 100 replicate datasets.

Figure 3 plots the mean square error (MSE) between the true and estimated w aver-
aged over 100 replicates for each scenario. We first observe that the mean square errors
for the ICAR-based models (ICAR, scaled ICAR and sparse GLMM) are significantly
higher than the other three models for all three graphs. The scaled ICAR was the best
among these three, producing substantially lower MSEs than the original ICAR and the
sparse GLMM. The sparse GLMM also produced lower MSEs than ICAR for path and
USA graphs, but had slightly higher MSE for the grid graph. However, the three mod-
els involving the additional ρ parameters, i.e., the proper CAR and the two DAGAR
models, consistently produced lower MSEs. For the path graph there is no significant
difference in MSE among these three models. However, for the grid and USA graphs
when ρ is small, the DAGAR models yielded substantially lower errors. We also noticed
that, in terms of MSE, there was very little difference between the performance of the
ordered DAGAR model (2.6) and its order-free analogue (2.7) for most of the scenarios.
This result is encouraging as the scalability of the former is a pragmatic solution for
analyzing very large areal datasets or networks.

Next, we consider estimation of ρ, as ensuring interpretability of ρ is the motivation
driving the construction of the DAGAR model. As the data was generated using an
exponential GP, ρ is the unit-distance spatial correlation. We look at the estimates
and credible bands of ρ in Figure 4 for the three models involving ρ (the ICAR-based
models do not involve ρ and, hence, are not included). We see that for all three graphs,
estimates for ρ from the proper CAR model are considerably higher than the true value.
The bias is especially stark when the true ρ is small. The DAGAR models generally
perform much better in this respect with much less estimation bias, particularly for
small ρ. For larger ρ, the order-free model performs slightly better with the ordered
model demonstrating some downwards bias. The 95% confidence bands for both the
DAGAR models cover the true value of ρ in most scenarios for all three graphs, while
the bands for the proper CAR clearly miss many of the true ρ values.

Finally, in Figure 5 we plot the coverage probabilities (CP) defined as the mean
coverage for a parameter by the 95% confidence intervals over the 100 replications. The
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Figure 3: MSE as a function of the true ρ (x-axis) for the simulation data analysis using
data generated from an exponential GP.

Figure 4: Estimate and confidence bands of ρ as a function of the true ρ (x-axis) for the
simulation data analysis using data generated from an exponential GP.

regression coefficients β1, β2 and the error variance σ2
e = 1/τe are common to all the

models, and hence we compare the CPs for all six models for these parameters. For ρ,
we only compare the three models using ρ. We do not compare σ2

w = 1/τw, as it has
different interpretation for different models. For example, it is the homoskedastic spatial
variance for the ordered DAGAR model, but simply a scale factor for the heteroskedastic
spatial variances in the CAR models. We see that for ρ, the two DAGAR models offer
significantly improved coverage over the proper CAR model. This trend was already
reflected in the confidence bands in Figure 4 and is confirmed here. For smaller ρ the
coverages of the two DAGAR models are nearly identical to the nominal level of 95%.
While the coverages decline for larger values of ρ, they are still almost uniformly and
substantially better than the coverage provided by the proper CAR model.

For the regression coefficients, β1 and β2, we see that all models except the sparse
GLMM offered satisfactory coverage, close to 95%. This is not surprising as estimates
of regression coefficients are typically robust to variance misspecification. The under
coverage of the sparse GLMM is also expected as it tries to adjust for spatial confound-
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Figure 5: Coverage probabilities of the parameters as a function of the true ρ (x-axis)
for the simulation data analysis using data generated from an exponential GP.
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ing based on an underlying model assumption, which can lead to worse estimates if
that assumption is violated. If we generated data in a way such that the eigenvectors
corresponding to non-zero eigenvalues of the covariance matrix are uncorrelated with
the covariates, then it is likely that the sparse GLMM will produce the most accurate
estimates as the DAGAR or the other CAR models do not adjust for spatial confound-
ing. However, our focus in this manuscript is not on spatial confounding and the data
generation scheme we used is extremely common for geo-spatial settings. The dimension
reduction approach used by sparse GLMM with the ICAR model as their baseline, can
possibly also be adopted for the DAGAR models, to yield versions that guard against
confounding. However, care has to be taken avoid eigen decompositions of the covari-
ance matrix at every step of the Markov Chain Monte Carlo (MCMC), as the DAGAR
models, unlike the ICAR, involve ρ whose value will be updated at every iteration. We
identify this as one of the future research directions.

Turning to the error variance σ2
e = 1/τe, we first note that the ICAR-based models

performs surprisingly poorly offering almost zero coverage for small ρ for all the three
graphs. Only the scaled ICAR offers somewhat improved coverage for larger values of
ρ. The CPs from the DAGAR models are once again close to 95% for smaller values
of ρ but decline for larger ρ. The proper CAR generally offers coverage worse than the
DAGAR model and better than the ICAR-based models.

Reliable estimation and inference for spatial covariance parameters is a notoriously
difficult problem. These results for the coverage probabilities of the spatial parameters
clearly demonstrate the value of our interpretable model in delivering more accurate
inference about the parameters for areal data. The results present strong evidence for
the superiority of the DAGAR model both in terms of effectively recovering the latent
spatial surface and the ability to assess hypotheses related to parameters describing the
spatial structure in the data.

3.2 Analyses Using Different Orderings

The DAGAR model used in the analyses in Section 3.1 for the USA graph was con-
structed by ordering the nodes (states) from the southwest to the northeast. In this
section, we repeat the analysis for the DAGAR model using three other orderings which
start at southeast, northwest and northeast respectively and go approximately diago-
nally to the opposite end of the map.

Figure 6 plots the average MSE (left) and the estimates and confidence bands for
ρ over 100 replicated datasets for the DAGAR model using these three orderings and
the original ordering used in Section 3.1. We see that the ordering has little impact on
the results as the MSE as well as the estimates and confidence bands for ρ for the four
different orderings are nearly indistinguishable.

3.3 Data Generated Using CAR and DAGAR

In Sections 3.1 and S1.1, we generated the data using Gaussian Processes to ensure
that the data generating mechanism is different from all the models we are fitting to
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Figure 6: MSE (left) and estimates and confidence bands of ρ (right) as a function of
the true ρ (x-axis) for four different orderings of the DAGAR model.

Figure 7: MSE as a function of the true ρ (x-axis) for the simulation data analysis using
data generated from a DAGAR model.

the data (except for the path graph for data generated using an exponential GP). In

this Section, we considered simulation schemes where the data were generated using the

DAGAR or the proper CAR model for all three graphs. All the parameter choices were

kept the same as in Section 3.1 and 100 replicates were used for each setting.

Figures 7 and 8 plot the average MSE when the data is generated using a DAGAR

model. We see that when the data is generated using a DAGAR covariance, the DAGAR

model substantially outperforms all the ICAR-based models with significantly lower

MSE for all three graphs and all values of ρ. For the path graph, the proper CAR also

produces MSEs similar to the DAGAR model, whereas for grid and USA graphs for

smaller values of ρ, the MSE is higher than those of the DAGAR models. The trends in

MSE are broadly similar to what was observed in Sections 3.1 and S1.1. When data is

generated using a proper CAR, Figure 8 reveals that the DAGAR models, alongwith the

proper CAR model (which is the true model), once again produce MSEs substantially

lower than the ICAR-based models for all 3 graphs.
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Figure 8: MSE as a function of the true ρ (x-axis) for the simulation data analysis using
data generated from a proper CAR model.

3.4 Additional Analyses

The Supplemental file contains additional analyses for a) simulated data generated with
spatial random effects coming from a smoother Matérn3/2 GP instead of the exponential
GP (Section S1.1), and b) non-Gaussian (Poisson) areal data (Section S1.2). Overall,
the findings from these analyses concur with the results presented here. Across all the
simulation scenarios, we found the performance of the DAGAR model to be remark-
ably robust, uniformly producing the lowest MSEs, accurately estimating the regression
coefficients, error variances, and most remarkably the spatial correlation ρ, which is
considered to be notoriously difficult to estimate. With the exception of data generated
on a path graph using an exponential GP, all the other settings effectively correspond to
misspecified models, and the estimates of the regression coefficients from the DAGAR
model were quite robust to this. The proper CAR model also performed quite well,
often producing MSEs close to those from the DAGAR models except for cases when
the true spatial correlation was weak, i.e., ρ was small. However, both estimation and
inference for ρ from the proper CAR model was generally much less accurate than the
DAGAR model. We note that across all scenarios, the ICAR-based models generally
performed quite poorly, producing large MSE, with the scaled ICAR being the best in
this class. Finally, the order-free DAGAR model produced results very similar to the
ordered DAGAR model for all scenarios. However, it was much slower, especially due to
determinant calculations. While using state-of-the-art sparse matrix algorithms would
definitely help scale reduce the computing times for the order-free model, that is not
the focus of the current manuscript and hence, we do not consider the order-free model
for the real data analyses.

4 County-Level US Infant Mortality Data

We now analyze a large areal data using the DAGAR model. The dataset consists of
counts of infant births Bi and deaths Di for each of 3071 US counties. County-specific
covariates, which possibly affect infant death rates, were available and include number
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of births with low weight (lowi), percentages of black residents (blacki) and Hispanic
residents (Hispi), a Gini index measuring income disparity (ginii), social affluence (affi),
and a measure of residential stability (stabi). The dataset is publicly available in the
‘ngspatial’ package in R and was analyzed in Hughes and Haran (2013) where more
description of the data is available.

We analyzed this dataset using Poisson spatial regression model where each Di is
modeled as an independent Poisson random variable with mean Bi exp(α + β1 lowi +
β2 blacki + β3 Hispi + β4 ginii + β5 affi + β6 stabi +wi) where the wi’s are the spatial
random effects. We compared the ICAR and the DAGAR priors for the wi’s. ICAR
model was implemented in BUGS using the function car.normal. The unnormalized
weights associated with each pair of areas were set to be 1 to make sure it corresponds to
the default ICAR model. The car.normal distribution is parameterized to include a sum-
to-zero constraint on the random effects to make sure that the intercept α is identifiable.
We assigned α an improper uniform prior using the dflat() distribution. For remaining
parameters, we assign independent N(0, 10−6) priors to βi’s and Gamma(2, 1) to τw.
We set the same priors for DAGAR model except for the intercept for which the prior
for α is the same as βi’s with N(0, 10−6). We could not implement the proper CAR
model for such a large dataset. However, we also add the results of the sparse spatial
GLMM model.

In addition to presenting the parameter estimates and confidence intervals, we also
use model comparison metrics to evaluate the three covariance models. We used the
Deviance Information Criterion (DIC, Spiegelhalter et al. 2002) to compare the poste-
rior distributions. Table 1 presents the results for the three models. Among the seven
regression coefficients, estimates for six of them were similar across the three models,
with each of the credible intervals yielding the same inference. The exception to this
was β4, whose estimates differed substantially between the sparse GLMM and the other
two models. The sparse GLMM was the only one yielding a credible interval that does
not cover zero.

We do not know if the difference for β4 was due to the sparse GLMM accounting
for spatial confounding, as this can only be answered depending on what we believe the

DAGAR ICAR sparse GLMM

α −5.623 (−5.944, −5.353) −5.641 (−5.871, −5.413) −5.430 (−5.616, −5.246)

β1 7.803 (6.438, 9.172) 7.716 (3.924 9.166) 8.777 (7.540, 10.032)

β2 0.00376 (0.00208, 0.00543) 0.00364 (0.00182, 0.00915) 0.00423 (0.00288, 0.00556)

β3 −0.00347 (−0.00501, −0.00189) −0.00286 (−0.00859, −0.00262) −0.00379 (−0.00488, −0.00270)

β4 −0.0616 (−0.570, 0.480) 0.103 (−0.425, 0.631) −0.555 (−0.977, −0.125)

β5 −0.0770 (−0.0911, −0.0632) −0.0778 (−0.0935, −0.0616) −0.0757 (−0.0877, −0.0638)

β6 −0.0413 (−0.0590, −0.0234) −0.0448 (−0.0643, −0.0249) −0.0285 (−0.0433, −0.0138)

τw 7.544 (3.615, 12.866) 32.080 (14.11, 39.87) 9.450 (3.870, 16.459)

ρ 0.987 (0.974, 0.995)

DIC 10145.8 9902.0 10110.0

Table 1: Parameter estimates (posterior medians) and model comparison metrics for
the US infant mortality data. The numbers inside braces indicates the lower and upper
bounds for the 95% credible intervals.
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true data generation process was. We have seen consistently in the simulation analyses

using the usual data generation paradigm, how the sparse GLMM offered higher MSEs

and poor inference on the regression coefficients. Also, while the credible intervals for

the sparse GLMM were significant for all 7 regression coefficients (compared to 6 for

the other two models), it also produced a slightly higher DIC than the ICAR model

despite being a dimension reduction approach with a fewer number of parameters.

DAGAR was the only model to accommodate ρ, and the estimate and confidence

intervals suggest strong spatial correlation. We have seen consistently from the simula-

tion exercises that when the underlying spatial correlation is strong, the DAGAR model

performs similarly to the CAR models. This is consistent with what we observe here.

In fact, the deviance information criterion of the three models is within approximately

1% of each other, demonstrating the competitive performance of the DAGAR model

even for large datasets in a non-Gaussian setup under strong spatial dependence. More-

over, through the estimation of ρ, DAGAR provides additional insight about the spatial

dependence that is not offered by the ICAR model or the sparse GLMM model.

5 Discussion

The existing repertoire of covariance models used for analyzing areal datasets is ex-

tremely limited. In this manuscript, we have developed an alternative parametric model

for areal datasets that promises to be a significant addition to this inventory. The para-

metric DAGAR models we have proposed in Section 2 are novel and offer a greater

degree of interpretability than the CAR models, and will be scalable for large datasets.

We observe that when spatial dependence is weak or modest, the DAGAR model ex-

cels over both variants of the CAR model, while the results are similar when there is

strong spatial correlation. Since, the magnitude of the underlying spatial correlation is

unknown apriori in most real life applications, we believe the DAGAR model will be

a useful alternative to the CAR models. While the ordering of the locations for the

DAGAR model is artificial, the theoretical results and extensive simulations strongly

suggest that substantive inference from the DAGAR model is expected to be robust to

the ordering.

Analyzing prevalence of many diseases simultaneously in a multivariate setup is be-

coming increasingly important to accommodate the correlations among different disease

prevalences. Many of the popular approaches rely on Cholesky factors of conditionally

autoregressive precision matrices (Gelfand and Vounatsou 2003; Martinez-Beneito 2013;

Martinez-Beneito et al. 2017) which can be computationally prohibitive for large k.

Our ordered model lends itself naturally to these settings due to the readily available

Cholesky decomposition and, hence, promises to broaden the inventory of multivariate

disease mapping models. The ordered model also offers a coherent way of modeling on

arbitrary graphs or networks of growing size, i.e., if a new point is added to the graph,

the nested distributions remain same, unlike any of the other three models considered

here.
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Supplementary Material

Supplementary Material for ‘Spatial disease mapping using directed acyclic graph auto-
regressive (DAGAR) models’ (DOI: 10.1214/19-BA1177SUPP; .pdf).
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