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A Bayesian Nonparametric Multiple Testing
Procedure for Comparing Several Treatments

Against a Control

Luis Gutiérrez∗, Andrés F. Barrientos‡,
Jorge González†, and Daniel Taylor-Rodŕıguez§

Abstract. We propose a Bayesian nonparametric strategy to test for differences
between a control group and several treatment regimes. Most of the existing tests
for this type of comparison are based on the differences between location parame-
ters. In contrast, our approach identifies differences across the entire distribution,
avoids strong modeling assumptions over the distributions for each treatment,
and accounts for multiple testing through the prior distribution on the space of
hypotheses. The proposal is compared to other commonly used hypothesis test-
ing procedures under simulated scenarios. Two real applications are also analyzed
with the proposed methodology.
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1 Introduction

We consider the problem of comparing continuous responses for p populations or treat-
ments against those from a control group. This kind of comparisons are in the setting
of multiple testing problems, that is, procedures that involve the simultaneous test-
ing of several hypotheses (see e.g., Hochberg and Tamhane, 1987). More formally, let
y = (yc,y1, . . . ,yp)

t be the response variable, where yc = (yc,1, . . . , yc,nc)
t is a random

sample of size nc from the control population, whose distribution Gc is supported on
R. Similarly, for 1 ≤ k ≤ p, the vector yk = (yk,1, . . . , yk,nk

)t denotes an independent
random sample of size nk from the kth population that is to be compared against the
control, and that are distributed according to Gk, also defined on R.

We are interested in finding hypotheses (or equivalently models) that are best sup-
ported by the data y among the set M = {Hγ : γ = (γ1, . . . , γp) ∈ {0, 1}p}, where
H(γ1,...,γp) represents the model for y such that

yc,i
iid∼ Gc, i = 1, . . . , nc,

yk,i
iid∼ Gk = γkG

∗
k + (1− γk)Gc, i = 1, . . . , nk (1)
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with Gc �= G∗
k and k = 1, . . . , p.

For example, with p = 3 the hypothesis H(0,0,0) indicates that all treatments are equal
to the control, while H(0,1,1) postulates that only the first treatment equals the con-
trol. From the Bayesian standpoint, evidence for or against each hypothesis is assessed
through their posterior probabilities, and hence all hypotheses considered can be com-
pared against each other, effectively a multiple comparison problem. Specification (1)
poses the multiple comparison problem as a model selection one, where the structure
and size of the space of hypothesisM (a.k.a. model space) facilitates a prior specification
that accounts for multiple testing. Details on how penalization for model complexity
and multiple testing are built into the posterior probabilities is provided in Section 2.

The space of hypotheses M can be visualized as a partially ordered set through a
Hasse diagram (Simovici and Djeraba, 2008). For the case p = 3, in Figure 1 each node
represents a hypothesis, and the node labels correspond to vectors γ ∈ {0, 1}p defined
as above. The edges connecting the nodes indicate nested models represented by the
hypotheses. For example, the path in the partially ordered set given by H(0,0,0) →
H(1,0,0) → H(1,0,1), indicates that the model corresponding to the hypothesis where
all populations are equal to the control, is nested in the model where only population
1 is different from the control, which is itself nested in the model resulting from the
hypothesis where populations 1 and 3 differ from the control. This notion of nesting
reflects the way in which model parameters are specified: the parameters of a hypothesis
nested within others are also present in the hypotheses that nest it. This nested structure
is formalized in Section 3.2. Furthermore, representing the model space as a partially
ordered set through this nesting of hypotheses, enables assigning prior probabilities to
hypotheses accounting for the model space structure. Again, the Bayesian take on this
multiple testing problem consists of identifying, among the 2p hypotheses in M, those
best supported by the data according to their posterior probabilities.

In this paper we have three aims, (I) develop a Bayesian hypothesis testing procedure
which yields the posterior probabilities π(Hγ | y) for allHγ ∈ M accounting for multiple
testing, (II) relax the strong parametric assumptions in this kind of comparisons and
identify differences between groups beyond the location and scale parameters, and (III)
if some of the populations are different from the control group, gain understanding
about which aspects of their distributions differ.

The comparison of several treatments against a control was first studied by Dunnett
(1955) and his proposed method, or extensions of it, are still in use. The method pro-
posed by Dunnett (1955) is based on the construction of confidence statements about
the p differences between the mean of each treatment and the mean of the control
group. Assuming that the observations are normally distributed, the procedure is based
on quantiles of the multivariate t distribution and is capable of testing whether all the
differences are simultaneously different from zero with a specified probability. Dunnett
and Tamhane (1991) proposed a step-down procedure which provides p-values for the
comparisons between the treatments with a control taking into account the multiple
comparison nature of the problem. These p-values are also based on the multivariate
t distribution. Dunnett and Tamhane (1991) showed that the step-down procedure is
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Figure 1: Hasse diagram for the partially ordered set representing the space of hypothe-
ses for three groups against a control.

more powerful than the step-down procedure of Holm (1979) and the single step pro-
cedure of Dunnett (1955). The approaches proposed in Dunnett (1955) and Dunnett
and Tamhane (1991) assume that observations are normally distributed with unknown
treatment means and unknown but common variance. Nonparametric alternatives to
the Dunnett test are the Nemenyi-Damico-Wolfe test, which makes one-sided treatment-
versus-control multiple comparisons based on joint ranks (Hollander and Wolfe, 1999),
and the multiple comparison procedure for unbalanced one-way factorial designs in Gao
et al. (2008) based on the unweighted version of the nonparametric relative effects and
the associated linear pseudo rank statistics. Both tests are only able to detect possi-
ble differences in the locations of the distributions. However, in many applications, the
assumptions made by the tests described above are not realistic.

In spite of the lasting popularity of Dunnett’s approach, its validity is compromised
by its underlying assumptions – normality and equal variances – and its usefulness is
limited as comparisons are based only over the location parameters. In fact, distribu-
tions may differ in features other than the location, such as tail behavior, symmetry, and
number of modes. Although different variances can be accommodated through location-
scale families of distributions, the remaining distributional assumptions required (e.g.,
normality) may still prove to be too stringent to hold in practice. In light of this, and
with aims (I) and (II) in mind, we propose a Bayesian nonparametric (BNP) inferential
strategy (see, e.g., Ghosh and Ramamoorthi, 2003; Müller and Quintana, 2004; Hjort
et al., 2010; Müller and Mitra, 2013), which draws from elements of the Bayesian se-
lection literature (Jeffreys, 1961; Scott and Berger, 2010; George and McCulloch, 1993;
Liang et al., 2008; Berger and Pericchi, 1996; Wilson et al., 2010; Womack et al., 2015) to
penalize both test multiplicity and the complexity of the underlying models. In addition,
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this approach has the advantage of enabling comparisons against the entire distribution
of the control group. Aim (III) is addressed by calculating shift functions (Doksum,
1974), which have been extensively used in the literature to test equality of two distri-
butions Gk and Gc (see, e.g., Doksum, 1974; Doksum and Sievers, 1976; Hollander and
Korwar, 1980; Wells and Tiwari, 1989; Lu et al., 1994).

BNP approaches for the comparison of two distributions have been proposed in re-
cent years. This kind of comparisons are also known as the two-sample problem. Some
contributions are provided in the works of Ma and Wong (2011); Chen and Hanson
(2014); Labadi et al. (2014); Holmes et al. (2015); Soriano and Ma (2017). BNP hy-
pothesis testing procedures for two-sample problems in more general spaces such as
manifolds are studied in Bhattacharya and Dunson (2012). On the other hand, BNP
proposals for multiple testing problems have been developed for specific parameters
or applications. For example, Ramanan and Berry (1998) propose a multiple compari-
son method among the means of p populations based on Dirichlet processes. The work
of Scott (2009) describes a framework for multiple hypothesis testing of autoregressive
time series, which is used to flag companies whose historical performance is significantly
different from that expected due to chance. Kim et al. (2009) use Dirichlet processes
with spike and slab priors as a base measure to test jointly for the significance of the
random effects in mixed models. Recently, Cipolli et al. (2016) propose a multiple test-
ing procedure for comparing several means based on Polya tree priors. As mentioned
before, our approach differs from the existing literature in that it compares multiple
populations against a control, identifying differences over the entire distributions. Fi-
nally, De Iorio et al. (2004) make a related proposal that uses the Dependent Dirichlet
process (MacEachern, 1999, 2000) to define a probability model for random distribu-
tions arranged in an analysis of variance (ANOVA)-like array. Although their proposal
offers a flexible alternative to model p populations, this model was not formulated as a
hypothesis testing procedure.

The remainder of the manuscript is organized as follows: In section 2, the multiple
testing problem is formally introduced. In Section 3 we describe the proposed BNP
model for hypothesis testing. In Section 4 the proposed model is illustrated using simu-
lated data under different scenarios. This section also provides a Monte Carlo simulation
study, where the proposal is compared with current parametric and nonparametric al-
ternatives. Applications using real-life datasets are presented in Section 5. We finalize
the paper in Section 6 with conclusions and a discussion.

2 Bayesian testing background

As discussed in the introduction, our goal is to find hypotheses in M that are best
supported by data y. From the Bayesian standpoint this can be done by comparing
model posterior probabilities for all models in M. These posterior probabilities are
made up of two components: the Bayes Factor (Jeffreys, 1935; Kass and Raftery, 1995)
and the prior distribution over M (Jeffreys, 1961; Scott and Berger, 2006, 2010).

Under hypothesis Hγ ∈ M, the likelihood L(θ|y, Hγ) connects the data to the
parameters θ given hypothesis Hγ . Denote by π(Hγ) the prior probability for hypothesis
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(model) Hγ , and let π(θ|Hγ) represent the prior density for θ under Hγ . Letting H0p

represent the hypothesis of all populations being equal to the control, the posterior
probability for any Hγ ∈ M, can be expressed as:

π(Hγ |y) =
m(y|Hγ)π(Hγ)∑

Hγ′∈M m(y|Hγ′)π(Hγ′)

=
Bγ,0p(y){π(Hγ)/π(H0p

)}∑
Hγ′∈M Bγ′,0p(y){π(Hγ′)/π(H0p)}

, (2)

where m(y|Hγ) =
∫
L(θ|y, Hγ)π(θ|Hγ)dθ is the marginal likelihood of y under hypoth-

esis Hγ , obtained by integrating out the model specific parameters from the likelihood.
The term, Bγ,0p(y) = m(y|Hγ)/m(y|H0p

) is the ratio of marginal likelihoods, also
known as the Bayes Factor for hypothesis Hγ relative to H0p

.

As shown in (2), the model posterior probabilities are specified by the Bayes factor
(determined by the priors on the parameter space), and by the priors on the space of
hypotheses. The Bayes factor controls for model complexity whereas the prior over the
space of hypotheses controls for multiple testing. In the remainder of this section we
elaborate on these prior distributions, emphasizing the role that each of them play in
the Bayesian testing problem.

2.1 The Bayes factor and the prior over the parameter space

The Bayes factor contains a penalty known as the Ockham’s-razor effect (Jeffreys and
Berger, 1992). This type of penalization has been commonly associated in the Bayesian
variable selection literature as an automatic penalty for model complexity. Although
this has not been theoretically established in the nonparametric setting, evidence for
this is provided empirically in Basu and Chib (2003). The Bayes factor (and therefore
the prior on the parameters), however, does not modulate test multiplicity. This is clear
since the Bayes factor between two specific hypotheses (or models) is fixed, regardless
of the size of the space of hypotheses (Scott and Berger, 2010).

The strength of the penalty built into the Bayes factor is leveraged by the prior dis-
tributions on the model parameters. A considerable body of literature is now available
dealing with the definition of these priors for Bayesian testing. Particularly, large efforts
have been devoted to the development of “non-informative” priors. Some notable ex-
amples are the spike and slab priors (Mitchell and Beauchamp, 1988) and variations of
them (see for example George and McCulloch, 1993; Ishwaran and Rao, 2005; Ročková
and George, 2014, 2016), g-priors and scale-mixtures of g-priors (Zellner and Siow, 1980;
Berger and Pericchi, 1996; Liang et al., 2008; Womack et al., 2014), and non-local priors
(Johnson and Rossell, 2010, 2012; Altomare et al., 2013). Given the ease with which
spike and slab priors can be adapted, their ability to yield simultaneously selection
and estimation, and their time-tested performance, we will adopt a strategy that in-
volves spike and slab components for both location and scale. We provide a detailed
development of this prior in Section 3.2.
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2.2 Prior distribution over the space of hypotheses

Although the prior probabilities assigned to hypotheses can also penalize model com-
plexity, Jeffreys (1961) recognized that these play an essential role in mediating test
multiplicity. The choice of prior distribution on the space of hypotheses requires careful
consideration since seemingly innocuous alternatives can have undesirable consequences,
and posterior inference is remarkably sensitive to this prior information for small and
moderate sample sizes. For example, it has been a common practice to assume equal
prior probabilities on all hypotheses; however, this seemingly non-informative alterna-
tive favors models of a particular level of complexity, making this choice inadequate.

To define the priors on the space of hypotheses M, each hypothesis is associated to
a vector γ = (γ1, . . . , γp) ∈ {0, 1}p. In Figure 1, these vectors are used to label each
node, defining a one-to-one correspondence between the specific configuration of the γ
vector and a particular hypothesis. As such, the distribution over M is set in terms of
the γ’s. In comparing a control group against p other populations, M is populated by
the 2p possible configurations of γ.

While the importance of these priors was first acknowledged around the 1960’s, the
literature has only recently gained some attraction. Some examples of priors of this
form are the Beta-Binomial(a, b) constructions proposed in (Ley and Steel, 2009; Scott
and Berger, 2010; Wilson et al., 2010; Castillo et al., 2015), as well as the construction
found in Womack et al. (2015). These priors assume that models of the same size (i.e.,
hypotheses of the same complexity) obtain the same prior probability. Denoting by
aγ =

∑p
k=1 γk with aγ = l (for some l ∈ {0, 1, . . . , p}), this assumption translates into

priors for Hγ of the form

π(Hγ) = πp(l)

(
p

l

)−1

,

where πp(l) = P (aγ = l) is the probability for the entire class of hypotheses with exactly
l groups differing from the control, so that dividing πp(l) by

(
p
l

)
provides the probability

for a single model in the class. As such, priors of this type penalize for the number of
hypotheses within the class, as well as for the complexity of models representing the
hypotheses in the class.

The prior formulation proposed in Womack et al. (2015) is derived from first prin-
ciples, has a meaningful and intuitive interpretation, and has been shown to provide
suitable penalization for hypothesis complexity as well as test multiplicity. As such, we
consider this prior formulation in our model, and defer to Section 3.3 for details on its
construction.

3 A BNP model for jointly testing against control

Below we formalize the model specification, providing details on the structure of the
likelihood, elaborating on the priors devised for the model parameters, and describing
the prior considered for the space of hypotheses. Additionally, for the case when dif-
ferences have been detected, we briefly discuss the use of shift-functions to identify the
zone in the support of the distribution where these differences are found.
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3.1 Model definition

Let yk,i be the ith observation in population k, we associate a predictor xk,i indicating
the population membership, that is, xk,i = k with k ∈ {c, 1, . . . , p}. We propose the
following model,

yk,i | xk,i,P ind∼
∫

φ
(
·|μ, σ2

)
Pxk,i

(dμ, dσ2),

P | Hγ ∼ πDDP(·|Hγ),

Hγ ∼ πM, (3)

where P = {Px : x ∈ {c, 1, . . . , p}}, φ(·|μ, σ2) is the probability density function of a
Gaussian distribution with parameters (μ, σ2), πDDP(· | Hγ) is a prior induced by a
Dependent Dirichlet Process DDP (MacEachern, 1999, 2000) under the hypothesis Hγ ,
and πM is a prior distribution defined on model space M. We now proceed to describe
how the priors πDDP(·|Hγ) and πM are defined.

The prior πDDP(·|Hγ) is induced by a process P whose elements are defined as,

Px(·) =

∞∑
j=1

ωjδ(μj(x),σ2
j (x))

(·), (4)

where the weights ωj are defined with the stick-breaking construction (Sethuraman,

1994), that is, ωj = Vj

∏
l<j(1 − Vl), with Vj | κ

iid∼ Beta(1, κ), and δ is the Dirac
measure. To provide additional flexibility, we assume that κ ∼ Gamma(a1, a2). Finally,
the atoms are defined as

μj(x) = μc,j + ηx,j and σ2
j (x) = σ2

c,jτx,j , (5)

where x ∈ {c, 1, . . . , p}. We set ηc,j = 0, and τc,j = 1, for all j, which is analogous to
the standard reference cell constraint. The random sequences {μc,j}j≥1 and {σ2

c,j}j≥1

are the locations and scales of the control population. Thus, the possible differences
detected in the kth population are captured by the changes in locations {ηk,j}j≥1 and
scales {τk,j}j≥1 with respect to the control group. When ηk,j = 0 and τk,j = 1 for a
particular k and for every j ≥ 1, the k-th and control populations are the same.

Remark 1. Under model (3) we have that Gc(·) =
∑∞

j=1 ωjΦ(· | μc,j , σ
2
c,j) and Gk(·) =∑∞

j=1 ωjΦ(· | μc,j + ηk,j , σ
2
c,jτk,j).

Model (3) belongs to the class of dependent stick-breaking processes, with dependent
atoms and common weights. This class enjoys appealing theoretical properties (see for
example Barrientos et al., 2012; Pati et al., 2013). The full hierarchical model (3)–(5)
bears some similarities to the family of DP mixture models proposed by Müller et al.
(2004). Müller et al. (2004) also propose a procedure for a finite number of populations
that borrows strength across different but related mixture models. These mixture models
relate to each other by their corresponding base measures, which are defined as a mixture
of two measures: one idiosyncratic and another common to all populations. Under this
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strategy, while the atoms may come from the same distribution these are not exactly the
same. This in turns implies that even if two populations have atoms drawn from the same
distribution, the mixing distributions for the two populations can differ. Conversely,
in our proposal the atoms for two populations can take the same values, hence, the
corresponding mixing distributions themselves can be the same. It is the similarity
among these mixing distributions what enables us to make comparisons between the
control and treatment populations.

3.2 Priors on the atom parameters

In order to test the hypotheses of interest, we require priors for (ηk,j , τk,j) that are
able to concentrate around 0 for ηk,j and around 1 for τk,j whenever Gc = Gk. Here,
k = 1, . . . , p denotes the kth population to be compared with the control group. This
type of behavior can be induced using spike and slab priors (George and McCulloch,
1993; Ishwaran and Rao, 2005; Ročková and George, 2016) as the base measure of the
Dirichlet process. Thereby, the definition of πDDP(·|Hγ) is completed with the following
prior specification,

(μc,j , σ
2
c,j) | s, b, ε

iid∼ φ (μc,j | 0, εs)G
(
1/σ2

c,j | b/s, b/s
)
, (6)

(ηk,j , τk,j) | H(γ1,...,γp), s, ε, b
iid∼ πk(· | γk, s, ε, b), (7)

where

πk (· | γk, s, ε, b) = [γkφ (ηk,j | 0, εs) + (1− γk)φ (ηk,j | 0, ε)]
× [γk G (1/τk,j | b/s, b/s) + (1− γk)G (1/τk,j | b, b)] ,

and (s, ε, b) are positive hyperparameters with G(·|b1, b2) denoting the density function
of the Gamma distribution with mean b1/b2 and variance b1/b

2
2. Notice that ε and s

control the variance of ηk,j and τk,j . As such, ε is assumed to be a small near-zero
constant and s is fixed in a relative large value. This implies that whenever γk = 0 (i.e.,
the spike), the ηk,j ’s will be close to 0 and the τk,j ’s close to 1, so the atoms for the
kth population defined in (5) will concentrate tightly about {μc,j , σ

2
c,j}j≥1. Conversely,

if γk = 1, the set of parameters of the kth population are {μc,j , ηc,j , σ
2
c,j , τk,j}j≥1. This

spike and slab formulation imposes the nesting structure mentioned in the introduction
among hypotheses in M.

In all of our simulations and case studies we fix the hyperparameters used in (6)
and (7) at ε = 0.01, s = 1000 and b = 100. For these values, the variance of the
slab component (γk = 1) for ηk,j is 10 and the variance for the spike is 0.01, in both
cases the mean of ηk,j is 0. On the other hand, the spike component for the precision
parameter 1/τk,j has mean 1 and variance 0.01, which implies that the prior induced on
the variance parameter τk,j is highly concentrated around 1. While, the slab component
has mean 1 and variance 10. Thus, in this case τk,j can be different from one. These
values of the hyperparameters are chosen to calibrate the model for data standardized
using the mean and standard deviation for all observations.
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3.3 Priors on the space of hypotheses

As mentioned before, we consider the strategy formulated in Womack et al. (2015) to
build the priors on the space of hypotheses. These priors control test multiplicity as well
as model complexity. Recalling that aγ =

∑p
k=1 γk, this prior formulation assumes that

models with equal aγ have the same prior probabilities. The prior for the hypothesis
that all populations are equal to the control is π(H0p) = ρ/(ρ + 1). The prior for the
alternatives hypotheses Hγ is obtained from the recursion

π(Hγ) = πp(l)

(
p

l

)−1

=

⎧⎨
⎩ρ

p−l∑
j=1

πp(l + j)

(
l + j

l

)⎫⎬
⎭

(
p

l

)−1

,

where γ is a binary vector containing at least one element equal to one, l = aγ and ρ > 0
is a hyperparameter which fixes the relative odds of belief in a set of local alternatives
versus a local null hypothesis.

To provide intuition behind this prior construction, consider the example where a
control and three additional treatments are to be compared. For instance, focusing on
the set of hypotheses {H(1,0,0), H(1,1,0), H(1,0,1), H(1,1,1)} (colored orange in Figure 2),
note that inside of M, H(1,0,0) is only nested in H(1,1,0), H(1,0,1), H(1,1,1). This prior
formulation makes the prior probability of H(1,0,0) proportional to the sum of the priors
of all hypotheses that nest it, with the proportionality constant given by ρ. For example,
for ρ = 2, the prior for H(1,0,0) is 10/111 = 2 × (2/111 + 2/111 + 1/111). Turning to
hypothesis H(1,1,0), given that it is only nested in H(1,1,1), the prior probability of the
former is exactly ρ times the prior probability of the latter.

The same prior structure is observed for any hypothesis in M; it arises from treating
each hypothesis as a local null with respect to the set of all hypotheses that nest it (see
Womack et al., 2015, for more details on this prior construction). Given that we want to
penalize more complex hypothesis but not excessively so, we recommend using ρ = 1 as
default and make use of this value in the examples and applications of Section 4 and 5.

3.4 Posterior inference and analysis of differences

The posterior inference of model (3) is quite efficient following the slice sampler algo-
rithm described in Kalli et al. (2011) and Walker (2007). This algorithm overcomes the
infinite-dimensionality inherent to the Dirichlet process, by considering an augmented
model and truncating the number of components in the mixture to a random variable
N that takes on finite values drawn as part of the algorithm. Once N is sampled, the
posterior inference in each step of the Gibbs algorithm, is reduced to sample the lo-
cations, scales, and weights in a finite mixture model. The updating of the locations
and scales is facilitated because of the conjugacy in model (3). The weights are simply
sampled from a Beta distribution. The posterior probability π(Hγ′ | y), for Hγ′ ∈ M
can be approximated with

π(Hγ′ | y) ≈ 1

B

B∑
�=1

1{γ(�)=γ′},
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Figure 2: Diagram for the model space for 3 treatments against the control (left), and
prior distribution on this space of hypotheses, assuming ρ = 1 (center) and ρ = 2 (right).

where γ(�) is the lth posterior sample of γ, and B denotes the number of posterior
samples. Here γ(�) is updated with a Metropolis-Hastings step. The detail of each step of
the Gibbs algorithm is provided in the Supplementary Material (Gutiérrez et al., 2018).

For those groups such that the testing procedure yields evidence for Gk(·) �= Gc(·)
(k ∈ {1, 2, . . . , p}), the shift function can be used as a simple alternative to visualize
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the aspects in which their distributions differ from the control. Suppose that Gc(y)
d
=

Gk(y+Δk(y)), for all y, so that Δk can be interpreted as the amount needed to transform
the distribution of the control group to the one of the treatments. Doksum (1974) showed
that the shift-function, defined as

Δk(y) = G−1
k (Gc(y))− y (8)

is the unique function such that the equality in distribution holds.

Thus, Δk(·) characterizes how two independent distributions differ. In fact, if Δk(y)=
0, for all y, then the distributions are identical. If Δk(y) �= 0, for some y, the distributions
are not equal and we can inspect the set {y : Δk(y) �= 0} to identify where they differ.
Equivalently, if treatments are being compared to the control, the set {y : Δk(y) �= 0}
gives information on what aspects of the distribution are being influenced by the treat-
ment.

The computation of the shift function is straightforward in our algorithm because

for each step of the Gibbs algorithm, we have posterior random realizations of G
(�)
c and

G
(�)
k , � = 1, . . . , B. These distributions can be computed using the expressions shown

in Remark 1 together with the Gibbs algorithm in the Supplementary Material. Let
G−1

k (u) = inf{x : Gk(x) ≥ u} be the left inverse of Gk, a random realization of the shift
function can be calculated as

Δk(y)
(�) =

{
G

−1(�)
k (G

(�)
c (y))− y if γ

(�)
k = 1,

0, ∀y if γ
(�)
k = 0.

(9)

The realizations in (9) can be used to compute the sample posterior mean Δ̄(y) as a point
estimator of the shift function. Also, a 95% credible set (Δ∗(y),Δ

∗(y)) can be estimated
using the 2.5% and 97.5% percentiles of the random realizations of Δk(y). The values
of y for which 0 /∈ (Δ∗(y),Δ

∗(y)) can be used to determine the set {y : Δk(y) �= 0}.

4 Illustrations with simulated data and a Monte Carlo
study

In this section, we first illustrate the performance of the proposed BNP method us-
ing synthetic data. Then, we investigate the performance of the proposed BNP testing
procedure using a Monte Carlo simulation study with scenarios that focus on different
features that may be of interest in this type of problems. The posterior inference ob-
tained from our method is compared to those from other popular hypothesis testing
alternatives.

4.1 Examples with synthetic data

Three examples are provided, each differing in terms of which populations differ from the
control, as well as the distributions considered to generate the data (i.e., distributions
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that differ in location, scale, asymmetry and the number of modes in the populations).
In particular, we consider a skew normal distribution for example 1 with density given by

f(x) =
2

τ
φ

(
x− μ

τ

)
Φ

(
α

(
x− μ

τ

))
,

where φ(·) and Φ(·) correspond to the density and the cumulative distribution of a stan-
dard normal distribution. The parameters μ, τ and α correspond to the location, scale
and shape of the distribution, respectively. We denote the skew normal distribution as
SN(μ, τ, α). Notice that a skew normal distribution with α = 0 is equivalent to a normal
distribution. In each example, we consider p = 3 populations and a control group with
sample sizes nc = nk = 90, k ∈ {1, 2, 3}. A summary of the settings used for each
example is given in Table 1.

Example True Population
hypothesis yc y1 y2 y3

1 H(0,0,1) SN(0, 1, 0) SN(0, 1, 0) SN(0, 1, 0) SN(0, 1, 1)
2 H(1,1,0) N(0, 1) N(0, 2.25) N(0, 0.25) N(0, 1)
3 H(1,1,1) N(0, 0.49) N(0.6, 1) 0.5N(−1.2, 0.25) + 0.5N(1.2, 0.25) 0.3N(−1.2, 0.25) + 0.7N(1.2, 0.25)

Table 1: True populations for examples 1 to 3. N(μ, σ) denotes normal distribution.
SN(μ, τ, α) denotes the skew normal distribution with location μ, scale τ and shape α.

The proposed model in (3) was fitted to each of the three data sets generated. The
values of the hyperparameters for the total mass parameter κ were fixed at a1 = a2 = 1,
which is a relatively standard choice. We experimented with other choices for a1 and
a2, for example, a1 = 5, a2 = 1, and in general the posterior quantities were robust
to that choices. The posterior value of κ was updated as in Escobar and West (1995),
see details in Supplementary Material. A graphical display of the posterior inference
showing true vs estimated densities and shift functions for each example, is provided
in Figures 3 and 4. The Figures also display the true shift function and its estimation
given by the posterior mean and the corresponding credible sets. We also added a red
dashed line, which represents Δk(·) = 0 as a reference for interpretation purposes. In
particular, we display the posterior inference where there are differences between the
control and some population. As it can be seen from these figures, the proposed model
provides good estimations of the densities and the shift functions. In most cases, esti-
mates follow closely both the true densities and true shift functions and the true model
was completely covered by 95% point-wise credible interval. Regarding the posited hy-
pothesis, for each example our testing procedure assigned posterior probability of 1 to
the true hypothesis. Thus, in conclusion, the method was able to accurately detect the
true hypothesis, estimating correctly both the densities and shift functions.

4.2 Monte Carlo simulation study

The 9 scenarios to be investigated are determined by the levels of two factors: the ex-
tent to which the tested populations differ (difference levels which are given by the
parameters μl, σ

2
l and θl, with l = 1, 2, 3, see the details in Table 2), and the sample

size (n = 50, 150, 300). In all the scenarios, the control population was assumed to be
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Figure 3: True density (solid lines), posterior mean (dashed lines) and 95% point-wise
credible intervals (left panel). True shift function, posterior mean (dashed line) and 95%
credible intervals (right panel). Panels (a) and (b) depict Example 1. Panels (c) to (f)
correspond to Example 2.
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Figure 4: True densities (solid lines), posterior mean (dashed lines) and 95% point-wise
credible intervals (left panel). True shift function (solid lines), posterior mean (dashed
line) and 95% credible intervals (right panel) right panel. All panels correspond to
Example 3.
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Difference Population Parameter True hypothesis
level H(0,0,0) H(1,0,0) H(0,1,0) H(0,0,1) H(1,1,0) H(1,0,1) H(0,1,1) H(1,1,1)

l = 1

yc
iid∼ N(0, 1) - - - - - - - - -

y1
iid∼ N(μl, 1) μl 0 0.625 0 0 0.625 0.625 0 0.625

y2
iid∼ N(0, σ2

l ) σl 1 1 1.498 1 1.498 1 1.498 1.498

y3
iid∼ 0.5N(−θl, 1) + 0.5N(θl, 1) θl 0 0 0 1.162 0 1.162 1.162 1.162

l = 2

yc
iid∼ N(0, 1) - - - - - - - - -

y1
iid∼ N(μl, 1) μl 0 0.819 0 0 0.819 0.819 0 0.819

y2
iid∼ N(0, σ2

l ) σl 1 1 1.806 1 1.806 1 1.806 1.806

y3
iid∼ 0.5N(−θl, 1) + 0.5N(θl, 1) θl 0 0 0 1.359 0 1.359 1.359 1.359

l = 3

yc
iid∼ N(0, 1) - - - - - - - - -

y1
iid∼ N(μl, 1) μl 0 1.051 0 0 1.051 1.051 0 1.051

y2
iid∼ N(0, σ2

l ) σl 1 1 1.994 1 1.994 1 1.994 1.994

y3
iid∼ 0.5N(−θl, 1) + 0.5N(θl, 1) θl 0 0 0 1.652 0 1.652 1.652 1.652

Table 2: Values of the parameters μl, σl and θl, l ∈ {1, 2, 3}.
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a standard normal distribution. Population 1 was generated by a normal distribution
with variance equal to one and location denoted by μl. In the case of population 2, we
considered a normal distribution with mean zero and variance denoted by σ2

l . Finally,
population 3 was generated by a 50–50 mixture of two normal distributions. Each com-
ponent of the mixture has variance equal to one, with locations −θl and θl, respectively.
Specifications of the populations and the corresponding values for the parameters are
shown in Table 2.

The results of the Monte Carlo simulation study are summarized in Figure 4. Each of
the 9 scenarios is represented by an image plot. The vertical axis in these plots represent
the true models, while the horizontal axis represents the estimated models. Each of
the 64 cells shows the average over the 100 Monte Carlo replications for the posterior
probability π(Hγ | y). A probability value equal to 0 is represented by black, while a
value 1 is represented by white in the grayscale. The correctly identified hypotheses are
represented in the main diagonal. Figure 4 shows that as the value of l increases (i.e., the
difference between the treatments and the control is more evident), the average posterior
probability π(Hγ | y) approaches 1 in the true model. The same behavior is observed
as the sample size increases. We compared the performance of our model against some
classical testing procedures. To this end, we select the maximum a posteriori hypothesis,
given by

Ĥγ = arg max
γ

π(γ′ = γ | y).

For the classical tests, we consider a significance level of 0.05. In particular, we
compared our proposal with the multiple hypothesis testing procedures of Dunnett
(Dunnett and Tamhane, 1991), Nemenyi-Damico-Wolfe (Hollander andWolfe, 1999) and
Gao (Gao et al., 2008). We also used some two-sample testing procedures (Welch’s t-test,
Levene, Wilcoxon and Kolmogorov-Smirnov), and adjust them for multiple comparisons
with Bonferroni corrections.

Table 3 provides a summary of the performance of each test. We report the number
of times that the true hypotheses, as described in Table 2, were detected for each
test. The multiple testing procedures of Dunnett, Nemenyi-Damico-Wolfe and Gao were
able to detect differences only in the locations of the distributions, that is, they detect
reasonably well the hypothesis H100. The two-sample tests provide the expected results;
that is: the t-test and the Wilcoxon test are able to detect differences in locations. Their
performances are better than our proposal in detecting this aspect of the distribution,
especially in the scenarios with small sample size. The Levene test is able to detect scale
differences (H010). This test also detects the hypothesis H001, which could be thought
as a scale difference, while actually the difference is due to the mixture specification
in Population 3. The performance of Levene test for the scenarios with small sample
sizes was better than our proposal. The Kolmogorov-Smirnov test was able to detect
differences across the entire distribution. However, the performance of our proposal was
better or as good as Kolmogorov-Smirnov in all the scenarios. Image plots showing
the number of times that the eight considered test selected each model are provided in
Figures S.1 to S.8 in the Supplementary Material.
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l = 1, n = 50 l = 2, n = 50 l = 3, n = 50
True model [1] [2] [3] [4] [5] [6] [7] [8] [1] [2] [3] [4] [5] [6] [7] [8] [1] [2] [3] [4] [5] [6] [7] [8]

H000 97 89 92 92 85 84 81 85 98 89 92 92 85 84 81 85 97 89 92 92 85 84 81 85
H100 32 77 75 73 82 2 81 74 66 95 96 95 92 2 90 88 95 98 99 97 94 2 93 92
H010 43 2 1 1 5 68 1 8 82 5 1 1 5 87 2 18 97 5 1 1 5 92 2 32
H001 46 4 3 1 4 81 5 26 81 4 3 2 4 91 5 42 97 4 5 2 4 93 7 80
H110 8 3 2 3 4 3 6 12 47 4 3 4 4 4 8 30 88 4 4 5 5 4 9 41
H101 8 4 3 3 4 5 6 16 39 6 5 5 8 5 9 36 91 8 6 7 9 5 10 79
H011 7 0 0 0 0 63 0 4 48 0 0 0 0 91 0 16 83 0 0 0 0 95 0 32
H111 4 0 0 2 0 0 0 3 18 0 0 1 0 1 0 13 65 0 0 1 0 1 0 27

l = 1, n = 150 l = 2, n = 150 l = 3, n = 150
H000 98 94 94 94 86 86 85 83 100 94 94 94 86 86 85 83 98 94 94 94 86 86 85 83
H100 61 96 97 95 91 3 92 94 97 96 97 95 91 3 92 94 100 96 97 95 91 3 92 94
H010 68 4 1 1 5 90 4 38 100 5 1 1 5 91 4 71 100 5 1 1 5 91 5 88
H001 82 3 1 1 6 84 7 74 99 4 2 1 7 84 6 97 100 5 4 1 5 84 4 99
H110 44 4 4 4 4 3 4 34 98 4 5 5 4 3 4 85 100 4 5 5 4 3 5 95
H101 51 2 2 1 4 6 4 82 96 3 2 1 3 6 5 94 100 2 4 4 1 6 6 96
H011 35 1 1 1 1 94 2 45 94 1 1 1 1 94 2 83 100 1 1 2 1 94 2 97
H111 23 0 0 0 0 5 0 37 89 0 0 0 0 5 0 88 99 0 0 2 0 5 0 96

l = 1, n = 300 l = 2, n = 300 l = 3, n = 300
H000 99 93 96 96 86 83 86 90 100 93 96 96 86 83 86 90 100 93 96 96 86 83 86 90
H100 85 99 99 98 94 1 94 93 100 99 99 98 94 1 94 93 100 99 99 98 94 1 94 93
H010 94 4 3 2 6 94 7 84 100 5 3 3 6 94 7 95 100 5 4 3 5 94 7 95
H001 97 4 2 1 6 86 9 88 100 5 4 1 7 86 10 89 100 5 4 2 4 86 8 89
H110 88 3 2 2 3 8 4 84 100 4 4 3 4 8 6 95 100 5 7 6 4 8 6 95
H101 92 3 4 4 3 1 5 94 100 3 9 8 3 1 3 94 100 2 19 18 3 1 3 94
H011 84 0 0 0 1 98 1 82 100 0 0 0 1 98 1 97 100 0 0 0 0 98 1 97
H111 79 0 0 1 0 5 0 95 100 0 0 3 0 5 0 100 100 0 1 7 0 5 0 100

Table 3: Number of times that the true model was detected in the 100 replications. [1]: BNP, [2]: Dunnet, [3]: Nemenyi, [4]: Gao,
[5]: t-test, [6]: Levene, [7]: Wilcoxon, [8]: Kolmogorov-Smirnov. Values in boldface indicate the test with the best performance
for each hypothesis.
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Figure 5: Posterior probabilities of the Monte Carlo simulation study of Section 4.2.
Probability 0 is represented by black, while 1 is represented by white in the grayscale.
The correctly identified hypotheses are represented in the main diagonal.

5 Applications

5.1 Educational achievement by school type

We implement our testing procedure to assess whether student educational achievement
differs depending on the type of school they attend. In this context, it has been observed
that, in some countries, school-type is a good proxy of students’ socioeconomic-status.
It is widely evidenced by international studies that educational achievement is strongly
correlated with the socio-economic background of students (e.g., OECD, 2016). In Chile,
this phenomenon has been present, not only in the case of international student assess-
ments such as the Program for International Student Assessment (PISA), but also in
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Figure 6: (a) Posterior mean and 95% point-wise credibility intervals of the densities for
the educational achievement by school type of Section 5.1. (b) Shift functions for the
comparison of subsidized and private schools versus municipal (control).

national assessments such as SIMCE (Agencia de Calidad de la Educación, 2017) and
SEPA (MIDE UC, 2017).

The data considered stems from the System of Assessment Progress in Achievement
(SEPA, by its Spanish acronym); a private national evaluation system in Chile. SEPA
consists of a battery of tests in the subjects of Mathematics and Language, designed
to assess achievement in students from first to eleventh grade. In each application,
besides students’ test scores, additional information such as school type (e.g., municipal,
subsidized, private) is also available in the data base. For the illustration, we consider
the abilities on the mathematics test for a total of n = 1, 130 students attending three
different types of schools and distributed in the following way: nMun = 324, nSub =
640, nPri = 166; where nMun, nSub, and nPri are the sample sizes for the municipal,
subsidized and private schools, respectively. The ability latent variables were predicted
using a two parameter logistic item response theory model (2PL) (De Boeck and Wilson,
2004; van der Linden, 2016), with values defined in the real line.

Our aim here is to test whether ability distributions of the municipal schools (selected
as the control group) are different to other types of schools. This selection is motivated by
the interest of knowing how different are the achievements in private schools compared to
the municipal ones, which constitute the public system. We fitted our model considering
the same hyperparameters of Section 3.2 and 4.1. Figure 6 shows estimated ability
distributions for each school type (dashed lines), 95% point-wise credibility intervals and
the estimation of the shift functions that are used to compare the ability distributions of
subsidized and private schools versus municipal ones. Visually, the ability distributions
seem to differ from each other. Taking municipal schools as the control group, this
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finding is formally confirmed by our model which gives support to the hypothesis H11 or,
equivalently, assigned posterior probability concentrated in π(H11 | y) = 1. The shifts
functions show what was formally found using our BNP multiple testing procedure.
As a matter of fact, none of the curves lie in the zero line, meaning that the ability
distributions for schools differ. It can also be seen that the magnitude of the differences
is different depending on the support region considered. For instance, if the students’
abilities are low, there is some gain in changing type of school, and this gain is more
evident if the abilities are higher. We also applied all the existing methods listed in
Table 3. These methods found differences in locations or scales between the abilities
distributions, but as can we seen in Figure 6 the differences are due to different kind
of skewness. For instance, the municipal schools show positive skew, while the private
schools show a negative skew distribution.

5.2 Phenology study

A consequence of climate change of increasing concern to ecologists is the decoupling of
species interactions due to drastic changes in the timing of life cycle events. For example,
large variations in the dates in which plants flower can have drastic impacts on species
that depend upon them. The study of the timing of these events and how it is affected
by variations in climate is called phenology.

Here we make use of historical data from a network of institutions collecting phe-
nological data through participatory science methods between 1825–1878 in the state
of New York, and compare it to a modern dataset between 2010 and 2015 in the same
region. We restrict our analysis to a single phenological event across several species in
the region, namely the day of first flowering. Taking the period between 1830–1840 as
the control group (nc = 1, 703), we compare the first flowering dates between the control
and two other time periods: 1850–1860 (n1 = 2, 449) and 2010–2015 (n2 = 2706). The
response variable is the (centered and scaled) day of the year, whose observed values
were assumed to be iid conditionally on the time period. The goal is to determine if
and how the distribution of the first flowering has varied through time. This was the
reason that motivated the election of the first period of observation as the control group.
However, we must disclose that this example is intended as a means to illustrate the
capabilities of the proposed methods, rather than a rigorous attempt to determine the
impact of climate change.

The results derived from our analysis indicate that the density of the first flower-
ing during the control period markedly differs from the density of both the 1850–1860
decade and that from modern times, with the posterior probability entirely concentrat-
ing on this hypothesis π(H11 | y) = 1. That being said, the regions of the support
where these differences take place differ drastically between the two comparison groups
(Figure 7). In particular, the results show that, when compared to the control group,
the dates of first flowering occurred later during the year in the 1850–1860 period. In
the 2010–2015 period more mass is assigned to both earlier and later flowering dates
when compared to the control period, this behavior is clearly visualized from the shift
function estimation. Notice that, the shift function allows us to identify which part of
the population have a treatment effect. Conversely, as expected due to the large sample
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Figure 7: (a) Posterior mean and 95% point-wise credibility intervals for densities of the
flowering dates of Section 5.2. Shift functions for the comparison of 1850–1860 decade
and modern times versus 1830–1840 decade (control), (b).

size in this illustration, the existing methods considered in the Monte Carlo simulation
section detected differences in location or scale, but in this study, the differences are
not only due to location or scale, they are mainly given in the tails of the densities.
Additionally, the existing methods do not provide a smooth estimation of the densities.
Of course, simpler ways to estimate the density such as kernel estimators are available,
but these kind of estimators are strongly affected by the selection of the bandwidth.
On the other hand, the quantification of the uncertainty is not straightforward. In our
proposal, the credible sets for the densities and shift function quantifies the uncertainty
and allows us to visualize the differences.

6 Concluding remarks

We proposed a formal Bayesian hypothesis procedure to compare multiple treatments
against a control. The methods developed are applicable to a wide variety of problems,
and improve upon existing methods that test against a control group. The procedure
avoids strong modeling assumptions over the distributions of each population, and is able
to identify differences with respect to the entire distribution of the control. Additionally,
we provide a simple approach to visualize the differences detected by the procedure
between pairs of distributions by using the shift function.

The proposed method accounts for the multiplicity of the testing problem through
the priors on the space of hypotheses. The comparisons are relatively simple, due to
the nesting structure of the proposed model (see, Remark 1). The nesting structure
is facilitated by considering common weights in the mixture model. Extensions of the
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model to consider dependent weights are possible, given that a nested structure for the
weights can be also specified. More flexibility could be added to the model considering
for example a skew normal distribution for the kernel in (3), see, e.g. Canale and Scarpa
(2016). An extension for multivariate responses could also be feasible if an adequate
parametrization can be found for a multivariate normal kernel.

As shown in Section 4, the performance of our approach proved to be consistently
good, in most cases outperforming the other alternatives considered in the Monte Carlo
simulation study. Unsurprisingly, classical multiple testing procedures were only able to
detect differences in locations. Similarly, the two-sample testing procedures exclusively
detected the features for which they were designed. That is, t-test and Wilcoxon excelled
at detecting differences in location; Levene successfully detected changes in scale; and
Kolmogorov-Smirnov identified differences across the entire distribution. The conclu-
sions derived from the Kolmogorov-Smirnov test are similar to those resulting from our
method; however, our method has the advantage of being a multiple comparison proce-
dure that yields density estimates for all populations, from which the shift function can
be calculated. Of course, the proposed approach is not designed as a procedure to deal
with hundreds or thousands of comparisons given the computational costs associated
to it. The proposed strategy relaxes parametric assumptions, provides estimates for the
strength of the competing hypotheses in the form of posterior probabilities, and has the
potential to yield new insight through the use of the shift function.

For problems with small sample sizes, specific location or scale tests are preferred,
given that they target specific features of the populations. Nevertheless, many current
applications have sufficiently large data to make implementing our approach possible.
Furthermore, Bayesian hypothesis testing procedures yield the wealth of information
contained in the posterior probabilities, which can be combined with a loss function to
make decisions as with classical tests.

Supplementary Material

Supplementary Material for ‘A Bayesian nonparametric multiple testing procedure for
comparing several treatments against a control’ (DOI: 10.1214/18-BA1122SUPP; .pdf).
The online Supplementary Material contains the Gibbs Algorithm described in Section
3.4, as well as the image plots of the comparison between our proposal and other classical
hypothesis tests (Section 4.2), including both multiple and two-sample cases.
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